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Preface

This book is based on lecture courses given by the authors over the past decade
and a half to various student audiences, most of them final year undergraduates or
beginning graduates. It is meant particularly for those who wish to study relativity
theory or classical mechanics from a geometrical viewpoint. In each of these sub-
jects one can go quite far without knowing about differentiable manifolds, and the
arrangement of the book exploits this. The essential ideas are first introduced in the
context of affine space; this is enough for special relativity and vectorial mechanics.
Then manifolds are introduced and the essential ideas are suitably adapted; this
makes it possible to go on to general relativity and canonical mechanics. The book
ends with some chapters on bundles and connections which may be useful in the
study of gauge fields and such matters. The “applicability” of the material appears
in the choice of examples, and sometimes in the stating of conditions which may
not always be the strongest ones and in the omission of some proofs which we feel
add little to an understanding of results.

We have included a great many exercises. They range from straightforward
verifications to substantial practical calculations. The end of an exercise is marked
with the sign 0. Exercises are numbered consecutively in each chapter; where we
make reference to an exercise, or indeed a section, in a chapter other than the current
one we do so in the form “Exercise n of Chapter p" or something of that kind. We
conclude each chapter with a brief summary of its most important contents. We
hope that beginners will find these summaries useful for review, while those for
whom the subject is not entirely new will be able to tell from the summary whether
a chapter treats topics they are already familiar with.

We have attempted to make the book as self-contained as is conslstent with the
level of knowledge assumed of its readers and with the practical limits on its length.
We have therefore appended notes to several chapters; these notes summarise back-
ground material not covered in the text or give references to fuller treatments of
topics not dealt with in detail. The notes should be the first recourse for a reader
who meets something unfamiliar and unexplained in the main text.

We are grateful to Elsayed Ahmed, Glauco Amerighi, Marcelo Gleiser, Clive
Kilmister, Mikio Nakahara, Tony Solomonides, Brian Sutton and Navin Swami-
narayan, who commented on parts of the manuscript, and to Dr. Swaminarayan for
working many of the exercises. We are grateful also to Eileen Cadman, who drew
the pictures, to Joan Bunn, Carol Lewis and Barbara Robinson, who spent many
hours patiently processing the manuscript, and to Mrs Robinson for her careful
subediting. Finally we have to thank a number of colleagues for TgXnical help un-
stintingly given: Sue Brooks, Bob Coates, Steve Daniels, Glen Fulford, Sid Morris
and Chris Rowley.

The Norman Foundation generously supported the preparation of the text.



0. THE BACKGROUND: VECTOR CALCULUS

The reader of this book is assumed to have a working knowledge of vector calcu-
lus. The book is intended to explain wide generalisations of that subject. In this
chapter we identify some aspects of the subject which are not always treated ade-
quately in elementary accounts. These will be the starting points for several later
developments.

1. Vectors

The word “vector” is used in slightly different ways in pure mathematics, on the
one hand, and in applied mathematics and physics, on the other. The usefulness of
the vector concept in applications is enhanced by the convention that vectors may
be located at different points of space: thus a force may be represented by a vector
located at its point of application. Sometimes a distinction is drawn between “free”
vectors and “bound” vectors. By a free vector is meant one which may be moved
about in space provided that its length and direction are kept unchanged. A bound
vector is one which acts at a definite point.

In the mathematical theory of vector spaces these distinctions are unknown. In
that context all vectors, insofar as they are represented by directed line segments,
must originate from the same point, namely the zero vector, or origin. Only the
parallelogram rule of vector addition makes sense, not the triangle rule.

Closely connected with these distinctions is a difficulty about the representation
of the ordinary space of classical physics and the space-time of special relativity
theory. On the one hand, one finds it more or less explicitly stated that space is
homogeneous: the laws of physics do not prefer any one point of space, or of space-
time, over any other. On the other hand, almost any quantitative treatment of a
physical problem begins with a particular choice of coordinate axes—a choice which
singles out some supposedly unremarkable point for the privileged role of origin. The
underlying difficulty here is that the vector space R3 is not quite appropriate as
a model for ordinary physical space. The kind of space which is homogeneous, in
which the whereabouts of the origin of coordinates is an act of choice not a dictate of
the structure, which retains sufficient vectorial properties to model physical space,
and in which a sensible distinction between free and bound vectors can be made, is
called an affine space; it will be discussed in detail in Chapter 1. (The concept of a
vector space, and the notation R3, are explained in Note 2 at the end of Chapter 1.)

It is unfortunate that distinctions which appear merely pedantic in the straight-
forward context of R3 are sometimes important for generalisations. The scalar prod-
uct, also called the inner or dot product, is so familiar that it is difficult to keep in
mind that R3 may be given many different scalar products, with similar properties,
or no scalar product at all. The scalar product is a secondary structure: if one fails



2 Chapter 0

to recognise this one cannot exploit fully the relationship between a vector space
and its dual space (the dual space is also defined in Note 2 to Chapter 1).

In other terms, the matrix product of a row and a column vector, resulting
in a number, may be constructed without the introduction of any secondary struc-
ture, but the scalar product of two column vectors, also resulting in a number,
cannot. The first makes use only of vector space notions, combining an element of
a vector space, represented as a column vector, and an element of its dual space,
represented as a row vector. The product, called a pairing, is represented by matrix
multiplication. In tensor calculus this would be expressed by the contraction of a
contravariant and a covariant vector. The second requires the additional concept
of a scalar product. It is surprising how rich a geometry may be developed with-
out the introduction of a scalar product: after this chapter, we do not introduce
scalar products again until Chapter 7. It is also instructive to see which notions of
vector algebra and calculus really depend on the scalar product, or on the metrical
structure, of Euclidean space.

From the outset we shall distinguish notationally between the underlying n-
dimensional vector space of n-tuples, and the same space with the scalar product
added, by writing R" for the former but £” for the latter.

2. Derivatives

Let f be a function on £3; grad f is the column vector of its partial derivatives,
evaluated at any chosen point. Let v be a unit vector at that point, with a chosen
direction. Then the directional derivative of f in the chosen direction is the scalar
product v - grad f.

A more general directional derivative may be defined by dropping the require-
ment that v be a unit vector. This directional derivative may be interpreted as the
derivative along any curve which has v as tangent vector at the point in question,
the curve not being necessarily parametrised by its length. If v is regarded as a
velocity vector of a particle then v - grad f is the time rate of change of f along the
path of the particle. However, the directional derivative may perfectly well be con-
structed without appealing to the scalar product, by taking the partial derivatives
as components of a row vector. This vector is called the differential of f; in these
terms the directional derivative is simply the pairing of the tangent vector and the
differential. Having no scalar product, one cannot sustain the usual interpretation
of the gradient as the normal to a surface f = constant, but the differential may
still be used to specify the tangent plane to this surface at the point in question.
The main advantage of this point of view is that it is the starting point for a general
theory which encompasses non-metrical versions of grad, curl and div, and much
more besides.

In vector calculus one sees pretty clear hints of close connections between grad,
curl and div, but in the usual treatments they are often not much more than hints.
We have in mind for example the relations curl o grad = 0 and div o curl = 0, and
the assertions that a vector field is a gradient if and only if its curl vanishes and a
curl if and only if its divergence vanishes. These relations all fall into place in the
development of the exterior calculus, which is undertaken in Chapters 4 and 5.
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We return to consideration of the directional derivative, but from a different
point of view. The directional derivative operator associated with a vector field
X will for the time being be denoted by X - grad, as before, but now we insist on
regarding the components of gradf as the components of the differential, so that
there is no need to introduce the scalar product to construct directional derivatives.
We list some properties of operators of this type, as applied to functions:

(1) X - grad maps functions to functions

(2) X - grad is a linear operator, and is linear in X

(3) (fX) - grad = f(X - grad)

(4) (X - grad)(f1f2) = (X -grad f1)f2 + f1(X - grad f3) (Leibniz's rule).

The composition of directional derivative operators, and their commutation
properties, are not often discussed in standard treatments of vector calculus. The
composite (X - grad) o (Y - grad) of two operators is not a directional derivative
operator, because it takes second derivatives of any function on which it acts, while
directional derivative operators take only first derivatives. However, the commuta-
tor

(X - grad) o (Y - grad) — (Y -grad) o (X - grad)

is a directional derivative operator, which is to say that it is of the form Z . grad
for some vector field Z. The vector field Z depends on X and Y (and on their
derivatives). It is usual to denote the commutator by the use of square brackets,
and to extend this notation to the vector fields, writing

|X -grad,Y -grad| = [X,Y] - grad.

It is not difficult to compute the components of {X,Y] in terms of the components
of X and Y; this, and the significance and properties of the brackets of vector fields,
is discussed at length in Chapter 3.

The directional derivative operator may be applied to a vector field as well as
to a function. The Cartesian components of a vector field are functions, and the
operator is applied to them one by one: if E,, Ez, and E; are the usual coordinate
vector fields and

Y =Y,E, + Y2E; + Y3E;

then
(X -grad)Y = (X -gradY,)E, + (X -grad ;) E; + (X - grad Y3) E3.

This operation has properties similar to those of the directional derivative as applied
to functions:

(1) X - grad maps vector fields to vector fields

(2) X - grad is a linear operator and is linear in X

(3) (/X) - grad = f(X - grad)

(4) X -grad(fY) = (X -grad /)Y + f(X -grad Y).
However, the conventional use of the same symbol X - grad for what are really two
different operators—the directional derivatives of functions and of vector fields—
makes the last of these appear more like Leibniz’s rule than it really is: on the right
hand side each of the two usages of X - grad occurs.
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The properties of the directional derivative of vector fields listed above are typi-
cal of the properties of a covariant derivative; this subject is developed in Chapters 2,
5 and 7, and generalised in Chapters 9, 11, 13 and 15. The application of X -grad to
vector fields in R3 is the simplest example of a covariant derivative. The interaction
of the covariant derivative with scalar products is exemplified by the formula (in
£3)
(X -grad)(Y-Z) = (X -gradY)-Z +Y - (X -grad Z).

Note that in this formula the two different meanings of X - grad again occur: on
the left it acts on a function, on the right, on vector fields. The commutator of
two such operators, acting on vector fields, is given by the same formula as for the
action on functions:

[X -grad,Y -grad] = [X,Y] - grad.

This formula, which is not typical of covariant differentiation formulae, expresses
the fact that ordinary Euclidean space is flat, not curved.

We have adopted the usual convention of vector calculus that vectors and vector
fields are printed in boldface type. We shall continue to follow this convention, but
only for the vectors and vector fields in £3 with which vector calculus deals: in
more general situations vectors and vector fields will be printed in ordinary italic

type.

3. Coordinates

One of the byproducts of the approach to be developed here is that the expression in
curvilinear coordinates of such constructions as grad, curl and div, which can appear
puzzling, becomes relatively straightforward. Coordinate transformations, and the
way in which quantities transform in consequence, have an important part to play
in the developing argument. However, we do not generally define objects in terms
of their transformation properties under change of coordinates, as would be the
practice in tensor calculus. We develop the idea that since no one coordinate system
is preferable to another, objects of interest should be defined geometrically, without
reference to a coordinate system, and their transformation properties deduced from
the definitions. In tensor calculus, on the other hand, the transformation law is the
primary focus, and generally the basis for the definition of objects.

The arena for most of the geometry described below is (finally) the differentiable
manifold, in which coordinates exist locally, but no assumption is made that a single
coordinate system may be extended to cover the whole space. The homogeneity of
affine space is thus taken many steps further in the definition of a differentiable
manifold.

We shall also attempt to give some indications of global matters, which tensor
calculus rarely does, it being ill adapted for that purpose. On the other hand, the
results we obtain often have tensor calculus equivalents, which will frequently be
revealed in the exercises; but our approach is, in a word, geometrical. Our exposition
is intended to illustrate Felix Klein’s remark that “The geometric properties of any
figure must be expressible in formulas which are not changed when one changes the
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coordinate system ... conversely, any formula which in this sense is invariant under
a group of coordinate transformations must represent a geometric property”.

4. The Range and Summation Conventions

Throughout this work we shall use certain conventions regarding indices which
simplify the representation of sums, and result in considerable savings of space and
effort. These are the range and summation conventions, often associated with the
name Einstein. The reader who is already familiar with tensor calculus will need
no instruction in their use. For other readers, not so prepared, we describe their
operation here.

It is simplest to begin with an example. Consider the matrix equation

v = A(u).

Here u is supposed to be a column vector, of size n say (or n x 1 matrix); A is
an m x n matrix; and v, therefore, is a column vector of size m (m x 1 matrix).
This equation may be interpreted as expressing how each individual component of
v is determined from the components of u via A. To write down that expression
explicitly one introduces notation for the components of u and v and the elements
of A: say u® to stand for the ath component of u (a = 1,2,...,n); v* to stand for
the ath component of v (a = 1,2,...,m); and AZ to stand for the (a,a) element of
A, that is, the element in the ath row and ath column. The matrix equation above
is then equivalent to the m equations
n
v® = Z Adu?.
a=1

The range convention arises from the realisation that it is not necessary to
state, at each occurrence of a set of equations like this, that there are m equations
involved and that the truth of each is being asserted. This much could be guessed
from the appearance of the index a on each side of the equation: for a is a free
index, unlike a which is subject to the summation sign. On the other hand, the
summation convention follows from the observation that whenever a summation
occurs in an expression of this kind it is a summation over an index (here a) which
occurs precisely twice in the expression to be summed. Thus summation occurs
only where there is a repeated index; and when an index is repeated summation is
almost always required. Under these circumstances the summation symbol y"7_,
serves no useful function, since summation may be recognised by the repetition of
an index; it may therefore be omitted.

Thus the component equation above is written, when range and summation
conventions are in force, in the simple form

v = AJu’.
The presence of the repeated index a on the right hand side implies summation over
its permitted range of values 1,2, ..., n by virtue of the summation convention; while

the presence of the free index a on both sides of the equation implies equality for
each value 1,2,...,m that it can take, by virtue of the range convention.
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In general, the range and summation conventions work as follows. If, in an
equation involving indexed quantities, there are free (unrepeated) indices, then the
equation holds for all values in the ranges of all free indices, these ranges having
been declared previously: this is the range convention. Where, in an expression
involving indexed quantities, any index is repeated, summation over all possible
values in the range of that index is implied, the range again having been declared
previously: this is the summation convention.

The ranges of indices governed by the range and summation conventions will
always be finite: thus only finite sums are involved, and there is no problem of
convergence.

Operation of the range and summation conventions in practice is relatively
straightforward. One or two rules-—often best employed as running checks on the
correctness of a calculation—should be mentioned. The number of free indices on
the two sides of an equation must be the same; and of course each different free
index in an expression must be represented by a different letter. Repeated indices
in an expression may occur only in pairs. Replacement of a letter representing an
index by another letter is allowed, provided that all occurrences of the letter are
changed at the same time and in the same way, and provided that it is understood
that the new letter has the same range of values as the one it replaces. The most
convenient practice to adopt, where indices with different ranges are involved in a
single calculation, is to reserve a small section of a particular alphabet to represent
indices with a given range. Thus in the case discussed above one could take a, b,
¢ to range and sum from 1 to n, and «a, #, v to range and sum from 1 to m; then
v? = APu would mean exactly the same as v® = A2u®.

From a given expression containing two free indices with the same ranges, a
new expression may be formed by making them the same, that is, by taking a sum:
this process is known as contraction. For example, from the components u§ of a
square matrix one may form the number ¢, its trace.

Three points should be made about the way the summation convention is em-
ployed in this book. In the first place, we have so arranged matters that the pair of
repeated indices implying a summation will (almost always) occur with one index
in the upper position and one in the lower. This will already be apparent from
the way we have chosen to write the matrix equation above, when some such thing
as vy = Aqql, might have been expected. The point is related to the importance
of distinguishing between a vector space and its dual (column versus row vectors)
mentioned several times earlier in this chapter. This distinction is introduced into
the notation for components by using an index in the upper position (u®, v®) for
components of a column vector. For the components of a row vector we shall place
the index in the lower position, thus: ¢,. Then the multiplication of the matrix A
by a row vector ¢ (of length m), on the left, gives a row vector (of length n) whose
components are c,AS. Notice that the type of the resulting vector (row rather than
column) is correctly indicated by the position of the free index a.

The pairing of a row and a column vector (in other words, a 1 x m and an
m x 1 matrix) by matrix multiplication, mentioned in Section 1, is represented by
an expression c,v®, which conforms to our rule. On the other hand, the scalar
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product of two column vectors, Z:‘zl v®w?, cannot be correctly so represented
without the introduction of further quantities. What is required is a two-index
object, say 6,5, with

61y =622 = ... = bmm = 1, but6ap=0if0#ﬁ;

with the aid of this the expression 6,5v°w? can be correctly formed. This has the
same value as Erzl v®w?; but the point of the remark is to show again, this time
through the application of the summation convention, how the pairing of vectors
and duals differs from a scalar product. The extra piece of machinery required in
the case of the scalar product, represented by 6,5 above, is the Euclidean metric.

The second point we should mention about our use of the range and summation
conventions is that, whereas in tensor calculus they are used almost exclusively with
indexed quantities which are collections of numbers (or functions), we shall use them
with other types of object. For example, basis vectors for an n-dimensional vector
space may be written {e,}, where a ranges and sums from 1 to n; then any vector
u in the space may be written u = u®e,, where the u®, its components with respect
to the basis, are numbers, but the ¢, are vectors.

The third point to watch out for is that an expression such as (z¢) is frequently
used to stand for (z',z2,...,z"). Furthermore, the value of a function of n vari-
ables, say f, at (z¢) will be denoted f(z°). In this situation the index ¢ is subject
neither to the summation nor to the range convention. In such a context (z¢) is
usually to be thought of as the set of coordinates of a point in some space. Where
elements of R" are being used as coordinates rather than as the components of
velocity vectors or differentials, for example, the distinctions made earlier between
vector spaces and their duals, or between column and row vectors, no longer have
the same importance.

Note to Chapter 0

Klein’s remark is in his splendid Elementary mathematics from an advanced stand-
point, part 1I, Geometry (Klein [1939]) p 25.



1. AFFINE SPACES

When one first begins to learn mechanics one is confronted with a space—the “or-
dinary” space in which mechanical processes take place—which in many ways re-
sembles a vector space, but which lacks a point playing the distinctive role of zero
vector. The resemblance lies in the vector addition properties of displacements and
of quantities derived from them such as velocities, accelerations and forces. The
difference lies in the fact that the mechanical properties of a system are quite inde-
pendent of its position and orientation in space, so that its behaviour is unaffected
by choice of origin. Of course the Sun, or the mass centre of the Solar System, plays
a role in the formulation of the Kepler problem of planetary motion, but the relative
motion of the planets does not depend on whether displacements are measured from
the Sun or from some other point. Nor does it depend on the choice of origin for
time measurements.

The same is true in special relativity theory. Here also the behaviour of a
physical system is unaffected by the choice of space-time origin.

In neither case can there be ascribed to any point the distinctive position and
properties ascribed to the zero vector in a vector space; nor can any meaning be
given to the addition of points as if they were vectors. Nevertheless, one learns
to manipulate vectors in ordinary Euclidean space or in Minkowski space-time and
to give physical significance to these manipulations, without perhaps paying too
much attention to the precise nature of the underlying space or space-time. When
one wants to be more systematic, however, it is necessary to establish the precise
relation between the vectors and the space. A satisfactory construction must allow
for vector addition of displacements but may not single out any point with special
properties. The result is called an affine space.

It is true that the limitations imposed by formation in an affine mould are
too severe for some applications. This became apparent during the course of the
nineteenth century, when various generalisations were developed. One line of de-
velopment culminated in the work of Ricci and Levi-Civita on the tensor calculus,
which was exploited by Einstein in the invention of general relativity theory; an-
other line led to the work of Lie in group theory, another to the work of E. Cartan
in differential geometry, yet another to the work of Poincaré and Birkhoff in ce-
lestial mechanics. The generalisations which were developed include much of the
subject matter of the later part of this book (and much else). To a great extent
these generalisations may be attained by modifying one or another property of an
affine space, so we start with that. Most of the techniques needed in the later work
may be explained quite easily in the affine case and extended without much effort.
The more general spaces introduced later are called “manifolds”. They are defined
in Chapter 10. In the first nine chapters we shall develop the differential geometry
of affine spaces in a form suitable for applications and adaptable to generalisation.
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To start with, the concepts to be explained do not require assumptions of a metrical
character—no scalar product or measure of length is required—and so they will be
applicable later on in both the Euclidean and the Minkowskian contexts.

1. Affine Spaces

In this section we define affine spaces and introduce coordinates natural to them
called affine coordinates.

Affine space defined. We are to define a space A in which displacements may
be represented by vectors. As a model for displacements we shall take a real vector
space V of finite dimension n. We shall not choose any particular basis in the
vector space V, so it is not merely a fixed copy of the real number space R™. From
experience in mechanics, one might hope that displacements in A would enjoy these
properties:

(1) a succession of displacements is achieved by the addition of vectors (the
triangle law for displacements)

(2) displacement by the zero vector leaves a point where it is

(3) if any two points are chosen, there is a unique displacement from one to
the other.

A formal definition which embodies these properties may be given in terms
of the effect on any point z € A of displacement by the vector v € V. We shall
write z + v to denote the point to which z is displaced, and regard the operation of
displacement as a map A x V — 4 by (r,v) — z + v. The definition runs as follows:
a set A is called an affine space modelled on the real vector space V if there is a
map, called an affine structure, A x V — A, denoted additively: (z,v) — z + v,
with the properties

(M(z+v)+w=z+(v+w)foralilze Aandallv,weV

(2) z+ 0=z for all z € A, where 0 € V is the zero vector

(3) for any pair of points z,z’' € A there is a unique element of V, denoted
z' — z, such that z + (z' - z) = z'.

7+ (v+w)
z+v

Fig. 1 Points and displacements in an affine space.
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Note that the plus sign is given two distinct meanings in this definition: in the
expression z + v it denotes the displacement of a point of A by an element of V,
while in the expression v+ w it denotes the addition of two elements of V. Moreover,
although the displacement from z to z' is denoted z’ — z, there is no sense in which
points of A may be added together. It is essential to keep these distinctions clearly
in mind when working with an affine space.

An affine space A modelled on a vector space V of dimension n is also said to
be of dimension n. One writes dim 4 = n (and dimV = n).

Exercise 1. Let A be an affine space modelled on a vector space V. Show that if, for

some z € A and some v € V, z + v = z, then v = 0. Thus displacement by any vector
other than the zero vector leaves no point where it is. o

Exercise 2. Let zo be any chosen point of A. Show that the map 4 — V by z— z — 2o
is bijective (onto and 1 : 1). s ]

Affine coordinates. In order to deal with specific problems one is likely, sooner
or later, to want to introduce coordinates into affine spaces. It is true that one can
sometimes go a long way in solving mechanics problems without using coordinates,
but even so an adept choice of coordinates may much simplify a problem. The
same is true in special relativity theory. What is desirable, on the other hand, is to
formulate the problem in the first place without using coordinates, so as to be able
to recognise whatever symmetry or invariance properties it may have.

Among all the coordinates which may be introduced into an affine space there
are those, called affine coordinates, which are especially well-adapted to its struc-
ture. These coordinates will be explained here.

A choice of affine coordinates requires only a choice of origin and a choice of
axes. The choice of axes is merely a choice of basis for the underlying vector space.
If zo is any chosen point of A and {e;,e3,...,en} is any chosen basis for V then any
point z in A may be written z = z¢ + (z — z¢), and since z — zo belongs to V it may
in turn be written £ — zo = z°%¢,, where the z° are its components with respect to
the chosen basis {e,}. Here for the first time we employ the summation convention
explained in Section 4 of Chapter 0: because the index a is repeated, summation
from 1 to n (= dim A) is understood. Thus z°, is short for "7 _, z%,.

The components (z',z2,...,z") are called the affine coordinates of z. The
point zo, whose coordinates are evidently (0,0, ...,0), is called the origin of affine
coordinates. An assignment of coordinates associates a set of n real numbers
(z',z2,...,z") to each point of A, and so may be described by a bijective map
A — R" (compare Exercise 2). Thus the dimension of an affine space, like the
dimension of the vector space on which it is modelled, is equal to the number of
coordinates needed to specify a point of the space.

The notion of dimension and the possibility of using coordinates carry over to
manifolds; however, one distinctive property of affine coordinates—that they are
valid everywhere in the space at once—will not generalise.

We shall for the time being use (z',z2,...,z"), often abbreviated to (z°), to
denote the affine coordinates of a general point of A relative to some system of
affine coordinates. Each choice of origin of 4 and of basis of V determines a choice
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of affine coordinates. If {¢.} is another basis for V, related to the basis {e,} by
e, = hje,, where the hj are the elements of a matrix, necessarily non-singular, and
if z§ is chosen as origin instead of zo, then the two corresponding sets of affine
coordinates (£%), (z%) of any point z of A are related by
z° = hitb + c*

where zj — o = c”¢,, Or equivalently by

£ = (h")pzb + d°
where the (h=!)¢ are the entries in the matrix inverse to the matrix h with en-
tries A2, and d* = —(h7!)gct. Here we use the range convention as well as the
summation convention: the unrepeated index a takes in turn the values 1,2,...,n.
The transformation from (z%) to (£%), or vice versa, is called an affine coordinate
transformation.

It should be apparent that the introduction of affine coordinates allows one to
identify an affine space A of dimension n with R". The question therefore arises
why one should want to consider the more abstract object at all. One reason
is that, in a coordinate-based discussion, geometric objects must be defined by
giving their transformation properties under change of coordinates. With the more
abstract approach one may define geometric objects intrinsically, and deduce the
transformation properties from the definition. These alternatives—definition with
and without coordinates—represent the points of view of classical tensor calculus
and modern differential geometry respectively. We shall repeatedly have occasion to
mention the common features of and contrasts between these two points of view. In
order to be able to understand the literature of contemporary mathematical physics
it is essential to be familiar with both of them.

Exercise 3. Verify that the time of Newtonian mechanics is an affine space of dimension 1.
Explain how the process of setting up an affine coordinate system could be distinguished

physically. o
Exercise 4. The real number space R™ may be identified as an affine space modelled
on itself as vector space. If the point (0,0,...,0) of R" is chosen a- origin and the vec-

tors (1,0,...,0), (0,1,...,0),...(0,0,...,1) as basis then the point (£!,£2,...,€") of
R" has affine coordinates (£',£2,...,€") in this affine coordinate system. Show that

if the point (n',n?,...,n") is chosen as origin and the vectors e; = (e},el,... e}),
ez = (ed,ed,...,€3), ..., en = (el,e?,...,eR) as basis then the point (£, €2%,...,€")
has coordinates (z',z?,...,z") in the new affine coordinate system which are determined
uniquely by the equations efz® = £° - n°. o

Exercise 6. Show that the plane in R® through the points (1,0,0), (0,1,0) and (0,0,1)
(the set of points (£',€%,€%) € R such that €' + €2 + €% = 1) is an affine space A.
Take the point (0,0, 1) as origin of affine coordinates in A and the vectors ¢; = (1,0, -1)
and ez = (0,1, -1) as basis vectors for the vector space on which A is modelled, and
show that the point of A with affine coordinates (z',z?) is the point (z!,2?,1 — 2! - z?)
of R®; next take the point (4,1, 1) of A as origin of affine coordinates and the vectors
ey =(3,-4,-3)and ey = (-1, 2, -1)as basis vectors, and show that the point of A with
affine coordinates (£',7) is the point (34" - L4% + 1 — 14!+ 242+ L —14' - 147 + })
of R3. o]
Exercise 6. Show that the transformation of affine coordinates given in Exercise 5 above
st =2z +2* - 1,42 = ' 4 227 - 1. o
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Exercise 7. In an affine space, (1°) are affine coordinates of a point in one chosen coordi-
nate system and (£°) are given by £° = k{z® + d°, where (k{) is any non-singular matrix
and the d° are any numbers. Show that there is another coordinate system in which (£°)
are affine coordinates of the same point. =]

Exercise 8. Show that composition (successive application) of two affine coordinate trans-
formations yields another affine coordinate transformation. o

2. Lines and Planes

Let vo be a fixed non-zero vector in V and z¢ a fixed point of A. The map R — 4
by t ++ zo + tug is called a line: it is the line through zo determined by vo. Note
that according to this definition a line is a map, not a subset of A. We adopt this
approach because in most circumstances in which we have to deal with lines or
other curves the parametrisation will be important: we shall want to distinguish
between the line through zo determined by vy and the one through the same point
determined by kvg, k # 0; these are indistinguishable if one is concerned only with
the corresponding subsets of A, but are distinguished by their parametrisations.
Using the map to define the line is a convenient way of focussing attention on the
parametrisation.

The special nature of lines, by comparison with other kinds of curve one could
imagine, may be described as follows. The affine structure map 4 x V — A intro-
duced in Section 1 may be looked at in a slightly different way. Let z, be a chosen
point of A. Fixing the point zo (on the left) in the affine structure map, one obtains
amap a;,:V — A, by v — zo + v, which takes each vector in V into the point in 4
reached by a displacement from zo by that vector. The map a;, may be thought of
as attaching the vector space V to A at zo, as space of displacements. The point of
this procedure is that it allows one to transfer any figure from a vector space to an
affine space modelled on it. Thus, as a subset of A, the image of a line is obtained
by attaching a 1-dimensional subspace of V to A at z,.

Any subspace of the vector space V, not only a 1-dimensional one, may in this
way be attached to an affine space A modelled on V. If W is any subspace of V
then the subspace map, or inclusion, i: W — 7V takes each vector w, considered
as a vector in W, into the same vector w, considered as a vector in V. Following
the subspace map by the attachment of V at z, one obtains the map a., o1 which
attaches W to A at zo. Attachment of W at points zo and z, such that z;, —zo € W
will result in the same subset of A. Its attachment at points zo and z; for which
2 — 20 € W, on the other hand, produces two distinct subsets of A which are
parallel. _

Theset {zo+w | w € W} is called an affine subspace of 4, or an affine p-plane
in A, where p =dimW.

Exercise 9. Let 4 be an affine space modelled on a vector space V, and let 8 be an affine

subspace of A constructed by attaching the subspace W of V to A. Show that B is in its
own right an affine space modelled on W. (=]

An affine p-plane may be parametrised by p coordinates, say (y®) (where
a = 1,2,...,p), as follows. Let {f,} be a basis for W. Then if the p-plane is
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attached at zo, each of its points may be uniqgely expressed in the form zo + y° fa.
The coordinates of this point with respect to the given basis of W and origin z¢
are (y',y%,...,y%), or (y°). Thus according to our initial definition a line is a
parametrised 1-plane.

Exercise 10. Verify that in an affine coordinate system for A with origin zo based on
vectors {e,}, the affine subspace obtained by attaching a subspace W at z; may be repre-

sented by the equations z° = ¢® + y®f3, where (c®) are the coordinates of z,, and /3 the
components of an element of a basis {f.} of W with respect to the given basis for V. 0

In an affine coordinate system with origin z, based on vectors {e,}, the coordi-
nate azes are the 1-planes obtained by attaching at zo the 1-dimensional subspaces
generated by each of the e, in turn. Coordinate p-planes and hyperplanes are
defined analogously.

Hyperplanes and linear forms. Let W be a subspace of a vector space V. Then
dimV - dim W is called the codimension of W in V. Similarly if B is an affine sub-
space of an affine space 4 then dim A — dim B is called the codimension of B in A. In
particular, an affine subspace of codimension 1 is called a hyperplcne. Hyperplanes
are often described, as point sets, by equations, instead of parametrically, with the
help of linear forms. Let a be a linear form on V, that is, a linear function ¥ — R.
Then provided a # 0 the set of vectors v € V such that a(v) = 0 is a subspace of V
of codimension 1; consequently the set of points z in 4 such that a(z—zo) = 0 is the
hyperplane constructed by attaching this subspace at z,. Different representations
of the same hyperplane are obtained by choosing different points in it at which to
attach it to A, and by replacing a by any non-zero multiple of itself. Any one of
the possible as is called a constraint form for the hyperplane.

In the usual notation for a pairing (v, a) of a vector v € V and a linear form
or covector a € V*, the function f: 4 —+ R defined by z — (z ~ o, a) determines
a hyperplane in 4 as the set of points at which this function takes the value zero.
(Linear forms and pairings are explained in Note 2 at the end of this chapter.)

A linearly independent set of forms {a',a?,...,a*} of V* determines a sub-
space W of V, of codimension k, comprising those vectors w for which

(w'al) = (w?az) == (wvak) =0,

and any subspace of codimension k may be specified in this way. Relative to a basis
for V, this amounts to a set of k linear equations for the components of w. The
affine subspace of A constructed by attaching W at z, comprises the set of points
z for which

(z - zo,a') - (z - 20,a?) = --- = (z — zo,a*) = 0.

Any affine subspace of codimension k may be specified in this way. Different rep-
resentations of the same subspace (as point set) are obtained by choosing different
points in it at which to attach it to A, and by replacing {a',a?,...,a*} by any
linearly independent set of k linear combinations of them.

If a is a (non-zero) linear form on V then the equation (z — zy,a) = ¢ (with
¢ not necessarily zero) also determines a hyperplane in A, because one may always
find a vector v such that (v,a) = ¢, and then (z -- (zo + v),a) = 0. Thus a linear
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form determines a family of parallel hyperplanes, obtained by giving different values
to the constant c¢. It also determines a spacing between them: if t is a non-zero
number, then the linear forms a and ta determine the same family of hyperplanes;
but if, for example, ¢ > 1 then for any constant ¢ the hyperplane (z — zo,ta) = ¢
lies between the hyperplanes (z — zo,a) = ¢ and (z — zg,a) = 0.

Exercise 11. Given an affine coordinate system for A with origin zo and basis {e,.} for V,
and with dual basis {6°} for V*, show that the equation (z — z;,a) = 0 may be written in
coordinates a,z® = ¢, where (z°) are the coordinates of z, a = a,6%, and ¢ = (x| — 7o, ).
Show, conversely, that any such linear coordinate equation determines a hyperplane. 0

3. Affine Spaces Modelled on Quotients and Direct Sums

The attachment of a subspace is only one of a number of constructions in an affine
space which may be derived from the corresponding constructions in a vector space.
We now describe two other examples: the fibration of an affine space, which is
derived from the quotient of vector spaces; and the construction of a product of
affine spaces, from the direct sum of vector spaces. We begin with some essential
information about the vector space constructions.

If V is a vector space and W a subspace of V, then the quotient space V/W
has as its elements the cosets v+ W = {v+w | w € W }. Sums and scalar products
of cosets are defined by

(vi+ W)+ (va+W)=(vy+va) + W v,v2 €YV

k(v+W)=kv+ W keR,ve;

and with the vector space structure on V/W so defined the projection m: V — V/W,
which maps each element of V to its coset, is a linear map. The dimension of V/W

is given by
dim(V/W) = dimV - dimW,

the codimension of W in V.

Secondly, if V and W are vector spaces then their (ezternal) direct sum V@ W
is the set of all ordered pairs (v,w) of elements v € V, w € W, with addition and
scalar multiplication defined by

(v.,w.) + (vz,w;) = (v. + vy, w; + w:)
v,v2 €V, w,w €W
k(v,w) = (kv, kw) keR,veV,weW

Moreover,
dim(V @& W) =dimV +dimW.

Projections onto the first and second factors are defined by
N:vew -9 by (v,w)—v Ma:VeWw— Wby (v,w) »w
and inclusions by

itV—-VY®Wbyv— (v,0) 12W Ve Wby w— (0,w).
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All these are linear maps, and
Mot =idy Myo1; =idw

the identities of V and W. The maps 1, and i, are called sections of the projections
I, and IT;. In general,if 7: § — T is a surjective map of some space § onto another
space T, any map 0: T — S such that r 0o = id7 is called a section of .

Exerclse 12. Show that the “diagonal” map V — V@& V by v+ (v, v} is a section of the
projections on both first and second factors. o

On the other hand, if V¥ and W are both subspaces of a vector space U, then
their sum V + W, given by

V+W={v+w|lveV,we W},

is the smallest subspace of U containing both V and W, while their intersection
VN W, given by
VaW={uel|ueVandue W},

is the largest subspace contained in both V and W. The dimensions of these various
spaces are related as follows:

dim(V + W) +dim(V n W) = dimV +dimW.

These constructions are connected with that of the external direct sum as
follows. It is easy to see that if U = V @ W then 1,(V) + 12(W) = U and 1, (V) N
12(W) = {0} (where O represents the zero element of U). On the other hand, if V
and W are subspaces of U such that V+ W = U and VN W = {0} then there is a
canonical isomorphism of U with V& W by v + w — (v,w). In this case U is said to
be the (internal) direct sum of its subspaces V and W. The brackets are intended
to indicate that the terms “internal” and “external” are used only for emphasis,
the type of direct sum under consideration usually being clear from the context.
Two subspaces V and W of a vector space U, which are such that V + W = U
and VNW = {0}, are said to be complementary; they are then direct summands
of U. Any subspace of U is a direct summand: in fact, if V is a subspace, it has
complementary subspaces W, which may be chosen in many different ways, and
each complementary subspace is isomorphic to U/V.

All this may be transferred to an affine space by attaching appropriate sub-
spaces of the space on which it is modelled.

For example, let A be an affine space modelled on V and let 8 be an affine
subspace of A, obtained by attaching a subspace W of V to 4 at a point 5. Then the
set of all the parallel affine subspaces obtained by attaching W to A at every point
of it has the structure of an affine space modelled on V /W, as follows. Consider the
set of elements of V by which one given affine subspace parallel to 8 is translated
into another. If v belongs to this set then so do all vectors of the form v + w where
w € W, and only these; in short, this set is just the coset v + W. Thus the elements
of V/W act on the set of parallel affine subspaces; they clearly do so in accordance
with the first axiom for an affine space; and given any two of the parallel affine
subspaces there is a unique element of V/W which maps one to the other, namely
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the coset of any vector by which some point of the first affine subspace is translated
into the second. The set of affine subspaces parallel to 8 with this affine structure
is called the quotient affine space A/B. The map A — A/B which associates to
each point of A the subspace parallel to B in which it lies is called the projection.
This decomposition of A into non-intersecting affine subspaces, together with the
projection, is an example of a fibration, the subspaces being the fibres.

Exercise 13. Show that if V is considered as an affine space modelled on itself, and if W
is considered as an affine subspace of V attached at the zero vector, then the elements of
V/W (as an affine space) are just the cosets of W in V, which may therefore be thought
of as the parallels to W. a]

Exercise 14. Show that if 4 and B are affine spaces modelled on vector spaces V and W
then their Cartesian product A4 x B may be made into an affine space modelled on V & W
in such a way that displacements in the product space are those of its component parts,
carried out simultaneously. o

Thus the external direct sum construction for vector spaces may also be ex-
tended to any pair of affine spaces to define their affine product space.

Now let 4 be an affine space modelled on a vector space U and let 8 and C be
affine subspaces of it modelled on vector subspaces V and W of U. Provided it is
not empty, B N C is an affine subspace of A modelled on V N W; it may consist of
a single point, in which case VN W = {0}. If B N C does consist of a single point,
say zo, and if V and W are complementary subspaces of U, then for every point
z € A the vector £ — o may be uniquely expressed as a sum v + w with v € V
and w € W, and the bijective map z +— (zy + v, zo + w) identifies A with the affine
product space B x C. In this case B and C are complementary affine subspaces of A.
If B is a given affine subspace of A then each affine subspace C complementary to
B intersects each subspace parallel to B just once. The projection map A — A/B is
thus bijective when restricted to a complementary subspace C, and C provides, in
a sense, a concrete realisation of A/B. The map which sends each element of A/8
to its intersection with C is a section of the projection A — A/B. The two figures
opposite are intended to illustrate these constructions.

An affine space A is shown. A 1-dimensional subspace V of the vector space
U on which A is modelled is attached to A as a 1-plane B through z,. Parallel
1-planes are shown: 4 is to be thought of as filled with 1-planes parallel to B, each
one of which constitutes a single element of the quotient space A/8. The 2-plane C
transverse to the 1-planes, each of which it intersects in just one point, is a subspace
complementary to B. Of course the choice of complement is not unique, and there
is no reason to prefer one over another: different choices of complement to V in U,
or of the point at which to attach it, may give different complements to 8 in A.
Figure 3 shows two different 2-planes, each of which is complementary to 8.

Space-time as an affine space. These constructions (affine quotient and prod-
uct) may be exemplified, and the differences between them thereby related to phys-
ical considerations, by the different assumptions about space-time underlying dif-
ferent theories of kinematics. We distinguish three views of space-time, as follows.
The Aristotelian view, which lasted until the implications of Newton’s first law
were understood, assumes that there is a state of absolute rest and that all ob-
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Fig. 2 Complementary subspaces in an affine space.

Fig. 3 Two subspaces complementary to a given one.

servers whether at rest or in motion agree whether or not events are simultaneous.
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In the Newtonian view there is no state of absolute rest, all inertial observers being
regarded as equivalent even though one may be in uniform motion with respect to
another; they continue to agree about simultaneity. In the Einsteinian (special rela-
tivistic) view, even simultaneity is relative. In each case space-time is considered to
be a 4-dimensional affine space, in which the world-lines of unaccelerated observers
are affine lines, observers at rest relative to one another having parallel world-lines.

In the Einsteinian case space and time are integrated and nothing further can be
said without the introduction of the Minkowskian metric. In Newtonian space-time
N, through any point (event) there is a uniquely defined affine 3-plane S consisting
of events simultaneous with that point. The 3-planes parallel to § define simul-
taneous events, at different times. The 1-dimensional affine space N /$ represents
Newtonian absolute time. Any line transverse to the 3-planes of simultaneity is the
world-line of an inertial observer, but no one such is to be preferred to any other.
Thus N is to be regarded as fibred by the 3-planes of simultaneity, the quotient
space representing absolute time. In Aristotelian space-time A, on the other hand,
through each event there passes not only the 3-plane § of simultaneity but also the
line T which is the world-line of an observer at absolute rest; the parallels to T are
the world-lines of all such observers. Thus A is an affine product § x T.

4. Affine Maps

Just as in Newtonian mechanics the translations and rotations of Euclidean space
leave its geometrical properties unaltered, and in special relativity translations and
Lorentz transformations leave unaltered the geometrical properties of space-time,
so in an affine space there are transformations which leave unaffected the defining
structure. As one might expect, these transformations are closely related to linear
transformations of the underlying vector space on which the affine space is modelled.
In this section we shall describe such transformations, and also the more general
type of map which maps an affine space to another, possibly different, one in a way
which respects the affine structure of the two spaces. Such maps are analogous to
linear maps between vector spaces.

Translations. To begin with, we suggest yet another point of view from which
to consider the affine structure map A x ¥V — 4 introduced earlier. Instead of
considering the effect on a single point z of displacement by the vector v, one may
consider the effect on the space A as a whole, fixing v and displacing every point
of A by it. This action of v on A4 is called translation by v and will be denoted r7,.
Thus r,: A —» A by z+» z+v (for all z € A). Of course, there is no new construction
here, but the new point of view suggests further developments. The definition of
an affine space may be restated as follows:

(1) composition of translations is a translation: ry, 07, = ry4y, forallv,w €V

(2) o = ld‘

(3) for any pair of points z,z’ € A there is a unique translation r,,_, taking z
to z’.

Notice that translation respects the underlying relation between 4 and V, in
the sense that

Tw(z+v) =ru(z) +v
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forallz e A and all v,we V.

Affine maps. Besides translations of a single affine space there are other maps of
affine spaces which respect the relation of an affine space to the underlying vector
space: they are the extensions to affine spaces of linear maps of vector spaces.

Suppose that A and B are affine spaces, modelled on vector spaces V and W
respectively. Let A\: V — W be a linear map; it has the property that A(cv +c'v’) =
cA(v) + c'A(v') for any v,v’ € A and any numbers ¢ and ¢’. Now choose two points,
zo € A and yo € B. If z is any point in A then z - zo is a vector in V and A(z -- zo)
is a vector in W. Displacing yo by this vector, one obtains a map A: 4 —» B by
z+> yo + A(z — z,). This map depends, of course, on the choice of zo and yo as
well as on the choice of the linear map A. It satisfies

A(z tv) =yo t Mz +v z4) = yo+ A(z ~ o) + A(v) = A(z) + A(v)

for all z € A and all v ¢ V; in other words, A(z -+ v) — A(z) depends linearly on v.
The property of maps of affine spaces

A(z + v) = A(z) + A(v),

where A is linear, generalises the property of translations described at the end of the
preceding subsection (where A was the identity on V). A map of affine spaces with
this property is called an affine map. Any affine map A: 4 —» B may be written in
the form A(z) = yo + A(z - 70) by choosing zo in A and then fixing yo = A(z0).
A little more generally, if A: A — B is an affine map and zo and yo are any chosen
points in A and B respectively, then A(z) - yo + (A(zo) - Yo) + A(z — zo) so that A
is composed of an affine map taking zo to yo and a translation of B by A(zo) - yo.
The linear map A which enters the definition of an affine map A is called the linear
part of A. If (z°) are affine coordinates for A with origin zo and (y®) are affine
coordinates for B with origin yo then A will be represented in these coordinates by

y® = AJz% +¢”

where the A2 are the entries in the matrix of A with respect to the bases for V and W
used to define the coordinates and c® are the components of the vector A(zo) — yo.
The choice of coordinates thus allows A to be represented as a map R™ — R",
where m = dim A, n = dim 8.

Exercise 15. Show that if z, and y, are chosen as origins in place of zo and yo then
A(z) = y1 + (A(z1) = y1) + A(z - 1), with the same linear part but a different translation.
Show also that the difference between the translations is A(zy — zo) + (y1 — yo). o

Exercise 16. 4 is the plane (‘(6'.6’,63) ERY| € 1+ € +€=1) and B is the plane
(6,62, e R €' +€2— € = 1}; A: A —+ B is the map defined by “projection parallel
to the £3 axis”, that is, A(€', €2, €3) is the point(n',n?,n>) in B such that n' = ¢' and
n? = €. Show that A is an affine map. An affine cordinate system is chosen for A with
(0,0, 1) as origin and such that the points (1,0,0) and (0,1,0) have coordinates (1,0) and
(0,1) respectively, and an affine coordinate system is chosen for B with (1,1,1) as origin
and such that the points (1,0,0) and (0, 1,0) have cordinates (1,0) and (0, 1) respectively.
Find the coordinate representation of A. o
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Exercise 17. Let 8 be the hyperplane {z € A | (z — zo,a) = 0} (where « is a non-zero

covector) and let z; be a point of A not in B. Show that the map
(2 - IOtQ)
z—z— (2, -z
o —za,) " )

is an affine map of 4 onto 8. a]

An affine map which is bijective is called an affine 1somorphism; two isomorphic
affine spaces are, in many circumstances, essentially identical.
Exercise 18. Show that two affine spaces are isomorphic if and only if they have the

same dimension. Show that an affine coordinate system is an affine isomorphism with R"
considered as an affine space modelled on itself. o

Exercise 19. Show that,if A: 4 — B is an affine map, the image A(A) is an affine subspace
of 8, while for any point yo € A(A) the set of points of A which are mapped to yo, A~ !(yo),
is an affine subspace of A. Show that the dimension of A~!(yo) is the same for all yo, and
that dimA(4) + dim A~ (yo) = dim 4. o

Suppose now that A: A — B and M: B — C are affine maps with linear parts A
and u respectively. Then the composition Mo A is an affine map, for if z, 2+ v € A
then
M(A(z + v)) = M(A(z) + A(v)) = M(A(z)) + u(A(v))

and u o A is a linear map; thus the linear part of the composition of affine maps is
the composition of linear parts.

Affine transformations. We come now to an important special case: invertible
affine maps of an affine space to itself, which are called affine transformations. An
affine map A: 4 — A is invertible if and only if its linear part A is invertible; if A
has inverse A~! then the linear part of A~! is A~ 1.

Since the identity transformation is affine, the composition of invertible maps
is invertible, and composition is associative, the affine transformations of an affine
space form a group, called the affine group. We shall now describe the relation
between this group and the group GL(V) of non-singular linear transformations of
the underlying vector space V.

We have just shown that the map

an affine transformation — its linear part

preserves multiplication, which is to say that it is a homomorphism from the affine
group of A to GL(V). An affine transformation whose linear part is the identity
must be a translation: fix zo € A and set vop = A(zg) — zo; then

A(z) = A(zo) + (z — o) = z + vo.

The identity affine transformation is obtained by setting vo = 0. The translations
constitute a subgroup of the affine group.

Since linear parts compose, any composition of the form Ao, 0 A~!, where A
is any affine transformation and r, is translation by v, must again be a translation.
In fact, for any z € A4,

Aoryo A~ (z) = A(A7'(z) + v) = 2+ A(v)
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so that
Aoryo A~ =1y,).

Thus the conjugate of 7, by A is 75(,). Consequently the translations are invariant
under conjugation, and therefore constitute a normal subgroup of the affine group.
Moreover, the act of conjugation reproduces the action of the general linear group on
V: the conjugated translation vector A(v) is obtained from the original translation
vector v by acting with the linear part A of the conjugating transformation. (The
concepts from group theory employed in this subsection are explained in Note 3 at
the end of this chapter).

The conclusion that the translations constitute a normal subgroup of the affine
group may be reached by another argument: the kernel of the homomorphism in
which an affine transformation maps to its linear part consists of those transforma-
tions whose linear part is the identity; these are just the translations, whence again
it follows that the latter constitute a normal subgroup.

Exercise 20. Show that the only translation which leaves any point fixed is the identity
affine transformation. Show that the affine transformations which leave a chosen point
fixed constitute a subgroup of the affine group of A isomorphic to the general linear group
GL(V). o
Exercise 21. Show that any affine map A: 4 — A may be written in the form A(z) =
Zo + A(z — z0) + vo, where vo = A(zo) — zo; Zo is a chosen point of A (and v is fixed once
zo is chosen). Let M: A — A be another affine map, with M(z) = zo + u(z — z0) + wo.
Show that their composition is given by M o A(z) = zo + p o A(z — zo) + (p(vo) + wo);
thus the linear parts compose, but the translation part of the composition depends on u
as well as on vp and wo. Show also that (when it is invertible) the inverse of A is given by
A (z) =20 + A7} (2 — z0) — A™!(vo). o

Exercise 22. Let p., denote the affine transformation of A by z ~— zo — (z — z0). Show
that p.,? = id4 and that the set of two transformations {id«, p¢,} is 8 normal subgroup
of the group of affine transformations leaving zo fixed. Show that ry 0 pz, 0 7y = pe,4v
for any ve V. o

The transformation defined in this exercise is called reflection in the point zo.

The group of affine transformations of A contains two subgroups of importance:
one, the translation subgroup, which is normal, and is isomorphic to V; the other,
the subgroup of transformations leaving a chosen point z, fixed, which is isomorphic
to GL(V) (Exercise 20). The first result of Exercise 21 may be interpreted as
saying that every affine transformation may be written as the composition of a
transformation leaving zo fixed and a translation (the translation being performed
second); it is clear that these components of an affine transformation are uniquely
determined by it. A group G which has a normal subgroup N and another subgroup
H such that every element g of G may be written uniquely in the form nh where n €
N and h € H is called a semi-direct product of N and H. Thus the group of affine
transformations is a semi-direct product of the translations and the transformations
leaving a given point fixed.

This structure of the group of affine transformations may be described in an-
other way. Starting with ¥V and GL(V), one may construct a new group whose
elements are pairs (v,A) (with v € V and A € GL(V)), and whose multiplication



22 Chapter 1

rule is
(wyp) * (v, ) = (w+ p(v),moA).

This, too, is called a semi-direct product: the alternative definitions differ in much
the same way as do those of the internal and external direct sum of vector spaces.
From the expression for the composition of two affine transformations in Exercise 21
it is easy to see that the group of affine transformations is isomorphic to this semi-
direct product of ¥ and GL(V). This makes clear the relation between the group
of affine transformations of A, the group of linear transformations of the underlying
vector space GL(V), and the vector group V itself.

Although the formula for the coordinate representation of an affine transfor-
mation is indistinguishable, out of context, from the formula for an affine change of
coordinates, the two concepts must be kept distinct. A transformation which moves
the space around, but leaves the coordinates where they are, is called active, or an
alibi transformation (“being somewhere else at the time”): a transformation which
leaves the space where it is, but changes the coordinates of the points, is called
passive, or an alias transformation (“going under a different name”).

Exercise 23. Show that affine coordinate transformations form a group. Show that affine

coordinate transformations of the form £* = z° + ¢® constitute a normal subgroup of this
group. o

5. Affine Maps of Lines and Hyperplanes

An affine map in general has the property that it maps lines into lines: once again
let A:A — B by z — yo + A(z — zo) be an affine map, and let o:R — A by
t — ), + tvp be a line in A through z,. We shall examine the effect of A on the
line. Now Aoo:R — B is given by

Aoo(t) = A(zy + tvg) = A(z1) + tA(vo);

thus, provided A(vg) # 0, Ao o is the line through A(z,) determined by A(vo). If it
happens that A(vo) = 0 then the transformed line will degenerate to a single point,
but if A is injective every line is mapped to a line which is not a point.

An affine map in general also maps hyperplanes to hyperplanes, but in the
opposite sense to what one might naively expect. If A: A — B is the affine map given
above, and g: 8 — R by y — (y — yo,a) is a function determining a hyperplane
through yo, then g o A is a function on A which will determine a hyperplane unless
(AMz - z¢),a) =0 for all z € A. For

goA(z) = (A(z) - yo, @) = (A(z - 20),a) = (2 — 20, 2" (a))

where A*(a) is the linear form on V defined by (v,A*(a)) = (A(v),a) forallv e V.
Thus goA determines the hyperplane in A through zo which has A*(a) as constraint
form, provided A*(a) # 0. If, however, A*(a) = O then go A = 0 identically, and the
image of A is contained in the hyperplane through yo. But if ) is surjective then
A*(a) # O for @ # 0 and every hyperplane in 8 through yo determines a hyperplane
in A through z,.
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Exercise 24. Examine the mapping by A of hyperplanes in 8 not through yo. [a]

This reversal of sense of a map is a paradigm of a constantly recurring situation:.
lines map in the same direction as A, or cogrediently, whereas hyperplanes map in
the opposite direction, or contragrediently. It arises because a curve in A is defined
by a map 0: R — A while a hyperplane in B is defined by a map g:8 — R; one
may compose o with a map A: 4 — B on the left to obtain a map Aoo:R — 8, but
one is forced to compose g with A on the right, which gives the map go A: 4 — R.
This is much like the situation which arises for a linear map of vector spaces, whose
adjoint acts contragrediently on the duals.

Summary of Chapter 1

A set A is an affine space modelled on a real vector space V if there is a map
(displacement, translation) 4 x V -+ 4 by (z,v) — z + v such that: (z+v) +w =
z+(v+w); 240 = z; there is a unique element z' —z of V such that z+(z'—z) = z'.

Affine coordinates (z%) of z are defined by z — zo = z%e,4, zo being a fixed
point of A (the origin of coordinates) and {e,} a basis for V. The dimension of A
is the number of coordinates, that is, dimV. A change of origin and basis results
in a coordinate transformation £¢ = kgz® + ¢°, with (k¢) a nonsingular matrix.

The map V — A by v — zo + v, with 7o a fixed point of A, is regarded
as attaching V to A at z,. By combining this with the inclusion map one can
attach any subspace of V to A. Attachment of a p-dimensional subspace W of V
yields a p-plane in A. By choosing a basis for W one may parametrise the p-plane;
in particular, a parametrised 1-plane is a line. Attachment of the 1-dimensional
subspaces containing the basis vectors at the origin of affine coordinates produces
the coordinate axes. Attachment of the same p-dimensional subspace at all the
points of A gives a family of parallel p-planes. A subspace of V is attached as a
hyperplane in A. A hyperplane may also be defined in terms of a non-zero linear
form a on V by the equation {(z — zo,a) = ¢, where ¢ is a constant; a is called a
constraint form for the hyperplane. As ¢ varies a family of parallel hyperplanes is
obtained.

If B is an affine subspace of A (the result of attaching a subspace W of V) then
the set of all affine subspaces parallel to B is an affine space modelled on V/W,
called the quotient affine space A4/B.

If A and B are affine spaces modelled on V and W then their Cartesian product
is an affine space modelled on V & W.

An affine map A: 4 — B satisfies A(z + v) = A(z) + A(v) where \:V — W
is linear. Any affine map may be expressed in the form A(z) = yo + A(z — zo)
with yo = A(zo). An affine map A: 4 — A4 is invertible when its linear part A is;
such affine transformations form a group, with the translations {r,} as a normal
subgroup; Aor,oA~! = Ta(v)- The group of affine transformations is the semi-direct
product of GL(V) (the group of nonsingular linear transformations of V) and the
vector group V.

Affine maps in general map lines to lines, and do so cogrediently; and in general
they map hyperplanes to hyperplanes, and do so contragrediently.
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Notes to Chapter 1

1. Sets and maps. Throughout this book we make use of the notation, and
some of the simpler ideas, of the theory of sets.

Any collection of objects, finite or infinite, likely to be encountered here may
be called a set. The objects are called members, elements, or points of the set. If §
is a set, then z € S means that the object z belongs to the set §, and z ¢ § means
that £ does not belong to §. The elements may be given by enumerating them,
usually between braces, separated by commas—thus {e;,e3,...,¢,} for the basis
vectors of an n-dimensional vector space, or {e,} if it is understood that a takes the
values 1, 2, ..., n (the range convention; see Chapter 0, Section 4). The elements
may be restricted by a condition; thus { (£',£2,€3) e R3 | €' + €2 + €3 =1} (the
set which appears in Exercise 5) means the set of triples of real numbers whose sum
is 1.

If S and T are sets then S C T or T D § means that every element of § is
also an element of T; one says that S is contained in T, or that S is a subset of
T. If T is known to contain other elements besides those in §, one says that § is
properly contained in T. If S C T and T C § then they have the same elements,
and one writes § = T.

The intersection § N T consists of those elements which belong both to § and
to T. The union S U T consists of those elements which belong either to S or to
T or to both. The empty set, which contains no elements, is denoted @; thus if §
and T have no elements in common, SN T =0, in which case § and T are said to
be disjoint.

A map, or mapping, or function ¢: § — T associates a unique element of T to
each element of §. The set S is called the domain of ¢ and the set T the codomain.
If £ € § the element of T associated to z by ¢ is called the image of z by ¢ and
written ¢(z) or ¢z. If ¢(z) = y one writes ¢:z — y to show what happens to this
particular element. The set of images is im¢ = {@(z) € T |z € S }.

Ifim¢ = T then ¢ is called an onto map, or a surjective map, or a surjection.

If PC S, themap P — T which associates to each element p of P the element
#(p) € T is called the restriction of ¢ to P and denoted ¢|p.

If P C S, the inclusion i: P — § assigns to each element of P the same element,
considered as an element of S. Inclusion is often denoted P — §.

If :$ — T and ¢: T — U are maps then their composition ¢ o ¢ is the map
which results when ¢ and ¢ are executed in succession: ¥ o ¢(z) = ¥(4(z)). If
x:U — V is another map then x o (Y o @) = (x o ¥) o @, so one leaves out the
brackets and writes x o ¥ o ¢. By these conventions, maps act on eiements written
to the right of them, and the right-hand-most map is executed first.

If¢:$ — T and y € T then the set {z € S |-¢(z) = y} of elements in §
whose image is y is called the pre-image or inverse image of y and denoted ¢~!(y).
If, for each y € im¢, ¢~ !(y) consists of a single element, then ¢ is called a 1 : 1
(“one-to-one”) map, or an injective map, or an injection.

A map which is both injective and surjective is called bijective, or a bijection.
A bijection ¢: S — T has an inverse ¢~ ': T — §, such that ¢=' 0 ¢ = ids and
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¢po¢~! =idr, where ids: S — § is the identity map, which takes each element to
itself.

The Cartesian product of two sets, S x T, is the set of ordered pairs (z,y)
where 2 € S and y € T. The Cartesian product of n sets S;, Sz, ..., S, is the set
$1 x S3 x --+ x S, of n-tuples { (z1,z2,...,24) | zZx € Sk, k = 1,2,...,n}. The
projection ITx: §; x S x -+ x §, — Si takes each n-tuple onto its kth entry.

A partition of a set § is a collection of non-empty disjoint subsets of § such that
every element of § belongs to exactly one of the subsets. It is often convenient to
call two elements z and z’ equivalent and to write z ~ z’ if they belong to the same
subset; the subsets are then called equivalence classes. The equivalence classes
may themselves be regarded as the elements of a set, and the map which takes
each element into the equivalence class containing it is then called the canonical
projection.

More complete introductions may be found in the books by Kirillov [1976],
Chapter 1, Loomis and Sternberg [1968], Chapter 1, or Porteous [1969], Chapter 1,
for example. A very entertaining and readable book is Halmos’s Naive Set Theory
{1960]. A standard text is that by Fraenkel, Bar-Hillel and Levy [1973].

2. Vector spaces. We list the axioms for a vector space, and give some of the
basic properties of vector spaces and linear maps between them.

Let K denote the real numbers R or the complex numbers C. A vector space
V over K is a set with two composition laws

+:VxV -V (addition)

- : KxV — YV (multiplication by a scalar)
such that, for all u,v,w € V and all a,b € K,

Mv+w=w+v

2u+(v+w)=(utv)+w

(3) V contains an element 0 such that v + 0= v

(4) V contains, for each v, an element —v such that v + (-v) =0

B)a-(v+w)=a-v+a-w

6) (a+b)-v=a-v+b-v

(7) a-(b-v) = (ab) - v

8)1-v=r.

The elements of V are called vectors. If K = R, V is called a real vector space; if
K =C, V is a complex vector space.

Axioms (1) to (4) make V into an additive Abelian group.

If K™ denotes the set of ordered n-tuples (a!,a?,...,a") of elements of K and +
and - are defined by (a',a?,...,a")+ (b',b%,...,b") = (a' +b',a? +b2%,...,a" +b")
and c¢- (a',a?,...,a") = (ca',ca?,...,ca") then K" is a vector space. The real
number spaces R", in particular, occur frequently in this book.

A subset W of V is called a subspace if it is itself a vector space with the laws
of addition and scalar multiplication it inherits from V.

A finite set of vectors {v;,vz,...,v,} is said to be linearly dependent if there are
numbersat,a?,...,a" € K, not all zero, such that a'-v, +a?-va+---4+a™v, = 0. An
infinite set of vectors is called linearly dependent if it contains a linearly dependent
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finite subset. A set which is not linearly dependent is called linearly independent. If,
for every positive integer k, V contains a linearly independent set of k vectors then V
is called infinite-dimensional, but if it contains, for some n, a linearly independent
set of n vectors but no linearly independent set of (n + 1) vectors then it is called
finite-dimensional and said to be of dimension n: one writes dimV = n.

A subset S of a finite-dimensional vector space V is a basis for V if it is a
linearly independent set and if, for every v not in §, S U{v} is a linearly dependent
set. The number of elements in a basis is equal to the dimension of the space. If
S = {e1,€2,...,¢en} is a basis for V then every v € V may be expressed as a linear
combination of elements of §, v = v® - ¢4, in a way which is unique except for the
order of the terms.

Let V and W be vector spaces. A map A\:V — W is called a linear map if
Me-v+e-v')=c-Av)+c-Av') for all ¢,¢’ € K and all v,v' € V. A linear
map is determined completely by its action on a basis. If {e,} is a basis for V and
{fa} a basis for W, where a = 1,2,...,m = dim W, we may write A(eg) = A% - f4.
The AJ are the entries of the matriz representing A with respect to the given bases.
The action of A on an arbitrary vector in V is given by A(v) = A%v® . f,, where
(v®) is the n-tuple of components of v with respect to the basis of V. This amounts
to the left multiplication of the column vector of components of v by the n x m
matrix (AZ).

If ::V — W is a linear map then its image im A is a subspace of W and its
kernel ker )\, the set of elements of V mapped to zero by A, is a subspace of V;
dimim A + dimker A = dim V. If imA = W then A is surjective, if ker A = {0} then
A is injective; if both, then X is bijective, its inverse is also linear, and it is called
an i1somorphism. Two vector spaces which are isomorphic (images of each other by
an isomorphism and its inverse) must have the same dimension. An isomorphism
whose construction or definition does not depend on a choice of basis in either the
domain or codomain is said to be natural or canonical. Naturally isomorphic spaces
may be considered identical for many purposes.

A linear map of a vector space to itself, or linear transformation of the vector
space, is said to be non-singular if it is invertible, that is, if it is an isomorphism:
it is enough for it to be injective to ensure this, by the dimension result above. The
set of non-singular linear transformations of V is a group called the general linear
group on V, denoted GL(V).

The set of linear naps froin V to W may itselfl be made into a vector space by
defining

+ (/\| + 1\2)(0) = A.(v) + /\z(v)

d (e A)(v) = ¢ (Av)).

An important special casc is the vector space V* of linear maps from V to
the (1-dimensional) vector space K. Such maps are usually called linear forms on
V. The space V* is called the space dual to V. It is of the same dimension as
V. Furthermore, (V*)" is canonically isomorphic to V. It is customary to use a
notation for the evaluation of linear forins which reflects the symmetry between V
and V*, namely to write, for « ¢ V* and v € V, (v,a) instead of a(v). The map
V xV* — K by (v,a) — (v,a) is often called the pairing of elements of ¥V and V*.
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The symmetry between V and V° is also reflected in the use of the term covariant
vector, or covector, instead of linear form, for an element of V*.
If {ea} is a basis for V, the dual basis for V* is the set {#*} of covectors such

that
by _ gb _. 1 ifd=b,
(€a,0°) = & {0 ifa#b:

6% is called the Kronecker delta. If the components of a vector v € V are written as
a column— that is, an n x 1 matrix-—-and the components of a covector a € V* are
written, in the dual basis, as a row—-that is, a 1 x n matrix—then the evaluation
of (v, a) is carried out by (row into coluinn) matrix multiplication.

If ::V — W is a linear map and f is a linear form on W then v — (A(v), )
is a linear form on V denoted A*(8), so that (v,A*(8)) = (A(v),0) for all v e V
and any € V*. The map A*:W* — V* by f++ A*(B) is a linear map called the
adjoint of A. If ::U — V and u:V -+ W are linear maps, then (uoA)* = A*opu’.

The dot denoting scalar multiplication has been used here for emphasis; it is
generally omitted.

More extensive discussions may be found in Loomis and Sternberg [1968], Chap-
ter 1, or Bishop and Goldberg [1968|, Chapter 2, for example. There is a lovely
book by Halmos [1958].

3. Groups. In this note we collect some standard definitions and results from
the theory of groups.

A group G is a set together with a binary operation G x G — G called the
group multiplication, written (g1, g2) =+ g192, such that

(1) multiplication is associative: (g192)93 = g1(g293) for all g1,92,93 € G

(2) there is an identity element e in G such that ge = eg =g forallg€ G

(3) each g € G has an inverse, denoted g~!, such that g¢g=! =g~ 'g =e.
Where more than one group is involved, ambiguity may be avoided by writing ec
for e.

A map of groups ¢: G - H is called a homomorphism if it preserves multipli-
cation: ¢(g192) = &(91)9(g2) for all g,,92 € G. A bijective homomorphism is an
1somorphism; an isomorphism of a group with itself is an automorphism.

A subgroup F of G is a subset which is itself a group with the multiplication
restricted from G. Equivalently, a group F is a subgroup of G if it is a subset of G
and if the inclusion F < » G is a hoimnomorphisin.

For any § € G the map g -+ ggg ! is an automorphism of G called conjugation
by g; it is also called an inner automorphism. If F is a subgroup of G then for each
g € G, theset {§fg~"'| S € F} is also a subgroup of G; it is called the subgroup
conjugate to F by §. A subgroup F is said to be normal or invarsant if it is identical
to each of its conjugates, that is, if it is invariant, as a whole, under conjugation.

Let ¢: G -+ H be any homomorphism of groups. Its image im¢ = {¢(g) | g €
G} is a subgroup of H, and its kernel ker¢ = {g € G | ¢(g) = ey } is a normal
subgroup of G. Moreover, ¢ is surjective if and only if im¢ = H; injective if and
only if ker¢ = {ec}; and therefore bijective if and only if both these conditions
hold.
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Suitable treatments are to be found in many books, for example MacLane
and Birkhoff (1967], Chapter 3, or Kirillov [{1976]. Further standard material is
introduced in Chapter 11.



2. CURVES, FUNCTIONS AND DERIVATIVES

The ideas introduced in Chapter 1 were all essentially linear—the lines were straight,
the subsets were plane, and the maps were affine. In this chapter we drop the
restriction to linearity and introduce curves, of which lines are affine special cases,
and functions, of which the functions defining affine hyperplanes by constraint are
affine special cases. We do not allow curves and functions to be too wild, but
impose restrictions which are sufficiently weak to encompass the usual applications
but sufficiently strong to allow the uswal processes of calculus. These restrictions are
embodied in the concept of “smoothness”, which is explained in Section 1. We go
on to construct tangent vectors to curves, and introduce the idea of the directional
derivative, which underlies the idea of a vector field, introduced in Chapter 3, and
is central to what follows in the rest of this book. With this additional apparatus
to hand, we show how to introduce curvilinear coordinates into an affine space.

1. Curves and Functions
In this section we define curves and functions in an affine space.

Curves. In Section 2 of Chapter 1 a line is defined as a map 0:R — A by t —
zo +tvg where 4 is an affine space madelled on a vector space V and vg is a non-zero
element of V. What distinguishes a|line, among other maps R — 4, is that o is
affine: o(t + s) = o(t) + A(s) where 3: R — V is the linear map s ~— svo.

The generalisation which suggests itself, and which one makes use of in appli-
cations without giving it any special|attention, is to consider any map R — A—in
other words, to give up the propertied of straightness and linearity which distinguish
lines. We define a curve in A to be a map R — A, or a map I — A where ] is an
open interval of R.

Without further restrictions one could construct some very counter-intuitive
examples of curves (for example, space-filling curves). Before making these restric-
tions, we give the definition of a function, and then impose restrictions on both
together.

Functions. In Section 2 of Chapter 1 a hyperplane is defined as the pre-image of
0 by a map f: A —» R; the construction is then extended to the pre-image of any
constant. ‘What distinguishes the hyperplane map, among other maps, is that f is
affine: f(z) = (z - zo, a), so that f(x + v) = f(z) + (v, ).

We now drop the restriction thal the map be affine. A map f: 4 — R is called
a (real) function on A.

We shall deal straight away with an awkward problem of notation for functions,
which arises repeatedly, and is compaunded partly by the cumbersome nature of the
usual solutions to this problem, partly by the historical circumstance that mathe-
maticians and physicists usually solve it in different ways. Consider for example a
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2-dimensional affine space, with two affine coordinate systems (z°) and (£°) related
by
#=z'+1? = 1! - 1%

and let f be the function whose value at the point with coordinates (z!,z2?) (relative
to the first coordinate system) is given by (z')? — (z2)2. Then a physicist would
without hesitation write

/(' 2?) = (z')? - (z%)%
and many physicists would write
f(8',£7) = £'4?

to mean that the value of this function at the same point is £!£2 when its coordinates
are given in terms of the second coordinate system. On the other hand, most
mathematicians would insist that

f(£',£%) = (£')" - (£%)?,

that is to say, that the symbol f represents the form of the function, not its value,
and would introduce another symbol for £!£2, say

g(f',.‘f’) - iltﬁ'

so that

f(:l’zz) = g(il'tz)!
the arguments on the right hand side being obtained from those on the left by use
of the relations between the two affine systems. Other mathematicians prefer to
solve the problem by attaching to f an index which specifies the coordinate system
in use.

A related issue concerns the coordinates themselves. An affine coordinate sys-
tem (z°) for an n-dimensional affine space A fixes a set of n functions on A, the
ath of which assigns to a point of A the value of its ath coordinate. These are the
coordinate functions for the coordinate system. It is natural to denote the ath of
these functions by z°* also. But this apparently creates a problem because the same
symbol is being used to denote both a function and its value at a particular point.
However, in this instance the ambiguity is actually helpful. We shall therefore use
(z!,22,...,z") to denote either a point of R", the coordinates of a point in A, or
the map 4 — R" which fixes the affine coordinate system, and the context will
make it clear which is meant.

No problems arise in either case if one confines oneself to working in one fixed
coordinate system, and even if a transformation of coordinates is involved it is usu-
ally clear what should be done in any particular instance; but much of what follows
is concerned with the effects of changing coordinates-in general situations, and then
a precise notation is often needed. We shall distinguish between a function, which
is a map 4 — R, as in the definition above, and its coordinate expression or coor-
dinate presentation, which is a map R™ — R obtained by composing the function
with the inverse of the map 4 — R™ which specifies the coordinate system. The
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coordinate presentation of a function will be distinguished by an index identifying
the coordinate system which is being used. When, as in the above instance, there
are given two different presentations of the same function f, these will be denoted
f* and f% for example. If z° and #° denote the coordinate functions, then

F5(2%) = f4(#%) = f
where composition of a map 4 — R" and a map R" — R is implied in the
expressions f*(z°) and f#(£°); the range convention does not apply here since the
free index appears in the argument of a function of n variables (recall the comment

in Chapter 0, Section 4). If &: R® — R™ is the affine coordinate transformation
which gives (£°) in terms of (z2) (so that £° = ®2(z%) = kgz® + d° say), then

ff=ftc® and fi=fZ0d"'.

Thus, in the above example, if z € A with z!(z) = 3, z3(z) = 2, then £'(z) = 5,
#%(z) = 1, and f(z) = f*(3,2) = f£(5,1) = 5. According to this scheme one should
not write f(3,2), since this expects evaluation of a function in a coordinate system
which has not been specified. Nor should one write f(z!,z%) = (z')? - (z?)3?,
but rather f2(z!,z3) = (z!)? — (z?)?. However, it is permissible to write f =
(') - (z?)?, where the symbols z! and z? are now to be interpreted as coordinate

functions; and in fact
f = (zl)z - (12)2 = iliz'

Exercise 1. Using the coordinate transformation given above, find (£!)? — (£?)? in terms
of (z%), and z'z? in terms of (£°).

Exercise 2. Let A4 be the affine space { (¢',£2,¢%) € R® Lf' +€74+€ =1} andf
the function on A obtained by restricting the function (&', €2, €3%) — 26" + €2 - 365 + 1.
Find the coordinate expressions for f in terms of the two coordinate systems defined in
Exercise 5 of Chapter 1, and check the coordinate transformation rule, using the coordinate
transformation given in Exercise 6 of that chapter. o

Smoothness. All that has been said so far applies to any curve or function,
however counter-intuitive. To preserve the intuition and exploit the calculus one
needs to impose some restrictions.

We shall deal only with functions whose coordinate expressions in any (and
therefore in every) affine coordinate system have continuous partial derivatives of
all orders. This property is unaffected by repeated partial differentiation. Such
functions are called smooth, or C®, which is to say, continuously differentiable
“infinitely often”. Conditions of differentiability of this kind will occur regularly in
this book; they form part of the analytical substratum on which the geometry is
built. We'shall try to avoid placing more emphasis on analytic technicalities than
is absolutely necessary. It would be possible to impose less stringent conditions of
differentiability, requiring, for example, only that functions have continuous partial
derivatives of all orders up to and including the kth. Such a function is said to be
C*. However, this introduces complications since the derivative of a C* function is
not necessarily C*, though it will be C*~!. In any case, the functions met with in
applications are almost always analytic, when they are differentiable at all, so there
would be little practical advantage in relaxing the conditions.
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It should be realised, however, that a smooth function is not necessarily ana-
lytic: one may certainly construct its Taylor series about any point in its domain
of definition, but there is no guarantee that the series will converge to the value
of the function at any other point. Again, the only function which is analytic on
R and has the value zero on some open interval is the zero function, while it is
possible for a merely smooth function to be identically zero on an open interval
but different from zero elsewhere. It is an advantage to be dealing, not just with
analytic functions, but with the larger class of srnooth functions, precisely because
one then has at one’s disposal the so-called bump functions: a dump function is a
smooth function which is positive within a finite interval and zero outside it.

Exercise 8. Show that, for given positive integer k, the function z*|z| on R is C* but
not C*+1, o

Exercise 4. The function f on R defined by
_feVE ifz>0
/(=) = {o ifz<0

is smooth. Show that for any a,b € R with a < b, the function g(4,s) defined by g(4.4)(z) =
J(z — a)f(b — z) is smooth, and that g(,4)(z) > 0 for a < z < b, while g(4,3)(z) = 0 for
z < a and for = > b. Show that for any a,b,c,d € R with a < b < ¢ < d there is a smooth
function h on R such that h(z) =0forz < aandforz > d,and h(z)=1forb<z<c. O

We now define smoothness for curves. We have defined a curve in an affine
space A as a map from the real line (or some open subinterval of it) to A. If affine
coordinates are chosen then a curve o will be represented by n real valued functions
0% = z°% 0 0, its coordinate functions. A curve o will be called a smooth curve if its
coordinate functions are smooth for one, and therefore for every, affine coordinate
system. If the domain of definition of the curve is a finite closed interval, as would
be appropriate in discussing a curve joining two fixed points of A, then it will be
assumed that the curve is the restriction to that interval of a smooth curve defined
on a larger, open, interval containing it. Then questions of differentiability at the
endpoints of the interval will cause no difficulty, since the curve may be extended
beyond them.

Paths, orientations and reparametrisations. As in the case of lines, two
curves are counted as different if they are given by different maps, even if their
image sets are the same. It is sometimes useful to have a word for the image set of
a curve: we call it a path.

Curves with the same path may often be distinguished by the sense in which the
path is traversed. Two curves which traverse the same path in the same sense are
said to have the same orientation. An injective curve always fixes an orientation,
but it is also possible that a curve will not traverse its path in a unique sense.
We shall generally avoid the use of curves which are not injective. It is however
convenient to allow constant curves, whose paths are single points of the affine
space.

If h: R — R is a smooth function and o: R — A4 is a smooth curve, then so also
is 0 o h: it is a reparametrisation of 0. One may also consider functions and curves
defined on intervals of R. Most reparametrisations of interest are reparametrisations
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by injective functions of the parameter. A smooth injective function R — R must
be either increasing or decreasing; if the curve o defines an orientation of its path,
its reparametrisation by an increasing function defines the same orientation, while
its reparametrisation by a decreasing function reverses the orientation.

Exercise 5. Show that the curves in a 3-dimensional affine space with affine coordinate
expressions

t —(acost,asint,bt)

t —(acost, -asint, —bt)

tv-(asint,acost,b(n/2 - t))

t —(acos2t,asin 2t,2bt)

t —(acos(t® —t),asin(t® —t),b(t> - t))
are all smooth, and all have the same path. Show that all but the last are injective, and

distinguish those which have the same orientations. Find the reparametrisations of the
first curve which give the others. o

2. Tangent Vectors

The tangent vector to a smooth curve o at the point o(to) is the vector
. L1
o(tn) = 6]111‘1) i (o(to + 8) — a(to))-

This limit exists, because of the assumed smoothness: if in any affine coordinate
system the presentation of o is t +-+ 0°(t) then the components of 6(to) are 6°(to) =
do®/dt(to).

Note that the possibility of describing the tangent vector as “the tangent vector
at o(to)” (a point of A) depends on our general assumption that the curves we deal
with are injective. Otherwise we should have to say “the tangent vector at t = to”
to avoid ambiguity.

The possibility of making such a definition depends on the fact that the differ-
ence o(to + 6) — o(to) is a displacement in A and hence a vector in V. It is a chord
of the curve. The tangent vector is thus an element of V. On the other hand, if z
is any point of A and v is any vector in V, then t — z + tv is a smooth curve, and
its tangent vector at r is v. Thus every vector in V may occur as tangent vector,
and at each point z of A: the set of tangent vectors at a point of 4 is a copy of
V. The correspondence between vectors in V and tangent vectors at z is a natural
one; in other words, it does not depend on a choice of affine coordinates. Since the
spaces of tangent vectors at the different points of 4 are all naturally identified with
V, they are all naturally identified with each other, and so it makes sense to say
whether or not tangent vectors at different points of A are “equal”, or parallel.

This construction of a copy of V, as space of tangent vectors, at each point of 4
is to be distinguished from the attachment of V to A as space of displacement vectors
introduced in Chapter 1. The results are similar, but nothing like the displacement
vector construction can be achieved in the manifolds to be discussed later, while a
development of the tangent vector construction, the directional derivative, can be
generalised quite easily. The directional derivative is explained in the next section.
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Even though tangent vectors to A are to be distinguished in concept from
elements of V we shall not make any notational distinction between the two; thus
v will denote an element of V or a tangent vector, it being clear from the context
which is intended, and in the latter case, at which point of A it is tangent.
Exercise 6. Show that if #° = k{z® + d° and if (0°) and (0"®) are the coordinate presen-
tations of a curve o with respect to the two affine coordinate systems (z°) and (£°) then
a'(t) = ka'(t). o]
Exercise 7. Show that the tangent vector to a constant curve is the zero vector. o
Exercise 8. Show that if p = o o h is a reparametrisation then p(t) = h(t)a(h(t)). o

One very simple reparametrisation which is often useful is a change of origin.
Let 0:R — A be a smooth curve and let 7.: R — R be the functiont — t +c. A
change of origin on o0 is a reparametrisation oor, of 0. We denote the reparametrised
curve o.. A change of origin is the only reparametrisation which does not alter
tangent vectors: o.(t) = o(t +c) and o.(t) = (¢t + c). Of course all the curves o,
yield the same path, but they should be regarded as different curves, for different
values of ¢, because of the convention that different maps count as different curves.
It is evidently possible to choose ¢ so that the point o.(0) coincides with any given
point of the path of 0. We shall call a set of curves which differ only by change
of origin a congruent set. The second and third curves in Exercise 5 belong to the
same congruent set.

More generally, a reparametrisation induced by an affine mapt+— at+6,a #0
of R is called an affine change of parameter. It has the effect of multiplying tangent
vectors by the constant a.

3. Directional Derivatives

In this section we show how a directional derivative may be defined along any
tangent vector; this is a generalisation of the operator v - grad in elementary vector
calculus discussed in Chapter 0 and may be used as an alternative definition of a
tangent vector.

Directional derivatives. If f is a smooth function on an affine space A, and
o is a smooth curve in A, then f o o is a smooth function on R. The derivative
d/dt(f o 0) measures the rate of change of the function along the curve. In affine
coordinates

& o0)(ta) = S (to) = Sor6*(t0)

the partial derivatives in the last expression being evaluated at (a‘(to)). The
derivative along a curve at a point thus depends only on the point and on the tangent
vector to the curve there; it does not depend on the curve in any more complicated
way. To put it otherwise: if curves o and p meet at a point zo = o(0) = p(0) (we
may change origins, if necessary, to achieve this agreement of parameters), and if
they have the same tangent vectors there, then

2(fo0)(0) = (7 00)(0)
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for any function f. Thus the derivative of any function along each of two curves at
a point is the same whenever the two curves have the same tangent vector at that
point.

One may therefore define a directional derivative along tangent vectors, as
follows: given a tangent vector v at a point zo, and a function f, the directional
derivative of f along v, written v(f) or simply vf, is the number

(;it(f o 0)(0),

where o is any curve such that ¢(0) = z, and ¢(0) = v. One possible choice for o
ist — zo + tv. In terms of an affine coordinate system,

where the v® are the components of v in this coordinate systein, and the partial
derivatives are evaluated at (z°(z0)).

Exercise 9. Show that two curves through a point zo which yield the same directional
derivative for all functions at zo have the same tangent vector there. o]

In many ways it is more satisfactory to equate a tangent vector with the direc-
tional derivative operator it defines than to regard it as the limit of a chord. One
reason for this is that the operator interpretation offers the prospect of generalisa-
tion to manifolds, on which no affine structure is available and no chords can be
constructed. It is therefore desirable to characterise directional derivative operators
by their properties, which are

(1) v(af + bg) = avf + buvg

(2) v(fg) = (vf)g(z0) + f(z0)(vg)
for all a,b € R and all smooth functions f and g. The first of these says that,
as an operator, v is linear, and the second that it obeys the appropriate version
of Leibniz’s rule. That v, as a directional derivative, does have these properties
follows from its definition in terms of ordinary differentiation of a real function. It
is also true that, conversely, any operator which maps smooth functions to numbers
and satisfies these conditions is a directional derivative operator: we shall show
this in detail in Chapter 10. In fact, it can be shown that such an operator may be
represented as the derivative along a smooth curve as described above. We formalise
these changes of emphasis in a new definition of a tangent vector: a tangent vector
at a point in an affine space A is an operator on smooth functions which maps
functions to numbers and is linear and satisfies Leibniz’s rule as set out above.

We shall denote by T, A the set of tangent vectors at zo € A. As we have
remarked above, association of a tangent vector with an element of V gives a natural
identification of T, A with V. As a consequence of this identification we may endow
T., A with the structure of a vector space, by defining av+bw, where v,w € T, , A and
a,b € R, to be the tangent vector at z, corresponding to the element av + bw of V.
Alternatively, av+bw is the tangent vector at t = 0 to the curve t — z¢+t(av +bw).

Exercise 10. Show that, as an operator, (av + bw)f = avf + bwf for any smooth func-
tion f. o]
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Not only is T, A naturally identified with V, it is isomorphic to it as a vector
space. Nevertheless, the two spaces are conceptually distinct, and each tangent
space is distinct from every other. In generalisations to manifolds the naturalness
of the isomorphism (its independence of coordinates) gets lost, and it then becomes
imperative to regard tangent spaces at different points as distinct.

Given a basis {ea} of V, the tangent vector at a point o € A corresponding
to the basis vector e, is the tangent at t = 0 to the coordinate line t — o + teg of
any affine coordinate system based on {e,}. This tangent vector has a particularly
simple representation as an operator: its action on a function f is given by f —
8f%/8z°, the partial derivative being evaluated at (z°(zo)). In accordance with our
change of emphasis towards tangent vectors as operators, we shall use a notation for
the tangent vectors to coordinate lines which is suggested by this observation: we
shall write 8,,8;,...,0, for these tangent vectors (the point zo being understood);
where it is necessary to distinguish the coordinate system we shall use

a d a

9xr1’ 32’ "’ 9z’
These coordinate tangent vectors form, at any point zo, a basis for T, A. Any
v € T;, A may be uniquely written v = v23,, where the v® are the components of v
(considered as an element of V) with respect to the basis {e,}; and
afr
aze’
the partial derivatives being evaluated at (z°(zo)), as before. Thus the operation of
v on a function expressed explicitly in terms of coordinate functions amounts simply

to carrying out the indicated partial differentiations, evaluating at the coordinates
of zo, and taking the appropriate linear combination of the results.

vf = v%0,f = v°®

Exercise 11. Show that v® = v(z?), where z° is thought of as a (coordinate) function. O

Exercise 12. The point zo in a 3-dimensional affine space A has coordinates (3,1, ~2)
with respect to an affine coordinate system (z°); also v = 8, + 292 + 30s and [ =

z'z? + 2223 + 232!, Show that vf = 13. o
Exercise 13. Show that if f is the affine function z »— (z — zo,a) determining a hyper-
plane and v is a tangent vector then vf = (v,a). o

4. Cotangent Vectors

The set of points in an affine space at which a given smooth function takes a
particular fixed value is called, if it is not empty, a level surface of the function.
In general a level surface has, at each point on it, a tangent hyperplane, which
contains all the tangent vectors at that point to all the curves lying in the surface
and passing through the point. If the function in question is f, and the point is
zo, then for any curve o in the surface f oo is constant and so d/dt(f o 0)(0) =0,
where zo = 0(0). Thus the tangent vectors at zo to curves in the level surface are
those which satisfy vf = 0.

Now for a fixed function f the map T,,A — R by v — uf is linear and therefore
defines a linear form on T, 4, that is, an elemnent of the space dual to T;,A. This
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space is denoted T; A and called the cotangent space to A at zo. The linear forms
in the cotangent space are often called cotangent vectors, or covectors for short.
The covector determined by f in this way is denoted df and called the differential
of f at zo. Thus

(v,df) = vf.

Provided that df at z is not identically zero, the tangent hyperplane at z, to
the level surface of f is given by (v,df) = 0. This defines the tangent hyperplane
as a subspace of T,,A. If the tangent space is identified with V then df fixes an
element of V*, and thereby a hyperplane in A attached at zo. This hyperplane
consists of the tangent lines at zg to curves in the level surface. If, at zo, df is zero
then it is not possible to define a tangent hyperplane by these means, and in fact
there may not even be one.

Thus with each function f and each point zo € A there is associated an element
df of T; A, a linear form or covector at zo. (It is important to remember the role of
the point in this construction, since it is not evident from the notation df.) From the
formula for the coordinate representation of vf, namely vf = v®8,f = v®df*/dz°,
it will be seen that df is determined by the partial derivatives of f* evaluated at
(z(z0)). (In future, when the arguments of a particular derivative are evident
from the context, we shall not mention them explicitly.) The coordinate functions
z° define linear forms dz®, the coordinate differentials, which constitute the basis
of T; A dual to the basis {d,} of T;,A. Thus any element of T; A may be written
uniquely in the form c,dz?, and in particular

z
df = (04,df)dz® = (8,f)dz® = g—dz‘.
dzs

An arbitrary element of T; A may be obtained from many different functions
on A, and in particular from just one function of the form z ~ (z — zo,a), where
a € V*; this constitutes a natural identification of T;, A with V*. The level surface
of the function defined by « is a hyperplane in A4.

The linear form df determines, when it is not zero, the tangent hyperplane
to the level surface of f through zo,. However, any nonzero multiple of df would
determine the same hyperplane; thus df contains a little more information about
the level surfaces of f: it affords the possibility of comparing the rates at which
level surfaces are crossed by any curve transverse to them. The function cf, for
constant ¢, has the same level surfaces as f, though if ¢ # 1 they are differently
labelled; this difference of labelling shows up in the fact that d(cf) = cdf.

The reader will no doubt have noticed that the components of df are the same
as those of grad f* in ordinary vector calculus. However, it makes no sense at this
stage to say that df is orthogonal to the level surfaces of f, since no measure of
angle or concept of orthogonality has been introduced into the space. If f is a
smooth function on an affine space of dimension 4, for example, df will be defined
and have the same value regardless of whether that space is Newtonian space-time
or Minkowskian space-time or something altogether different. The definition of a
gradient involves a metric structure, which will be introduced in Chapter 7.
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The reader may also have been reminded, by the notation, of infinitesimals.
Infinitesimals in the sense of I'Hépital— “infinitely small but nonzero quantities”—
have long been banished from standard mathematics. However, this particular
piece of mathematics does provide a sensible parallel to such a statement as “in a
displacement from (z°) to (z° + dz®) the change in f is given by (3f/dz%)dz®, and
if dz® = vedt then df = v2(9f/3z°)dt”; and the notation reflects this.

Exercise 14. Show from the linearity and Leibniz rules that d(af + bg) = adf + bdg and
d(f9) = g(;o)d/ + f(zo)dg. Show that if A:R — R is a smooth function then, at zo,
d(ho f) = h(f(z0))df. o
Exercise 15. Compute df, at zo, in terms of dz°, for the function f = z'z? + z%2% + 232!,
where (z%(z0)) = (3,1, —2). Show that the tangent hyperplane through zo to the level
surface of this function is given by —z' + z? + 4z + 10 = 0. Show that df = 0 at
the origin of coordinates, that the three coordinate axes all lie in the level surface of the
function through the origin, but that (for example) no other line through the origin in the
z'z2-plane does 3o, and that therefore the level surface through the origin has no tangent
hyperplane there though the function is certainly smooth there. o

This level surface is a cone, with the origin as its vertex.

6. Induced Maps

The defining property of an affine map is that it acts as a linear map of displacement
vectors: if A: A — B by z— yo + A(z — o) then A(z + v) = A(z) + A(v). An affine
map takes lines into lines; it also takes curves into curves, for if 0: R — A is a curve,
then Aoo:R — B is also a curve, which is easily seen to be smooth if o is. Since
tangent vectors (as distinct from displacement vectors) arise in the first place from
curves, it should not be surprising that an affine map also takes tangent vectors
into tangent vectors, in a way consistent with their definition in terms of curves,
and in agreement with the linear map of displacement vectors. In fact the tangent
vector to A o 0 is given, as a limit of chords, by

6121})%(:\(00 +6)) = Alo(®))) = lim %A(a(t +6) - a(t)) = A(6(t)).

Thus the linear part A gives the transformation of tangent vectors, just as it gives
the transformation of displacement vectors. The vector A(o(t)) at A(o(t)) is called
the image of o(t) by A.

As a directional derivative operator, the image of a tangent vector v at z € 4
may be defined as the operator g ~ d/dt(g o A 0 0)(0) for any function g on 8,
where o is any curve such that ¢(0) = z and ¢(0) = v. But go A o0 may be
constructed by first composing ¢ with A, and then composing the result, g o A, with
0. Read in this way, d/dt(go Ao 0)(0) = v(go A). It may be verified easily that
the operator g — v(g o A) satisfies the linearity condition and Leibniz’s rule, and
it is therefore a tangent vector at A(z) € B. Moreover, the map T: A — Ty (;)8 80
defined is evidently a linear one, which we denote A.. Thus A.(v) is the element of
Tx(z)B given by

(A.(v))g = v(goA).
When T;4 is identified with V and Ty(;)8 with W, A.(v) is identified with A(v)
and A, therefore with A,



Section 6 39

The adjoint of the linear map A.:T; A — T(;)8 is a linear map of cotangent
spaces A':Tx(z)B -+ T; A. 1t is defined as follows: for g € TI{(,)B,

(v,A*(B)) = (A.(v),B) for all v € T 4.
In particular, for any function g on 8,
(v,A*(dg)) = (A.(v))g = v(g o A) = (v,d(g 0 A)).
Thus
A*(dg) = d(g o A).
With respect to affine coordinates (z°%), (y*), with A represented by y® o A =
A%z® + ¢,
_2_( @5 A) = AC
aza VY T e

Using this, one reads off the coordinate expressions for the maps A.: Tz A — Ty ()8
and A*: Ty ()8 — T; A as follows:

2 al\ _ ya _a_ — Oi.
<A.(az°),dy >—/\°, so that A, (az")—'\“ay"

a . .
<;9;¢"A (dy°)> = A7, sothat A*(dy®) = A2dz°.
The maps A. of tangent spaces and A* of cotangent spaces are said to be induced
by the affine map A. Note that A. is cogredient with A while A* is contragredient
to it.
Exercise 16. Show that for any affine map A
A.(v*(8/92%)) = Aqv®(8/3y”) and A’(cady®) = carsdz®. a

and

Exercise 17. Show that if A: 4 — B and M: B — C are affine maps then
(MoA). =M.oA. and (MoA)'=A"oM". o

6. Curvilinear Coordinates

We have so far found it unnecessary to nse any but affine coordinates. The reader
will be aware of the possibility, indeed the advantage under certain circumstances, of
using other kinds of coordinates: polar, spherical polar, cylindrical or whatever. In
the sequel we shall often use curvilinear coordinates—not any specific kind, but in a
rather general way. We shall devote this section to defining curvilinear coordinates
and describing the modifications required to the matters so far discussed as a result
of introducing them.

Before attempting a definition we must point out one possible difficulty with
curvilinear coordinates, which arises even in such a simple case as that of polar
coordinates for the plane. An affine coordinate system has the desirable property
that each point of the affine space has unique coordinates. In polar coordinates
this is not so, the origin being the exceptional point. Moreover, points which have
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nearby affine coordinates need not necessarily also have nearby polar coordinates,
since their angular coordinates may differ by almost 2x. Of course, in the particular
case of polar coordinates one adopts various ad hoc methods for dealing with the
consequences of these defects: but this will not be possible in general. Another way
of getting over the difficulty with polar coordinates is to restrict their domain so
that single-valuedness and continuity are restored, by deleting the non-positive z-
axis. This is the lead which we shall follow in the general case. We shall allow for a
curvilinear coordinate system to be local, that is to say, defined, single-valued, and
smooth with respect to affine coordinates only on some open subset of the space,
not necessarily on the whole of it.

We noted in Section 1 of Chapter 1 that an affine coordinate system on an
n-dimensional affine space may be described as a bijective map from the space to
R", namely the map which assigns to each point the n-tuple of its coordinates.
Two different affine coordinate systems are related by a coordinate transformation,
which is a map from R"™ to itself. These are also essential features of our definition
of curvilinear coordinates, which follows.

A local curvilinear coordinate system, or local coordinate chart, for an n-
dimensional affine space A is a bijective map ¥ from an open subset P of A, called
the coordinate patch, to an open subset of R"; this map is to be smooth with re-
spect to affine coordinates in the following sense: if ¢: A — R" is the bijective map
defining an affine coordinate system on A then the map ¥ o ¢!, which takes affine
coordinates into curvilinear coordinates, and which is a bijective map between two
open subsets of R", is to be smooth and have a smooth inverse. The map Yo ¢~1,
which is called the coordinate transformation from the affine to the curvilinear co-
ordinates, may be thought of as a vector-valued function of n variables; it will be
smooth if all its component functions have continuous partial derivatives of all or-
ders. Since affine coordinate transformations are clearly smooth, a local coordinate
chart which is smooth with respect to one affine coordinate system is smooth with
respect to all.

For any differentiable map ® of an open subset of R" into R" we shall denote
by ®’ the matrix of partial derivatives, or Jacobian matriz, of ®. It is a smooth
n x n matrix-valued function on the domain of ®. If one writes

q,(eu) = (o‘(fa)-q’z(fo)- s od’"(fa))
then
(60" oot 80")
L1’ g€’ " 9gn

is the bth row of ®'. There are important connections between the invertibility of
the map & and the invertibility of the matrix ®’. In the first place, if ¢ is invertible
then &' is non-singular and (®7')’ = (¢’ o ®~!')~!. Furthermore, the inverse
function theorem states that if ¢ is smooth on an open set containing a point £ and
®'(€) is non-singular then there is an open set O containing £ and an open set 0
containing ®(£) such that ®:0 — O has a smooth inverse =1: 0 — 0. It is also

known that if #: 0 — R" is injective and &' is non-singular at all points of the open
set O then ®(0) is open and ®~':®(0) — O is smooth. These results sometimes
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allow one to infer the existence of a local coordinate chart from the invertibility of
a Jacobian matrix. In practice, a specific curvilinear coordinate system is usually
given by coordinate transformations from some affine coordinate system; to check
the validity of the curvilinear coordinates it is therefore necessary merely to find
where the Jacobian of the coordinate transformation ® = ) o ¢~! is non-singular
and confirm that the transformation is injective there. Alternatively, it may be
more convenient to work with the inverse of the coordinate transformation.

Exercise 18. Let O be the open subset of R? consisting of all points other than those on
the non-positive £'-axis. The function 9: 0 - (- 7, ) is defined by

arctan(£?/€! if€'>0

x +arctan(€4/€')  if €' < 0,62 >0
9(€',€6%) — { —n +arctan(€?/€') if€' <0,6? <0

x/2 if€'=0,62>0

/2 if€'=0,€ <o.

Show that the map O — R? by (€',€?) — (\/(€')? + (£2)?,9(€",€%)) defines a co-
ordinate transformation from any affine coordinates on a 2-dimensional affine space to
curvilinear coordinates (“polar coordinates™). o

Exercise 19. Let z be an affine coordinate on a 1-dimensional affine space A. Show that,
although the function 4 -+ R by r -+ £* is bijective, it does not define a local coordinate
chart on 4. o

If : P - R™ and x: Q — R™ are two local coordinate charts such that PN @
is non-empty, then ¥ o x ! and x o ¢ °!, which are the coordinate transformations
between the charts, are smooth maps of open subsets of R".

The coordinate functions for a local coordinate chart are defined in the same
way as for affine coordinates: the ath coordinate function assigns to each point in
the coordinate patch the value of its ath coordinate. In other words, 2% = I1¢ o ¢,
where ¢ is the chart and [I*: R™ —+ R is projection onto the ath component. The
coordinate functions are local functions, that is, not necessarily defined on the whole
of the space; they must however be smooth on their domain.

Exercise 20. Let (£°) be the coordinate functions for a local coordinate chart and (z°)
those for an affine coordinate system. Show that 3,£®, the function obtained by applying
the coordinate tangent vector 8, = 8/3z° to the function £*, has for its coordinate
expression with respect to the affine coordinates the (b,a) element of the Jacobian matrix
of the coordinate transformation from affine coordinates to curvilinear ones. o

The differentials of the curvilinear coordinate functions (£°) are given in terms
of those of the affine coordinate functions (z2) by

dib = (9,£%)dz°.

The coefficient matrix is non-singular, by Exercise 20; the linear forms {d£%} there-
fore constitute a basis for the cotangent space, at each point of the coordinate
patch. They will be called the coordinate differentials for the curvilinear coordinate
system.

The ath coordinate curve is the curve given in terms of the curvilinear coordi-
nates by t ~» (£',£2,...,%% +-¢,...,2"). The tangent vector to the ath coordinate
curve is denoted by d,, or d/01°, just as in the case of affine coordinates, and for the
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same reason. These coordinate tangent vectors form a basis for the tangent space,
at each point of the coordinate patch, which is dual to the basis of the cotangent
space at the same point given by the coordinate differentials:

< d .
(a,,dzb> = écfb = a?zb = 6:.
The components of 3,, are given in terms of the coordinate vectors for the affine
coordinate system by

(é,,dz°> = é,zb, so that é, = (é,z") .

We define the coordinate expressions for curves and functions in terms of curvilinear
coordinates just as we did for affine coordinates, making allowance if necessary for
the local nature of the curvilinear coordinates.

Exercise 21. Show that the matrices (3.z%) and (3a£") are inverses of each other. O

Exercise 22. Show that the coordinate differentials and vector fields of any two coordi-
nate systems are related in the same way as those of a curvilinear and an affine coordinate
system. Let v® be the components of a tangent vector v in one coordinate system (z°)
(curvilinear or affine) and let ¥® be the components of the same tangent vector in any

other coordinate system (£°). Show that ¢ = (9,£°)v®. Show that the components c.

and ¢, of a linear form are related by és = (942%)cs. o
Exercise 28. Show that the differential of a function f takes the form df = (3.f) dz®
with respect to any coordinate system. o

Exercise 24. Let (z',2?,2°) be affine coordinates in a 3-dimensional affine space 4 and
let (r,9, ) be the curvilinear coordinates (“spherical polars”) given by
z' =rsindcosp 2z} = rsindsiny 3 = rcosv.

Show that the open subset of A obtained by deleting the half-plane on whichz? =0, z! <0
is a suitable domain for (r,9, ), and that no larger open subset of A will do. Verify that
these functions do define a coordinate chart; identify the corresponding coordinate patch
(in terms of the affine coordinates). Compute the components of the affine coordinate
differentials and vectors in terms of the curvilinear coordinates, and vice-versa. a

The great majority of coordinate formulae carry over to the case of curvilinear
coordinates without change of appearance, but it must be remembered that in
general they hold only locally, that is on the coordinate patch. Where in the sequel
we have occasion to derive a result that is true only for affine coordinates, or some
other special coordinates, we shall draw the reader’s attention to this; otherwise it
may be safely assumed that any coordinate expression is valid in any coordinate
system.

7. Smooth Maps

So far in this chapter we have shown how various affine objects—lines, hyperplanes,
affine coordinate systems—may be generalised by relinquishing the conditions of
global linearity. By retaining the requirement of smoothness, however, one ensures
that a measure of linearity is preserved, albeit only on an infinitesimal scale. We
now make a similar generalisation, froin affine maps to smooth maps. The process of
inducing linear maps of vectors and covectors from an affine map will be generalised
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at the same time, to give a way of constructing, frormn a smooth map, linear maps
of tangent and cotangent spaces.

An affine map is represented, in terms of affine coordinates, by inhomogeneous
linear functions; but the functions representing the same affine map in terms of
curvilinear coordinates will not be linear, though they will be smooth. The map’s
affine property, in other words, will not be very apparent from its representation in
curvilinear coordinates. Nevertheless, the construction of the corresponding induced
map of vectors (for example) must still be possible, since its definition does not
depend on any particular choice of coordinates. The representation of this induced
map, with respect to the coordinate vectors of the curvilinear coordinate system,
will be a matrix; but, again in contrast to the case of affine coordinates, this matrix
will vary from point to point. These observations give a clear guide as to how to
proceed in general, and what to expect.

Smooth maps defined. Let ¢: 4 + B be a map of affine spaces. Such a map
may be represented with respect to any coordinates (z%) on A and (y®) on 8 by
n = dim B functions ¢ of m == dim A variables, as follows: for each z € A4,

¢*(z%(z)) = v*(¢(2)).

Here z® and y® are to be interpreted as coordinate functions. The functions ¢¢
may be considered as the components of a map

(€|'£2" . vfm) [ (¢l(€a)'¢2(50)“ .. ‘¢n(€a))

from R™ (or some open subset of it) to R": thus if (z®) are the coorlinates of
a point z € A then (¢*(z")) are the coordinates of the image point ¢(z) € B.
We may also write the defining relation in the form ¢2(z%) = y® o ¢, or describe
y* = ¢*(z?) as the coordinate presentation of ¢. It will frequently be convenient
to define a map ¢ between affine spaces by giving its coordinate presentation, that
is, by specifying the functions ¢ which represent it with respect to some given
coordinate systems on A and B. Of course, in order for the map to be globally
defined (that is, defined all over A) it is necessary that the coordinates used for A
should cover 4; and correspondingly, use of a coordinate system for 8 which does
not cover B restricts the possible range of the image set. These difficulties can arise
only when the coordinates chosen for A or B are non-affine (and not necessarily
even then): for affine coordinates no such problems arise.

Exercise 25. Explain how the coordinate presentation of a map A -+ B is affected by a
change of coordinates in A and 8. o]

A map ¢: A — B is smooth if the functions ¢* which represent it with respect
to affine coordinate systems on A and 8 are smooth.
Exercise 26. Show that if ¢: 4 -+ B is smooth then the functions which represent it

with respect to any coordinate systems on A and B, affine or not, are smooth (on their
domain). o

If ¢ is an affine map of affine spaces then the functions ¢ which represent it
with respect to affine coordinates are inhomogeneous linear: ¢®(z%) = A\2z® + ¢2;
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and so ¢ is certainly smooth. The definition of a smooth map is clearly also con-
sistent in concept with the definitions of a smooth curve and a smooth function
(though a smooth curve in 8 is not quite the same thing as a smooth map from a
1-dimensional affine space to B, nor is a smooth function on A quite the same thing
as a smooth map from A to a 1-dimensional affine space).

Sometimes we shall have to deal with the case of a map between affine spaces
A and B whose domain is not the whole of A; but provided that the domain is an
open subset of A the definition of smoothness carries over without essential change
(this is analogous to the situation that occurs when a curve is defined only on an
open interval in R).

Induced maps of vectors and covectors. We have already described maps
of tangent vectors and covectors induced by affine maps (Section 5). We have
implicitly introduced them again in defining the coordinate tangent vectors and
differentials for curvilinear coordinates (Section 6). We now repeat the argument
in a more general context, where the map is no longer assumed to be affine, nor
between spaces of the same dimension.

Let A and B be affine spaces, and O an open subset of A (which may be the
whole of A). Let ¢: O -+ B be a smooth map. We shall first construct the map of
tangent vectors induced by ¢. This construction depends on little more than that
¢ takes curves into curves.

Fig. 1 Induced map of a curve and a tangent vector.

Let v be any tangent vector at a point z in 0, and let o0 be any curve which
has v as tangent vector at z. The map ¢ takes o to a curve 0® = ¢ o o through
#(z), and o* has a tangent vector v* there, which may be constructed either as a
limit of chords or, better for this purpose, through its directional denvatnve Let f
be any function on A. Then

W= %(100%)(0)
but fod® =fo(doo)=(fod)oo
so that vtf = ;E((f°¢)°0)(0)



Section 7 45

or
vef = v(fog).

This expression reveals that the tangent vector to 0% at ¢(z) depends only on the

tangent vector to o at z, as the notation has anticipated. The construction works

in essentially the same way as in the affine case. The fact that ¢ may be non-

affine, and not necessarily defined all over A, makes no significant difference to the

construction. Note that v? is a tangent vector at ¢(z) € 8.

Exercise 27. Show that the alternative approach, defining the tangent vector as a limit
of chords, leads to the expression

v = lim H(g(o(0) - 8(2)). o

The map ¢.: Tz A —+ Ty(;)B by v+ v® with v#f = v(fo¢) is called the induced
map of tangent spaces.

Exercise 28. Verify that ¢.:7: 4 — Ty(;)8 is a linear map. a

The important difference between the affine case and the general one is that
in the affine case the induced map is a fixed map of the underlying vector spaces
V — W whereas here the map ¢. depends on z. If it is necessary to specify where
¢. acts we shall write ¢.,, but we avoid this as far as possible. We write ¢.v or
¢.:v for the image of v < T, A.

The computation of ¢.,v is often most conveniently carried out by choosing a
curve through z which has v as its tangent vector there, finding the image of the
curve under ¢, and computing the tangent vector to the image curve. The line
t~ z + v is an obvious choice of curve for this computation.

The adjoint map is defined essentially as in the affine case. 1t is the linear map
d:‘:T‘;(I)B — T; A defined by

(v,9°8) = (¢.v,8)
for any 8 in TJ(:)B and all v in T; A. Note that for any function f on 8

(v,6°(df)) = ($.v,df) = v*[ = v(f o) = (v,d(f 0 ¢))
from which follows the important formula
¢df - d(f o9).

As in the affine case, one may read off the coordinate expressions of ¢. and ¢°.
Recalling that the components of a vector are given by its action on the coordinate
functions, and introducing local, possibly curvilinear, coordinates (z%) around z
and (y®) around ¢(z), one obtains at once

(v4)% = v*(y") = vé” = v a0,
so that

(duv) B ) 5-1-‘;,

giving the components (¢.v)* of the induced vector in terms of the components v*®
of the original vector, the Jacobian matrix (matrix of partial derivatives) (3¢*/3z?)
being evaluated at (z%(z)), and #°(z®) - y“ o ¢ being the coordinate presentation
of ¢.
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Exercise 29. Obtain the same expression for (¢.)® from the result of Exercise 27. o
Exercise 30. Show that
¢.(8s) = %a, and that ¢°(dy®) = ‘;:: dz®. o
Exercise 31. Let ¢: 4 — B and let v € V, the space on which A is modelled. Show that
&(z + tv) = ¢(z) + td.x(v) + Oa,
where O, represents a vector of order 2 in t. Thus ¢. determines the best affine approxi-

mation to ¢ near z, in the sense of Taylor’s series. o
Exercise 32. Show that if ¢: A — 8 and y: B — C are smooth maps then
(Vod). =¢.0¢. and (Yo¢) =¢ oy’ =)

Exercise 83. Let ¢: 4 — A be bijective and have a smooth inverse. Show that ¢. and ¢*
are isomorphisms and that (¢.)"' = (¢7'). and (¢°)"! = (¢ ')", paying due attention
to the domains and codomains of these linear maps. (=]
Exercise 34. Let ¢ be a map of a 2-dimensional affine space to itself given in terms
of some coordinates by (z',z?) — ((z')? - (z?)?,22'2z?). Compute ¢.(31) and ¢.(32),
¢°(dz') and ¢°*(dz?). o]

8. Parallelism

In this section we exploit the natural identification of tangent spaces at different
points of an affine space, described in Section 2, to establish the idea of parallelism
of vectors at different points. We go on to introduce a more restricted idea, of
parallelism of vectors along a curve, which is easily generalised to other spaces.

Complete parallelism and parallelism along a curve. As we explained ear-
lier, the tangent spaces at different points of an affine space may be naturally
identified with the vector space on which it is modelled, and therefore with each
other. Thus given a tangent vector at a point of the affine space, one may draw a
vector equal to it, in the sense of this identification, at any other point. The two
vectors are said to be parallel, and this property of affine spaces, that they admit
a criterion of equality of vectors at different points, is called complete, or absolute,
parallelism. This property could have been inferred, from the definition of an affine
space, for displacement vectors, but we prefer to point it out for tangent vectors,
which will continue to be important throughout the book.

Except in special cases, manifolds are not endowed with complete parallelism,
and a restricted idea of parallelism-—parallelism along a curve—has turned out to
be more appropriate to them. We introduce this idea next.

A vector field V along a curve o in an affine space A is an assignment of an
element V() of the tangent space T,(;)A at each point o(t) (we use uppercase
italic letters V, W and so on to denote vector fields, here and subsequently; they
should be easily distinguished from the script letters ¥V, W and so on used to denote
vector spaces). The components of V(t), with respect to an affine or a curvilinear
coordinate system, will be functions of ¢, which will be assumed to be smooth
functions.
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If a vector v is given at a point o(to) on the curve then by the natural identifi-
cation mentioned above one may construct the parallel vector at every other point
of the curve. By this construction v is said to be parallelly transported along o,
and the resulting vector field V along o is called a parallel vector field (on o). The
construction depends only on the affine structure of 4, and does not rely on the
existence of a metric; nor does it depend on the parametrisation of o.

Exercise 35. Show that V is a parallel vector field along o if and only if its components
in an affine coordinate system are constants. a

Exercise 36. Show that if o is an affine line t — z, + tv then the field of tangent vectors
to o is a parallel vector field along o. o

Equations of parallel transport. The components of a parallel vector field will
not, in general, be constants in a curvilinear coordinate system. However, it is easy
to ‘calculate the condition which they must satisfy. Let o be a curvein A, V a
parallel vector field along o, (£%) curvilinear coordinates in a patch which o crosses,
and (z°) any affine coordinates. Let V2(t) and V2(t) be the curvilinear and affine
components of V (t) respectively so that (Exercise 22)

ozb .
Ve(t) = &;‘VC(‘)

(the derivatives being evaluated at o(t)). Then the V' are constants. Differentiating
with respect to t, and writing (62) for the (curvilinear) coordinate presentation of
o, one obtains

3zt dve , 0%z¢ o, do

9t dt  9#bdic  dt
where déc/dt are the (curvilinear) components of the tangent vector to 0. On
multiplying by (£°/8z?) one obtains the equations of parallel transport

dave ., déc
& e —
@ Tl 5 =0
where
9#% 9%z

Mg = 2=z = (8
be = 5zd 5zvoze = (
are the connection coefficients (for the given system of curvilinear coordinates).
The equations of parallel transport hold in any system of coordinates if we define
the connection coefficients for affine coordinates to be zero.

Exercise 37. Show that the 'y are unchanged if the chosen system of affine coordinates
is replaced by another one. o
Exercise 38. Show that Iy, = I'. o

Exercise 39. Compute the equations of parallel transport for the spherical polar coordi-
nates given in Exercise 24, and show that they are satisfied by the affine coordinate vector
fields (expressed in spherical polar coordinates) along any curve. a



48 Chapter 2

9. Covariant Derivatives

Covariant derivative of a vector fleld. The idea of parallelism along a curve
may be exploited to define a derivative, along a curve, of any vector field given
along the curve. This derivative is called the absolute, or covariant, derivative. The
covariant derivative of a vector field V along o is the vector field DV /Dt along o
defined by

DV 1

—(t) = lim = (V -V

o () = Jim 2 (V(t+6)y - V(1)
where V (t + §) is the vector at o(t) parallel to V(t + 6) (which is a vector at
o(t + 6)). The limit process is carried out in T,(¢)A and so the result is again an
element of the same space.

Exercise 40. Let U,V and W be vector fields along oand fa funct.ion on A. Show that

_bu DV d[
(equality at each point of o being |mphed). (o]
Exercise 41. Show that if V is parallel along o then DV/Dt = 0. o

Exercise 43. Show that the components DV °®/Dt of DV /Dt in any affine coordinate
system are simply
pve _ave
Dt~ dt’
while the components DV °/Dt of DV/Dt in a curvilinear coordinate system are given by
DVe _dve v’“‘

e = ar YRV g

Exercise 43. Let & = 0 o h be a reparametrisation of o and let V =V o h be the vector
field along G obtained by reparametrising V. Show that
DV _ . DV

D -h o o

Covariant derivative of a covector field. The natural identification with V*
of cotangent spaces at different points of A allows one to define parallel covectors
in exactly the same way as parallel vectors were defined: two covectors at different
points of A are said to be parallel covectors if they are identified with the same
element of V*. Further, a covector field o along a curve o is an assignment of an.
element af(t) of T, at each point a(t), and if the covectors assigned at different
points are parallel the covector field is called parallel along 0. The components of
a covector field along o will be assumed to be smooth functions of ¢ in any (affine
or curvilinear) coordinate system.

Exercise 44. Show that a is a parallel covector field along o if and only if its compo-

nents in an affine coordinate system are constants. Show that in an arbitrary curvilinear

coordinate system the components &4(t) of a parallel covector field a satisfy the equations
dé, dé*
a3 -l éay— 2 =0. o]

These are the equations of parallel transport for a covector field.



Summary 49
The covariant derivative Da/Dt of a covector field is
(t) = I|m (a(t +6) — a(t)

where a(t + 6)) is the covector at o(t) parallel to a(t + 6) (which is a covector at
ot +6)).
Exercise 45. Let a, B and v be covector fields along 0 and [ a function on A. Show that

+ D8 D _ dl
Dlatp) =224 D0 ang D=2+ L
Show that if a is parallel along o then Da/Dt = 0. o

Exercise 46. Show that the components D&,/ Dt of Da/Dt in any coordinate system
are given by

D&, déa, dé*
Dt T dt Tocdo dt’
where the connection coefficients are zero if the coordinates are affine. o
Exercise 47. Let V be a vector field and a a covector field along 0. Show that
d DV Da
@ =)+ (v o) a

Summary of Chapter 2

A coordinate expression for a function f: 4 — R is the function f* on R" such that
[35(z%) = f; f2 = f*o®~!, where & is the coordinate transformation from (z2)
to (£%). A function is smooth if its coordinate expression is smooth, that is, has
continuous partial derivatives of all orders, with respect to any affine coordinates.

A curveo in Aisamap R — A (or amap I — A, where I is an open interval
of R); it is smooth if its coordinate functions 0® = z% o o are.

The tangent space T; A is the vector space of directional derivative operators
at z, that is, maps v of functions to numbers satisfying: v(af + bg) = avf + buvg
(linearity); v(fg) = (vf)g(z)+ f(z)(vg) (Leibniz). Each curve o defines a directional
derivative ¢(t), its tangent vector at o(t) = z, by 6(t)f = d/dt(f o o)(t). Tangent
spaces are naturally isomorphic to V and to each other. For any affine coordinates
the operators {8,} are a basis for the tangent space at any point.

Each smooth function f defines a covector df, an element of T A, the cotangent
space at z, by (v,df) = vf. The cotangent space is the vector space dual to T, 4.
The cotangent spaces are naturally isomorphic to V°.

An affine map A: A — B induces linear maps A.:T: A — Ty(;)8 by (A.v)f =
v(foA). The dual map A*: T, 8 — T A satisfies A"df = d(foA). The linear map
A. is essentially the linear part of A. Tangent spaces map in the same direction as
A, cotangent spaces oppositely.

Curvilinear (non-affine) coordinates are in general defined only locally, on a
coordinate patch. A local curvilinear coordinate system, or coordinate chart, for
an affine space 4 is a bijective map ¢ from the coordinate patch (an open subset of
A) to an open subset of R™ which is smooth with respect to any affine coordinate
system. Coordinate functions, differentials and vectors are defined just as for affine
coordinate systems, and have much the same properties. The basic transformation
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rules are: ¢ = (3£°)v® for the components of a vector; é, = (é.z")cg for the
components of a covector.

Elements of T: A4 and T34 which correspond to the same element of V are
parallel. The absolute derivative of a vector field V along a curve o is the vector
field defined by DV /Dt = lims_o(V (t+6);—V(t))/6, where V (t + ) is the vector
at o(t) parallel to the vector V (t+6) at o(t+6). The components of DV /Dt in affine
coordinates (z°) are obtained by differentiating the components of V with respect
to t. In terms of curvilinear coordinates (%), DV°/Dt = dV°/dt + [‘,;‘c"’bdé"/dt,

where [ = (342°)(9p9. %) are the connection coefficients.

Notes to Chapter 2

1. Topology. From everyday perception of ordinary space one acquires an intu-
itive idea of nearness. In elementary calculus, and again in vector calculus, this idea
is made more precise. It is then exploited in definitions of continuity and differen-
tiability. In the more general context of this book a more general formulation of the
same ideas is needed. This formulation makes it easy to exclude from consideration
various awkward cases of little interest.

We begin the formulation by recalling from elementary calculus some ideas
about subsets of the set R of real numbers. An open interval of R isaset {z|a <
z < b} where a and b are real numbers (and a < b). This interval will be denoted
(a,b). In other words, an open interval is an unbroken segment of the real line,
deprived of its endpoints.

An open set of R is a union of any number (not necessarily a finite number) of
open intervals. For example the half-infinite intervals { z | a < z }, denoted (a, oc),
and {z |z < b}, denoted (—oc0,b), are open sets. The whole of R is also an open
set, and it is convenient to count the empty set @ as open.

It is not difficult to see that the intersection of a finite number of open sets
is an open set. On the other hand, the intersection of (-1,1), (—%, -;-), (—%. %),
...»(=1,1),... comprises only the single point 0, which is not an open set.

The complement of an open set is called a closed set. For example, the closed
interval {z |a < z < b}, which is the complement of (-00,a) U (b,00), is a closed
set, denoted by |a,b|. In other words, a closed interval is an unbroken segment of
the real line, including its end points. It is very often the case that open sets are
defined by inequalities, closed sets by equalities. In particular, a single point is a
closed set.

Abstraction from these ideas about subsets of R leads to the definition of a
topological space and a topology, as follows. A set S is called a topological space
if there is given a collection T of subsets of S, called a topology for §, with the
properties

(1) $ isin T and the empty set @ isin T

(2) the union of any number of elements of T is also in T

(3) the intersection of any finite number of elements of T is also in T.

It follows at once from the preceding discussion that, with the collection of
open sets for T, the real line R is a topological space. This choice of T is called
the usual topology for R. In the general case the sets in the collection T are also
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called open sets of S. Other topologies for R are possible besides the usual one.
For example, if every subset of R is included in T, the conditions for a topology
are satisfied, and in particular, each point is an open set. This is called the discrete
topology. At the other extreme, if there are no open sets but the empty set @ and
the whole of R, the conditions are again satisfied. This is called the trivial topology.
These constructions may evidently be applied to any set S.

In general, an arbitrary subset of a topological space need be neither open nor
closed. For example, in the case of R with the usual topology, the union of an
open interval with a point outside it is neither open nor closed. An instance is the
half-open interval (a,b] = {z | @ < z < b}, with one end-point included but not
the other.

A subcollection Ty of T is called a basis for the topology if every open set is
a union of members of Ty. In the case of R with the usual topology, the original
construction shows that the collection of open intervals constitutes a basis.

The power of the idea of a topological space begins to become apparent when
one considers maps between such spaces. Continuous maps, which generalise the
idea of a continuous function, are usually the only maps of interest. Let $ and T
be topological spaces and let a be a point of S. A map f:S — T is continuous
at a if for every neighbourhood Q of f(a) there is a neighbourhood P of a such
that f(P) ¢ Q. A map is called continuous if it is continuous at every point of its
domain. In order for a map to be continuous it must have the property that the
pre-image of each open subset of its codomain is an open subset of its domain.

Two topological spaces are indistinguishable, as far as their topological proper-
ties are concerned, if there is a bijective continuous map from one to the other, with
a continuous inverse. Such a map is called a homeomorphism, and spaces connected
by a homeomorphism are said to he homeomorphic.

There are certain topologies which are generally appropriate to subsets and
product sets. If § is a topological space and T is a subset of §, the induced topology
on T is the collection of sets Q N T, where Q is any open set of S. For example,
if R has the usual topology and [a,b] is a closed interval, the induced topology on
[a,b] has a basis consisting of

(1) open subintervals of |a,b]

(2) half-open intervals [a,z), with z < b

(3) half-open intervals (z,b}, with a < z.

If §) and S, are topological spaces with topologies Ty and T, respectively, the
product topology on their Cartesian product Sy x §; is the topology with basis
{Q1x Q2| Q1 ¢Th,Q2¢ T2 }. This definition generalises to a product with any
number of factors.

The product topology on R™ - R x R x --- x R (m factors) is called the usual
topology for R™. It has a basis consisting of hypercubes without their boundaries

{(fl)£2v~"|£m)'£“610 a—-l,2,...,m},
where the I, are open intervals of R. Each open ball

(€% 6™ (€ - €)2 (€2 -€2) 2+ 4 (Em-€T) < r?)
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is an open set in R™. The (m - 1)-sphere

{(6 €% ... 6™ (& - &)+ (€ -&) +--+(Em =€) =r?}
is an example of a closed set. If /:R™ — R is continuous then for any ¢ € R the
set {(€',€%,...,6™) | f(€',€%,...,€™) < ¢} is open in R™; open sets are often
defined as the solution sets of strict inequalities involving continuous functions. The

definition of a closed set, on the other hand, usually involves weak inequalities or
equalities. Another example of a closed set in R™ is the hyperplane

(6,6 ..., €™) @i +as€% + - +amé™ =1},

No lower-dimensional subset of R™ can be open: thus an interval (a,b) of the {™-
axis, with €' = €2 = ... ¢™-! = 0, is open in the induced topology of the {™-axis,
but is neither open nor closed in the usual topology of R™.

A standard reference is Kelley {1955].

2. The inverse function theorem. Let  be a map from R" to R" which
is smooth in an open neighbourhood of a point £ of its domain at which the Ja-
cobian matrix ®’(£) is non-singular. The inverse function theorem asserts that ¢
is invertible in some neighbourhood of £, with a smooth inverse. The size of the
neighbourhood depends on the detailed form of ®. Proofs will be found in many
books on advanced calculus. There is one near to the point of view of this book in
Spivak [1965].



3. VECTOR FIELDS AND FLOWS

The steady flow of a fluid in a Euclidean space is an appropriate model for the ideas
developed in this chapter. The essential ideas are

(1) that the fluid is supposed to fill the space, so that there is a streamline
through each point

(2) that the velocity of the fluid at each point specifies a vector field in the
space

(3) that the movement of the fluid along the streamlines for a fixed interval of
time specifies a transformation of the space into itself.

The fluid flow is thus considered both passively, as a collection of streamlines,
and actively, as a collection of transformations of the space. Besides these integral
appearances it also appears differentially, through its velocity field.

Let ¢, denote the transformation of the space into itself by movement along
the streamlines during a time interval of length ¢. To be specific, given any point
of the space, ¢:(z) is the point reached by a particle of the fluid, initially at z and
flowing along the streamline of the fluid through z, after the lapse of a time ¢. The
set of such transformations has the almost self-evident properties

(1) @0 is the identity transformation

(2) ba0 bt = byt
A set of transformations with these two properties (for all s and t) is called a one-
parameter group of transformations. The study of such transformations, and of the
streamlines and vector fields associated with them, forms the subject matter of this
chapter.

We begin in Section 1 with a special case, in which the transformations ¢, are
all affine transformations. The general case is developed in Sections 2 to 4. In
Sections 5 to 7 we introduce a new and powerful construction, the Lie derivative,
which measures the deformation of a moving object relative to one which is moved
along the streamlines. In Section 8 we develop the idea of vector fields as differential
operators, and exhibit some of their properties from this point of view.

1. One-parameter Affine Groups

In this section we develop the ideas introduced above for the case in which all
the transformations involved are affine transformations. We begin with a simple
example. Let A denote an affine space of dimension n modelled on a vector space
V and, as in Section 4 of Chapter 1, let r,:z — z + v denote the translation of
A by v, where v is any vector in V. Then ¢; = ry, is a one-parameter group of
transformations; it is easily seen that ¢, is the identity transformation, and that
bs0¢t = dast, as the definition requires. Moreover, the transformations are smooth,
in the following sense: in any affine coordinate system the coordinates of ¢.(z) are
(z® +tv®), where (z%) are the affine coordinates of z and v°® the components of v; so
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the coordinates of ¢¢(z) are certainly smooth functions of the z® and ¢ jointly. This
joint smoothness is the smoothness condition which will be imposed later on one-
parameter groups in general, although a transformation of a general one-parameter
group will not have as simple a coordinate representation as a translation does, of
course.

Let z be any point of A. The set of points into which z is transformed by the
translations ¢, as t varies, is described by a curve (actually a line) denoted o, and
called the orbit of z under ¢;. Thus

0:(t) = ¢¢(z) = z + vt.

Note that we write 0. for the orbit, which is a map R — 4, with z fixed, and ¢,
for the transformation, which is a map A — A, with ¢t fixed.

Every point of A lies on (the image set of) an orbit; moreover if y lies on the
orbit of z then o and o, are congruent (Chapter 2, Section 2), becausey = z+vs =
0:(8), for some 8; and then for all ¢, 0,(t) =y +tv =z + (8 + t)v = o-(s +t). The
orbits may be partitioned into disjoint sets, any two orbits in the same set being
congruent; every point lies on the orbits of a congruent set, and no two orbits from
distinct congruent sets intersect.

The definition of an orbit extends in an obvious manner to any one-parameter
group of transformations, and the property of orbits just described continues to
hold. A collection of curves on A, such that each point of A lies on the curves of
a congruent set, and no two curves from distinct congruent sets intersect, is called
a congruence of curves. With any congruence one may associate a unique tangent
vector at each point of 4, namely the tangent at that point to any one of the set of
congruent curves through it; in particular this is true for the congruence of orbits
of a one-parameter group.

The congruence is the geometrical abstraction of the collection of streamlines
introduced in the context of fluid flow at the beginning of this chapter. Notice that,
in this context, the congruence property of streamlines is a consequence (indeed,
more or less a definition) of the steadiness of the flow: in effect, a particle initially
at z, and one which arrives there a time t later, follow the same streamline, but
separated always by a length of time t. Equally, the one-parameter group property
is a consequence of the assumed steadiness of the flow.

The abstraction of the velocity field of the fluid is a vector field. A choice of
tangent vector at each point of A is called a vector field on A. Associated with
any one-parameter group there is, as we have seen, a vector field, namely the field
of tangent vectors to its orbits. This is often called the generator, infinitesimal
generator, or generating vector field of the one-parameter group.

Suppose now that an affine coordinate system has been chosen for 4, and con-
sider the generator of the one-parameter group of translations of A by te, where e,
is one of the basis vectors of the underlying vector space from which the coordinates
are built. This generator is obtained by choosing, at each point of 4, the coordinate
vector d,; so, naturally, we denote it by the same symbol: in future, 8, (or 8/3z°)
may denote either a coordinate vector at a point, or a coordinate vector field; which
of the two is meant will generally be clear from the context.
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An arbitrary vector field V may be expressed in terms of the coordinate vector
fields of an affine coordinate system in the form V = V°3,, where the V° are
functions on 4. For any z € 4, V%(z) are the components of V., the tangent vector
at z determined by V. The functions V¢ are therefore called the components of V
with respect to the (affine) coordinate system.

Exercise 1. Show that if 2 = k#z* + ¢® is a new affine coordinate system then 8§, =
(k=")%3s, and if V = V23, = V4, then V° = kgV*. o

We shall have to deal only with vector fields whose components with respect
to one (and thus, by the exercise, to any) affine coordinate system are smooth
functions. Indeed, for our immediate concerns we shall need vector fields whose
affine components are very simple functions.

A vector field with constant affine components is a field of parallel vectors. If
such a field is given, one can reconstruct the congruence to which it is tangent—a
congruence of parallel lines—and the one-parameter group which it generates—a
one-parameter group of translations. It is taken for granted in fluid dynamics that
this reconstruction is possible in general, not only for a parallel field—that if one
knows the velocity field then one can determine the path of each fluid particle and
the motion of the fluid, at least in principle. This presumption is in fact justified,
as we shall explain later.

Before going on to describe one-parameter groups of affine transformations in
general, we give two more examples.

(1) A family of affine transformations of a 2-dimensional affine space 4 is given
in affine coordinates by

#!(z',2?) = z' cost — z?sint #?(z',22) = z'sint + z? cost.
If A has a Euclidean structure these are just rotations about the origin, t is the
angle of rotation, and the orbits are circles. It is not necessary to invoke a Eu-
clidean structure in order to define these transformations, however. Observe that
#3(z',z%) = 2%, @ = 1,2, and that
¢, (62 (z',2%).07 (', 2%))
= (z'cost — z?sint)coss — (z'sint + 2 cost)sin s
=z'cos(s +t) - z2sin(s + t) = ¢}, (', 2?),
and similarly
HCHERRE SR HELE D))
= (z' cost — z?sint)sins + (z'sint + z2cost)cos s
= z'sin(s + t) + 2% cos(s + t) = @2, (2", 2?);
moreover, ¢} and ¢? are smooth functions of t, ! and z2. The given family
of transformations is therefore a one-parameter group of affine transformations.

To find its generating vector field V, observe that the orbit of the point whose
coordinates are (z',z2) is given in coordinates by t — (z!cost — z2?sint,z!sint +



56 Chapter 3
z2cost), and its tangent vector at ¢ = 0 has components

' cost — z?sint) =0 =12

L 2
0= ~F and ,ﬁ(: sint + z° cost)

il
Thus V is the vector field whose value at a point with coordinates (z!,z?) is given
by -z23, + £'3;. In fact, this expression defines the vector field, if one interprets
z! and z? as coordinate functions.

(2) A family of affine transformations of A is given in affine coordinates by

#i(z',2?) = 2" +t2?  ¢¥(z!,2?) = 2%
Observe that ¢3(z',z?) = z°, and that
oL(ol(z',22),83(2",2%) = (2" +tz?) + s2? = 2" + (s + )2? = @), (2", 27)

and

¢2(¢l(: 32) ¢c(’ 32)) =z?= %, +t(3 z )

moreover ¢! and ¢? are smooth functions of t, z! and z2. Therefore this fam-
ily is also a one-parameter group of affine transformations. To find its generator
V, observe that the orbit of the point whose coordinates are (z!,z?) is given by
t — (z! + tz%,1?) and its tangent vector at ¢t = O is therefore z29,; again, this is
the required expression for the vector field V if one interprets z2 as a coordinate
function, rather than just a coordinate.

One-parameter affine groups defined. A set {¢; |t € R} of affine transfor-
mations, such that ¢o is the identity and ¢, 0 ¢¢ = ¢,4¢ for every s,t € R, is called
a one-parameter group of affine transformations, or one-parameter affine group for
short. We require that the functions (t,z°) ~— ¢%(z%) representing the transfor-
mations of a one-parameter affine group with respect to affine coordinates (z°) be
smooth functions of all the variables (t,z%). Clearly if this condition is satisfied for
one affine coordinate system it is satisfied for all. In fact, all that is required in
practice is that if ¢}(z%) = Ab(t)z¢ + db(t) then each A% and d® should be a smooth
real function; we give the smoothness condition in its more general form to make it
obviously consistent with what comes later.

We have already furnished several examples of one-parameter affine groups.
We shall frequently use ¢, or some similar expression, to denote a one-parameter
affine group, though strictly speaking it should represent one specific transformation
drawn from the group.

Exercise 2. Show that the transformations given in affine coordinates by ¢}(z',z?) =
ek1tz! #3(z',2?) = ¢*2'2? form a one-parameter affine group. Show that the transfor-
mations (z!,2?) — (kitz', k3tz?), on the other hand, do not form a one-parameter affine
group. Q
Exercise 3. Suppose that ¢;:z — zo + A¢(z — zo) + vr defines a one-parameter group
of affine transformations of A. Deduce that A; must be a one-parameter group of linear
transformations of the underlying vector space V, and that v,4¢ = A,(ve) +v, = Ae(v,)+ut.
Observe that if ¢; leaves z, fixed for all t then v, = 0 for all t. Q

Exercise 4. Show that any transformation of a one-parameter group has an inverse, which
is obtained by changing the sign of the parameter: (¢1)~' = ¢_¢. o
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Exercise 5. Let ¢; be a one-parameter group of affine transformations of A. Define ¢: R x
A — A by ¢(t,z) = ¢¢(z). Show that ¢(0,z) = z and that ¢(s,¢(t,z)) = ¢(¢,¢(s,7)) =
o(s+t,2). o]
Exercise 6. Show that the following constitutes an alternative definition of a one-
parameter affine group: a family { ¢ | t € R} of affine transformations is a one-parameter
affine group if the map t — ¢; is a homomorphism of R (the additive group of real
numbers) into the group of affine transformations. a

Exercise 7. Let v be a given vector in V, a a given covector in V*, and z¢ a given point of
A. Show that the one-parameter family of transformations given by z — z + t{z — 1o, a)v
is a one-parameter group if and only if (v,a) = 0. a

The transformations defined in this exercise, when they form a one-parameter affine
group, are called shears along the hyperplanes (z — zo,a) = constant in the v
direction. The one-parameter group described in Example (2) is a special case.

Exercise 8. Let ¢; be a one-parameter group of affine transformations of A, and let
V = V%3, be its generating vector field. Show that in affine coordinates V°(z) =

d/dt(¢7(z)),-, and that V°(¢,(z)) = d/dt(¢{(z)),.,- a

What vector fields can be the generators of one-parameter affine groups? We
have shown that one-parameter groups of translations are generated by paral-
lel vector fields. Translations move all points equally: a transformation which
leaves a point fixed might be considered the opposite extreme. Consider there-
fore a one-parameter group of affine transformations ¢: which leaves fixed the
point zo: #¢(zo) = zo for all t. Each such transformation is determined by its
linear part A, (Exercise 3): ¢¢(z) = zo + Ae(z — zo), with A\, 0 A¢ = A4y In
affine coordinates, with zo as origin, each A; is represented by a matrix L¢ with
LyL¢ = L,4¢. To find the generator, one has only to find the tangent vector to an
orbit: V2(z)d, = d/dt((h):z‘)‘:o, so that in affine coordinates the generator has
the form

V = Az,

where the matrix A, which is constant, is given by A4 = d/dt(L.)(0). Although
the matrices L; must be non-singular, A may be singular. Therefore the generator
V must be a linear homogenous vector field, which means to say that in affine
coordinates, with the fixed point as origin, its components are linear homogeneous
functions of the coordinates. Note that the orbit of the fixed point is a constant
curve, and that the generator vanishes at the fixed point.

Exercise 9. The set of vectors {e;,e3} is a basis for V, {6',6%} the dual basis for V*. A
set of transformations of A is given by ¢1(z) = zo + e*''(z ~ 20,0") ey + *3*(z - 10, 0%)es,
where k; and k; are real constants and zo is a chosen point of A. Show that ¢, is a one-
parameter affine group, and that, in affine coordinates with zo as origin and {e,,e1} as
coordinate basis, ¢; is represented by the matrix diag(e*'*,e*?*). Show also that the
generator of ¢, is k1z'3; + k3z29;. o]

This is an example of a one-parameter group of dilations. The same group is given
in coordinate form in Exercise 2.

Exercise 10. Verify that, under a transformation from one affine coordinate system to
another with the same origin, the vector field V = A$z%3, remains linear homogeneous,
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but that if the origin is changed then the components of V, though still linear, are no
longer homogeneous. a

Exercise 11. A one-parameter group of affine transformations of a 1-dimensional affine
space, which leaves a point fixed, is given in affine coordinates with the fixed point as
origin by z' — A(t)z', where A is a real function with A(0) = 1, A(8)A(t) = A(s +¢t). Show
that its generator is Az'd,, where A = A(0). From the one-parameter group property,
infer that A(t) = AA(t), and deduce that A(t) = e**, so that the one-parameter group

must have the form z' — etz!. a

The result of the preceding exercise generalises to any number n of dimensions,
in terms of the matrix exponential. Let ¢, be a one-parameter affine group of A
which leaves fixed the point zo. Let the matrix L; represent ¢, in affine coordinates
with zo as origin. Then the generator of ¢, is A:z“au where the matrix A is given
by A = d/dt(L.)(0). By the one-parameter group property, d/dt(L¢) = AL,. It is
known that this matrix differential equation has a unique solution such that Lo = I,
(the n x n identity matrix); it is called the matriz ezponential of A, written e'4 or
exp(tA).
Exercise 13. Show that for each t, the matrix exp(tA) is non-singular, that for each s and
t, exp(sA) exp(tA) = exp((s+t)A), and that the matrix exponential has Taylor expansion

exp(tA) = In +tA + ,}'t’A’ + %:’AS e a

Exercise 13. Show, by means of the Taylor expansion described in Exercise 12, that the
exponentials of the matrices

01 ] 01 ) and ky O
0 0)"° -1 0 0 k;
are
1 ¢ cost sint et 0
(0 1 ) ! ( —sint cost and [ 0 ot ]
respectively. a

Exercise 14. Let ¢¢(z) = 2o+ A¢(z — 2o) + vt be a one-parameter group of affine transfor-
mations which do not necessarily leave any point fixed. Show that in affine coordinates with
zo as origin the generator of ¢¢ has the form V = (A$z® + B*)d., where A = d/dt(L:)(0)
and B* = d/dt(v#)(0). Show also that if V vanishes at some point z,, then in affine
coordinates with z, as origin each component V* is linear homogeneous, but that if V
does not vanish anywhere then no choice of affine coordinates will make its components
homogeneous. Verify that the translations correspond to the case A; = idy, A =0. o

Exercise 14 answers the question raised above: the generator of a one-parameter
affine group is a linear vector field (when expressed in terms of affine coordinates),
and in general an inhomogeneous one. It may be shown that, conversely, every
linear vector field generates a one-parameter affine group.

3. One-parameter Groups: the General Case

In this section we discuds one-parameter groups of transformations which are not
necessarily affine.

We begin with a simple example of a non-affine one-parameter group of trans-
formations of a 2-dimensional affine space. Let ¢; be the transformation given in



Section 2 59

affine coordinates (z',z2) by
iz, 2?) =z"+t  ¢l(z',2?) = 2? - sinz! +sin(z! +¢).
It is easily checked that ¢o is the identity map and that ¢, o ¢: = ¢, for all
s and t. Moreover, the functions ¢¢ are smooth (in fact analytic) functions of ¢,
z! and z2. Thus ¢; is a one-parameter group of transformations. Though ¢ is
not a one-parameter affine group one may still define its orbits and its generating
vector field. The orbit o, of a point z is the curve given by o.(t) = ¢¢(z) as
before; and the generating vector field V is the field of tangents to the orbits.
To compute V, observe that the orbit of a point z is given in coordinates by t —
(z'+t,z?—sinz' +sin(z' +1)), a curve whose tangent vector att = 0is 3, +cos z'9;,
so that
V = 9, + cosz'd,.

Exercise 16. Show that the set of transformations given in coordinates by
#1(z',2%,2%) = (z' +tsinz®)cost + (z* - sinz® + t cos z*) sint
3 (z',2%,2%) = ~(2' - cosz® + tsinz®)sint + (z* + t cos 2°) cost
¢.’(z',z’,z’) =2+t
is a one-parameter group of transformations whose generator is
2?8, - (z' - 2cos2”)d; + 3s. o

Generating a one-parameter group from a vector field. We haveshown by
examples how to derive from a one-parameter group, affine or not, a vector field,
its generator. As the name implies, the vector field may be used, on the other
hand, to generate the one-parameter group. Suppose that one is given a smooth
vector field V (one whose components with respect to any affine coordinates are
smooth functions): then by turning the calculation of the generator on its head one
obtains a one-parameter group of which V is the generating vector field. (Actually
this process may not be completely successful for technical reasons which will be
explained below, but to begin with we wish to describe the general principles.) The
first step is to find the congruence of curves to which V is tangent; these will be
the orbits of points under the action of the one-parameter group. These curves are
called, in this context, sntegral curves of V: a curve o is an integral curve of a vector
field V- if, for each t in its domain, 6(t) = V, (). One can find the integral curves in
terms of the coordinate presentation: in order for o to be an integral curve of V its
components 0% must satisfy the differential equation
a

‘—1;77 =~ Ve(o®) where V = V29,.
To find the integral curves of V, therefore, one solves this system of first order
differential equations.

We shall illustrate the process of generating a one-parameter group from a vec-
tor field by taking as vector field 3, + cos '3, and reconstructing its one-parameter
group, given at the beginning of this section. The conditions that o be an integral
curve of this vector field are

do! do?

—_— = —_—— = l.
a 1 gt coso
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Integrating the first equation one obtains o'(t) = t + ¢!, and, substituting in the
second equation and integrating again, 0?(t) = sin(t + ') + ¢2. The constants
of integration c! and c2? are constant on a particular integral curve, but serve to
distinguish different integral curves. Note that ¢!(0) = c!, 02(0) = sinc' + ¢2.
To obtain the integral curve which passes through the point (z!,z2) when t = 0,
one evidently has to take ¢! = z!, ¢2 = z? — sinz!. The curve is then t —
(t + z',sin(t + z') + z? - sinz!), which is indeed an orbit of the one-parameter
group we started with.

Exercise 16. A vector field on a 2-dimensional affine space is given in affine coordi-
nates (z',z?) by V = sech? 229, + ;. Find its integral curves, verify that they form a
congruence, and construct the one-parameter group whose orbits are the curves of this
congruence. Describe the orbits. o

Exercise 17. Let (z',z?) be affine coordinates. Find the curves with tangent vector field

cos? 2'3, and determine whether they are the orbits of a one-parameter group. If so,

determine the transformations in the group. o]

Exercise 18. Let (z',z?) be affine coordinates on a 2-dimensional affine space. Define
(global) non-affine coordinates (£',£3?) by £' = z!, £ = z? + sinz'. Show that the set of
transformations given by

di(2',£%) =£"+t,  $}(2',£%) = £ — sin#' +sin(2' +1¢)
is a one-parameter affine group, and identify these transformations. o

3. Flows

In the above example, we showed first how one may pass from a one-parameter
group to the associated congruence of orbits and tangent vector field, and then how
one may go back from the vector field to the congruence and to the one-parameter
group. But, as we mentioned there, this last process is not always possible, even
for smooth vector fields; the following exercise illustrates the difficulty that may
occur. In order to deal with this difficulty we shall have to widen the definition of
one-parameter group: the resulting object is called a flow.
Exercise 19. Let V = (2')29, (a vector field on a 1-dimensional affine space, with affine
coordinate z'). Show that the integral curve of V which passes through the point with
coordinate z5 when t = 0 is given by o'(t) = z5(1 — tz})~", where

if ) > 0, t lies in the interval (—co, 1/z})

if zo = 0, t may take any value, and

if z5 < 0, ¢t lies in the interval (1/z}, 00).
For each z', and for each t for which it makes sense, set ¢!(z') = z'(1 - tz')~!. Show
that these “transformations” ¢: have the properties that ¢o is the identity transformation
and that ¢, o ¢: = ¢,4+¢ whenever both sides make sense; and show that V is tangent to
the “orbits” t — ¢¢(z). a

In this exercise, ¢¢(z) is well-defined for all t only if z!(z) = 0. But there
is nothing pathological about the vector field or the orbits. The vector field is
smooth and, where they are defined, the transformations ¢, are smooth in t and
z!. But the orbits “get to infinity in a finite time”. As a consequence, ¢; is
not a one-parameter group of transformations. However, this situation arises so
easily and so frequently that it cannot be excluded from consideration. We must
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therefore introduce modifications of the idea of one-parameter group which will
make it possible to deal with it.

Exercise 20. A vector field on a 2-dimensional affine space has in affine coordinates the
expression V = (2!)23, + (2?)23;. Find coordinate expressions for its integral curves, and
find their domains. o

Flows and their congruences. Examples like the ones in Exercises 19 and 20
are incompatible with the idea of a one-parameter group of transformations unless
the requirement that the transformations be defined for all values of the parameter
is given up. The set of transformations then ceases to be a group in the usual
sense; it is called a “local group” or “flow”. The idea of the modified definition
is that each orbit should be specified for some range of values of the parameter,
but not necessarily for all values. It is natural to specify values around 0, since
this corresponds to the always possible identity transformation. The definition is
framed along lines suggested by the construction in Exercise 5, which makes it easy
to impose a condition of smoothness in the coordinates and the parameter jointly.
A flow, or local one-parameter group of local transformations, on an affine space A
is a smooth map ¢: D0 — A, where D is an open set in R x A which contains {0} x A
and is such that for each z € A the set {t € R | (t,z) € D} is an open interval
(possibly infinite) in R, and ¢ satisfies the conditions
(1) ¢(0,z) = z for each z € A
(2) ¢(s,4(t,z)) = &(s + t,z) whenever both sides are meaningful.

For each z € A a smooth curve o,, with domain an open interval containing 0, may
be defined, by o.(t) = ¢(t,z). For each t a smooth map ¢; of an open subset of A
into A may be defined, by ¢(z) = ¢(t,z). However, there need be no z for which
0.(t) is specified for all t, and no t except O for which ¢;(z) is specified for all z.
In the special case that D = R x A, ¢¢(z) is specified for all t and z, and then ¢,
is a one-parameter group of transformations of A, the provisions about smoothness
being added to the definition originally given at the beginning of the chapter. Thus
the idea of a flow includes the idea of a one-parameter group as a special case. We
shall denote a flow ¢ or something similar.

Exercise 21. Show that the set of transformations constructed in Exercise 19 constitutes
a flow. o

The curve o, is called the orbit of z under the flow ¢. Thus 0.(t) = ¢¢(z), as
in the case of a one-parameter group, but now it may be that o, is specified only on
an open interval, not on the whole of R. The idea of change of origin (Chapter 2,
Section 2) has to be modified to take account of this. Let 7, denote the translation
t—t+sof R. If I is an open interval of R, say I = (a,b), and o is a curve defined
on I, then o o7, is defined on 7_,(I) = (a — 3,b — s). A change of origin on o is
defined to be a reparametrisation o o 7,, defined on 7_,(I). The parameter value at
a given image point is decreased by s, and the endpoints of the interval on which
the curve is defined are also decreased by s. The tangent vector at any image point
is unaffected.

Exercise 33. Devise a definition of change of origin for a curve defined on (a,o0) and for
one defined on (-o00,b). o
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As before, a set of curves which differ only by change of origin is called a
congruent set. It would be possible, again as before, to call a collection of curves
on A, such that each point of A lies on a congruent set, and no two congruent
sets intersect, a congruence of curves. However, it is more convenient to modify
the definition in such a way that a flow may be associated with every congruence.
Accordingly, a congruence of curves on an affine space A is defined to be a set of
curves o.: I, — A, one for each z € A, where for every z, I, is an open interval
containing 0, such that

(1) 0:(0) =z

(2) each z lies on exactly one congruent set

(3) the set of points D = |J,c 4 I: x {2} is an open subset of R x A and the
map 0: D — A by (t,z) — o.(t) is represented by smooth functions when the curves
are presented in any (affine or curvilinear) coordinate system.

The third of these conditions expresses the requirement that the curves be
smooth and vary smoothly from point to point. In coordinates, o will be represented
by n functions 0% of n + 1 variables ¢t and z°, and interchange of the order of
differentiation with respect to t and any z°, as well as with respect to any two z°,
will be permissible.

Since the curves in each congruent set all have the same tangent vector at any
point, a vector field may still be associated with any congruence, and therefore with
any flow. It is often called the generator of the flow, by analogy with the case of a
one-parameter group. The smoothness condition for a congruence ensures that the
tangent vector field will be smooth.

Exercise 23. Show that ¢: 0 — A by ¢(t,z) = 0.(t) associates a flow ¢ with the congru-

ence o. a
Exercise 24. Show that in any coordinate system (z°) the tangent vector field V to a
congruence is given by V29, where V*(z) = (dog/dt).-o. o

Exercise 25. Let z' be an affine coordinate on a 1-dimensional affine space. Show that,
for any given k > 1,

$(t.z') =2 (1 - (k- 1)e(e)e-r) "D
is a flow whose generator is (z')*9,. o
Exercise 26. A collection of maps ¢; is given in affine coordinates (z',z?) by
éi(z',2%) = log(e" +t) i(z',2Y) =2+t
(where these make sense). Show that it is a flow. a

4. Flows Associated with Vector Fields
The three related concepts—flow, congruence and vector field—may be exhibited
in the following diagram:

vector field
e N
flow — congruence
The arrows denote implication of existence: with every flow there is associated a
congruence, and vice versa, and with every congruence a vector field. The remaining
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question, which we raised earlier but have not yet completely answered, is whether
a congruence, and thus a flow, may be associated with every vector field. This
amounts to the question, whether a certain system of differential equations has a
solution, because if V is a given vector field, with coordinate expression V = V23,,
the condition that a curve o be an integral curve of V is that its coordinate functions
satisfy 4
o° _yo(.b

-dt‘ = V (0 ).
Such systems of differential equations are known to have solutions, which are
uniquely determined by their initial values. To be precise, for each (z*) there is a so-
lution (02), defined on some open interval of R containing 0, such that 0%(0) = z°;
and any two solutions satisfying the same initial conditions are identical on the
intersection of their domains. This result of differential equation theory guarantees,
for each point z, the local existence and uniqueness of an integral curve o, of V
such that 0.(0) = z. An integral curve o, such that 0.(0) = z is called a mazimal
integral curve through z if every other integral curve through z is the restriction of
the maximal one to an open subinterval of its domain. By piecing together local in-
tegral curves it is possible to construct, for each point z, a unique maximal integral
curve through z. The key result in generating a flow from a vector field V is that
because of the uniqueness property the collection of maximal integral curves of a
vector field forms a congruence. To establish this we have to show that the maximal
integral curves through two points lying on the same maximal integral curve are
congruent, that is, differ only by a change of origin. We denote by I, the domain of
the maximal integral curve o, through z; I, is an open interval, and may very well
be a proper subset of R, as Exercise 19 shows. Suppose that y lies on the path of
0,80 that y = 0.(s) for some s € I;. Then the curve o; o7, is certainly an integral
curve of V (since a change of origin does not affect tangent vectors), and its initial
point, (o, 07,)(0), is just 0-(s) = y. Thus 0, o7, is at worst the restriction of the
maximal integral curve through y to some subinterval of its domain. The domain
of 0,07, is 7_,(I2), so it follows that r_,(I;) C I,. But the same argument, with
the roles of z and y interchanged, gives r,(J,) C I, from which it follows that
I. and I, are just translates of each other. Thus maximal integral curves may be
partitioned into congruent sets, and each point lies on precisely one congruent set.

The smoothness requirement and the requirement of openness on the set D for
maximal integral curves to form a congruence may also be deduced from the theory
of systems of first order differential equations. We shall not go into the details.
The conclusion of this argument is that given a smooth vector field V on an affine
space A there is a congruence of curves on A such that V is the generator of the
corresponding flow.

The diagram may thus be extended to

vector field

7 N

flow — congruence

The implications expressed in this diagram, that whenever one of the three con-
structions is given then the existence of the other two is assured, will be exploited
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frequently throughout this book.

Exercise 27. Find the flow whose infinitesimal generator, in affine coordinates (z!,z?),
is ((z')? + (2%)?)(2?81 - 2'83). Describe the orbits. o]
Exercise 28. Let V be a vector field on an affine space A generating a flow ¢, let ¥: 4 — A
be any smooth invertible map with smooth inverse, and let ®(t,z) = ¥(¢(t, ¥ ~*(z)). Show
that @ is also a flow on 4, and that its generator V¥ is given by V,* = \P.(V'-u(,)). o]

6. Lie Transport

The conatructions to be described in the following sections are among the most
useful and most elegant in differential geometry. Lie transport is a process for
displacing a given geometric object along a flow. The object may be a vector,
a covector, or something more complicated. Lie transport might also be called
“convective transport”; it is quite distinct from parallel transport, and in many
ways more fundamental.

The Lie derivative, to be described in the next section, is a process using Lie
transport to measure the rate of change of a field of objects along a flow. It is a
directional derivative operator constructed from the flow and expressed in terms of
the generator.

In this section we shall discuss the Lie transport of vector fields and covector
fields. We begin with a simple example, the Lie transport of a displacement vector
along a one-parameter affine group. The general case, which follows, entails the use
of induced maps of tangent vectors and covectors since the transformations are no
longer affine.

Lie transport along a one-parameter affine group. Let ¢; be a one-
parameter group of affine transformations of an affine space A, and let w be a
displacement vector attached to A at a point z. Under the action of ¢, the points
z and z + w will be moved along their orbits to ¢¢(z) and ¢¢(z) + A¢(w) where A,
is the linear part of ¢¢. The result of this process, for each t, is thus to transform
the displacement vector w, attached at z, into A¢(w), attached at ¢¢(z). In this
way a displacement vector may be constructed at each point of the orbit o, of
z. An assignment of a displacement vector at each point of a curve, like this, is
called a field of displacement vectors along the curve. We denote by W the field of
displacement vectors, and by W (t) the vector it defines at 0.(t) = ¢¢(z), so that
W (t) = A¢(w). The process of construction of W from w is called the Lie transport
of the displacement vector w along o, by ¢, (or just “along ¢.").

The significance of W, so far as the action of ¢, is concerned, is that for each
t, W(t) connects corresponding points of the orbits of z and z + w.

Suppose for example that ¢, is the one-parameter group of affine transforma-
tions of a 2-dimensional affine space A given in affine coordinates by

(z',2%) — (z' cost — z?sint,z' sint + 2% cost).

(This example was treated in Section 1.) Let w be the displacement vector from
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Fig. 1 Lie transport of a displacement vector along a one-parameter affine
group.

(z',z?) with components (w',w?). Then ¢, takes (z! + w!,z? + w?) to
((z'+w")cost — (2 + w?)sint,(z' + w')sint + (z? + w?)cost)
= (¢¢(z',2%),63(z",2%)) + (w' cost — w?sint,w'sint + w? cost)

Thus W (t) has components (w' cost — w?sint,w' sint + w? cost). In the Euclidean
interpretation, the effect of ¢; is to rotate w through angle ¢, as well as moving its
point of attachment around the origin through the same angle.

Exercise 20. Let ¢; be a one-parameter group of translations. Show that any displace-
ment vector is Lie transported into a field of parallel vectors by ¢;. o
Exercise 30. Let ¢; be the one-parameter group of affine transformations given in affine
coordinates by (z',z?) ~—s (z'! + tz?,z?) (another example treated in Section 1). Describe
the Lie transport of a displacement vector, and draw a sketch. o
Exercise 31. Let f. be the one-parameter affine group of a 2-dimensional affine space
given by z — 2o +¢*'(z — 2o) (a special case, with k; = k3, of Exercises 2 and 9). Describe
the Lie transport of a vector attached at zo, and of one attached anywhere else. o
Exercise 33. Let zo, v and a be a point in an affine space A, a vector, and a covector,
respectively, such that (v,a) = 0. Describe the Lie transport of an arbitrary vector w by
the one-parameter affine group ¢¢:z — z + t(z — zo, a)v. Distinguish between the cases
(w,a) =0 and (w,a) # 0. o
Exercise 33. Let ¢; be the one-parameter affine group of a 3-dimensional affine space
given in affine coordinates by

(z',2%,2%) — (z' cos kt — 2z’ sinkt,z' sin kt + z* cos kt, z° + ).

Show that the orbit of the origin is a straight line, whatever the value of k, but the Lie
transport of a vector specified at the origin yields a parallel field if k = 0, while for k # 0
the Lie transported vector spirals round the z°-axis. o

Lie transport may be applied to other figures besides displacement vectors. In
the first place, the whole of the line joining the point z to £ + w will be transformed
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by ¢¢ into a new line, the one joining ¢¢(z) to ¢¢(z+ w), since affine transformations
take lines into lines. Thus Lie transport along a one-parameter affine group may
be extended from displacement vectors to lines. Moreover, affine transformations
map hyperplanes to hyperplanes, and this may be used to define Lie transport of
hyperplanes along a one-parameter affine group. Consider the hyperplane through
z consisting of all points z + w such that (w,a) = 0, where a is some nonzero
covector. Then the points ¢¢(z + w) = ¢¢(z) + A¢(w) lie in the hyperplane through
¢¢(z) determined by the covector A_;*(a), since (A¢(w),A-¢*(a)) = (w,a) = 0.
The field of hyperplanes along the orbit o, of z constructed in this way is said to be
Lie transported; the Lie transported hyperplane at o.(t) is the one defined by the
covector A_;*(a). The minus sign arises because linear forms map contragrediently
under affine transformations.

The result of the process of Lie transport, in each case, is the construction of
copies of a chosen object along the orbit of a one-parameter affine group through the
point where the object was specified originally. The form of the copies is determined
by the configuration of neighbouring orbits, not by a single one.

The special feature of the affine one-parameter groups in these examples is that
they take lines into lines and hyperplanes into hyperplanes, so that it makes sense
to speak of the transport of an extended figure into one of the same kind. A general
one-parameter group, or a flow, does not preserve these objects, but nevertheless a
process similar to the one already described may be carried out in tangent spaces.
We next describe this general process.

Lie transport of a tangent vector along any flow. By the use of induced
maps one can generalise Lie transport from one-parameter affine groups to arbitrary
flows. Suppose there to be given a flow ¢ on an affine space A and an element w
of the tangent space to A at some point z. We shall explain how to construct from
w a vector field (field of tangent vectors) along 0., the orbit of z, by application of
the flow ¢. (Vector fields along curves were defined in Chapter 2, Section 8.)

As before, we denote by I. the maximal interval on which o, is defined.
For each fixed t € I, the domain of the map y — ¢(t,y) contains some open
neighbourhood of z. We denote this map ¢,. The corresponding induced map
$te: T2 A = Ty, (2)A = Ty, (1)A is thereby defined. This enables one to construct,
from the vector w € T, 4, a succession of induced vectors ¢;.w € Ty, (1) A along the
orbit o, that is, a vector field along 0. The process is best imagined as one in
which t varies continuously; the construction is called the Lie transport of w by ¢.

In contrast to the affine case it is not possible to interpret the Lie transported
vector as a displacement vector joining corresponding points on different orbits.
However it does relate neighbouring orbits in a certain infinitesimal sense, which
may be described as follows. Consider the line through z determined by w, which
is given by 8 =— z + sw. It will no longer be the case that the transform of this line,
namely s — ¢¢(z + sw), will be a line; it will however be a smooth curve (for each
fixed t), and the Lie transported vector ¢;,w is the tangent vector to this curve at
s = 0. (Of course, ¢¢(z + sw) will not necessarily be defined for all s € R if ¢ is not
a one-parameter group, but it will be defined for s in some open interval containing
0, which is sufficient for our purposes). So one could say that the displacement
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vector from ¢(z) to the corresponding point ¢:(z + sw) on a neighbouring orbit is
approximated by ¢:.sw, and this the more accurately the closer s is to zero.

Fig. 2 Lie transport along a flow.

Exercise 34. Show that if ¢, is a one-parameter affine group then the Lie transport of
displacement vectors defined above agrees with the Lie transport of tangent vectors just
defined. o

In the next two exercises, affine coordinates on a 2-dimensional affine space are
denoted as usual by (z',z?).

Exercise 35. Carry out the Lie transport of 8, and of 33 from the origin of affine coor-
dinates along the orbits of the one-parameter group

(z',2?) — (z' +¢t,2* —sinz" + sin(z' +1)). o]
Exercise 36. Carry out the Lie transport of 3, from any point of the affine space along
the flow described in Exercise 26. (]

The same construction may be applied to covectors, paying due account to
contragredience. In the interval of definition of o, one may construct, from a
covector a € T, A, a succession of induced covectors ¢_;*a € T;‘(,)A along the
orbit 0,. Again the process should be seen as a continuous one, giving rise to a
covector field along 0., and the construction is called the Lie transport of a by ¢.
Exercise 37. Carry out the Lie transport of dz' and of dz? along the flows given in
Exercises 26 and 35. o

Exercise 38. Show that if V and o are respectively a vector field and a covector field
obtained by Lie transport along an orbit of some Aow then (V,a) is constant along the
orbit. o

6. Lie Difference and Lie Derivative

Suppose that W is a vector field along the orbit of a point z under a flow ¢ on an
affine space A. If W is defined by Lie transport then for each s, W(s) = ¢,.W(0),
which one may equally well write ¢_,.W(s) ~W(0) = 0. Even if W is not defined by
Lie transport one may form ¢_,.W(s) — W(0), which is a vector at z; it is called a
Lie difference. In general a Lie difference will be nonzero, and in fact it will provide
some measure of the departure of W from being defined by Lie transport.
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The Lie difference may be constructed for each s in some interval containing 0.
A more useful quantity will be obtained if this dependence on s is eliminated, as may
be done by taking a suitable limit as s — 0. Now lim._.o(¢_,.W(a) - W(O)) = 0;
but it happens that lim,_o ! (¢_,.W(s) — W(0)) always exists, is not necessarily
zero, and gives useful mformatlon about W: it is called the Lie derivative of W
along ¢ at z. Since it is constructed from vectors at z the Lie derivative is also a
vector at z. If W is defined by Lie transport then its Lie derivative is zero; otherwise
its Lie derivative measures its rate of change along the orbit of z, in a sense in which
a field defined by Lie transport is to be regarded as unchanging.

To see why the limit in the definition of the Lie derivative exists it is advanta-
geous to regard s — ¢_,.W(s) — W(0) as defining a curve in the tangent space at
z; this curve is evidently smooth, and passes through the origin of T; 4 when s = 0.
The Lie derivative is simply the tangent vector to this curve at s = 0, regarded as
an element of T, 4.

There is nothing particularly special about the role of z in this definition, which
may be easily modified to apply to any point on the orbit: the Lie derivative of W
along ¢ at o (t) is defined to be

hm (¢ WW(s+1t) - W(t)).

In this way one may construct from W a new vector field along the orbit, whose
value at any point of the orbit is the value of the Lie derivative of W there. This new
field is again called the Lie derivative of W. It will become clear, from a formula
derived below, that it is a smooth field.

Given the equivalence of a flow and its generator, one may as well regard the
Lie derivative as being defined in terms of the vector field V which generates ¢ as in
terms of ¢ itself. In fact it is usual to include V rather than ¢ in the notation for a
Lie derivative: one writes LyW for the Lie derivative of W along the flow generated
by V, and calls it the Lie derivative of W with respect to V. Here W is assumed
to be a vector field along an integral curve o; of V, and LyW is then a vector field
along the same integral curve. We denote by Ly W (t) the Lie derivative of W at
0:(t): thus

Lyw(t) = hm (¢_..W(a +t)-W(t)).
It is suggestive and convenient also t.o write this

LW = 2 (8- W (s +1),

taking advantage of the fact that ¢o. is the identity.

It is often the case that V generates a one-parameter group, not only a flow,
and that the domain of W is more than a single orbit, but the construction of Ly W
is unaffected by this.

Before giving an example of the calculation of a Lie derivative we shall conclude
the story of the relationship between Lie derivative and Lie transport. If W is
defined by Lie transport along o, then LyW = 0: for in this case,

W(s +t) = @(s41).W(0) = (¢ 0 ¢t) W(0) = $,.6:1.W(0) = 4. W(t).
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Conversely, suppose that W is a vector field along o, such that LyW = 0. We
consider the curve r — ¢_,.W(r) in T 4, and show that it is in fact a constant
curve. We have, for each fixed ¢,

LB W)= S (G0 +0),

= ¢—lod;‘3(¢—oow(3 + t))‘=0 = ¢—(.£VW(‘) =0

(where the variable has been changed from r to s = r —t). Thus ¢_,,W(r) is
constant and equal to its value when r = 0, which is W(0); and so W is defined by
Lie transport of W(0). Thus LyW = 0 is a necessary and sufficient condition for
W to be defined by Lie transport.

Computing the Lie derivative. We turn now to the computation of Lie deriva-
tives.

As an example, let V = —223, + z'd,, which generates the one-parameter
affine group (z',z2) ++ (z'cost — z%sint,z'sint + z2cost); and let W be the
parallel vector field 3, + 2. We compute Ly W (0) along the integral curve of V
through the point with coordinates (1,0). The result will therefore be a vector at
that point.

The integral curveist + + (cost,sint). We have therefore to compute ¢_,.W (s},
where W (s) is the vector 8, + d; at the point (coss,sins). One simple way of
carrying out this computation is to choose a curve through (cos s,sin s) to which
W (s) is the tangent, compute the image of this curve under ¢_,, and find its tangent
vector. A suitable choice of curve is the line r — (r + coss,r + sins); its image
is the curve r ~— (1 + r(cos s + sin s),r(cos s — sins)). (The image curve is also a
line, because ¢_, is affine, though this is incidental.) The tangent vector to the
image curve at r = 0 is (cos s + sins)d; + (coss — sins)d; = ¢_,.W(s). Thisis a
vector at (1,0): 9, and 3, are the coordinate vectors at that point. To compute the
Lie derivative we have merely to evaluate the derivatives of the components with
respect to s, at s = 0; we obtain LyW(0) = 3, - 93.

Exercise 39. Let ¢: be the one-parameter affine group given in affine coordinates by

(z',7%) = (z' + tz*?,2z?) and let W be the vector field given along the orbit of (0,1) by
W(t) = costd, + sintd;. Find LyW as a function of t, where V is the generator of ¢,. O

Exercise 40. Let ¢, be the one-parameter affine group given in affine coordinates by
(z',2%,2%) — (e'z',e2?,e%1%) and let W be the parallel vector field with components
(3,2,1). Find LvW on the orbit of (1,1, 1) as a function of ¢, where V is the generator of
¢¢. Also compute V. =]

Exercise 41. Let i, be the one-parameter affine group given in affine coordinates by
(z',2%,2%) — (z' + 3,27 + 2t,2° + t) and let V = z'3, + 22?9, + 3z%3s. Find LwV
on the orbit of (1,1,1), where W is the generator of ;. Determine W. Describe the
connections between this exercise and the previous one. Compare LyW with LwV at
(1,1,1). o
Exercise 42. Let ¢¢:z ~— zo + Ae(z — Zo) + ve be a one-parameter affine group with
generator V. Let W be a vector field given along the orbit of z. Show that in an affine
coordinate system the components of Ly W (0) are W*(0) - A;W *(0), where W °(t) are the
components of W and the A} are the entries in the matrix of d/dl(,\.)(o). o
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Exercise 43. Show that for any vector field V, LvV = 0. o
Exercise 44. Show that if V generates the flow ¢ and W is a vector field given along an
orbit of ¢ then Ly (¢e.W) = ¢e. LY W. (o]

Exercise 45. Let W, and W; be vector fields defined along an orbit of a flow ¢. Show
that Lv(ciW, + caW3) = ¢; LvW) + c3 Ly W3 where V is the generator of ¢ and ¢; and c;
are any constants. o

Exercise 46. Let [ be a function defined on a neighbourhood of z. Show that for any
vector field W defined along the orbit of =

Lv(fW)(0) = (V=)W (0) + f(=)(LvW)(0). o

The Lie derivative of a covector field. The Lie derivative of a covector field
corresponds to the Lie transport of a covector in the same way as the Lie derivative
of a vector field corresponds to the Lie transport of a vector. Let ¢ be a flow on 4,
o, the orbit of the point £, and a a covector field specified on o,. One may construct
acurvein T A by Lie transporting to that point covectors specified at other points,
obtaining ¢,°a(s) from a(s) given at :(s). The change in sign (compared with the
case of a vector field) arises from the contragredience: ¢, maps z to ¢,(z) = 0z(s),
s0 ¢,° pulls a(s) back from o,(s) to z. The Lie difference is ¢, a(s) — a(0), and
if V denotes the generator of ¢, then the Lie derivative of a along o, with respect
toV,att=0,is

tva(0) = lim 1 (4,"a(s) - a(0)) = 2 (4. a(s)) (0)

In this way one can define a new covector field with the same domain as the original
one. The Lie derivative measures the rate of change of a along the flow, and is zero
if and only if a is defined by Lie transport, just as is the case for vectors.

Exercise 47. Show from the definition that if W is a vector field and a a covector field

defined along an orbit of a vector field V then at each point of the orbit V(W,a) =
(LvW,a) + (W, Lva) where (W,a) is regarded as a function defined along the orbit. (The

relative signs in the definitions are chosen so that this Leibniz formula will hold). o
Exercise 48. Let a; and a; be covector fields specified along an orbit of V. Show that
for any constants ¢, and c3, Lv(c1ay +c3a3) = ¢y Lva) + calvas. o

Exercise 49. Show that Lv(fa)(0) = (V:f)a(0) + f(z)(Lva)(0), f being a function
defined on a neighbourhood of z, and a a covector field specified along the orbit of z. 0O

7. The Lie Derivative of a Vector Field as a Directional Derivative

We now exhibit an explicit representation for the Lie derivative of a vector field as
a directional derivative operator, acting on functions. Before giving the relevant
expression we point out that from a vector field U and a function h one can derive
a new function Uh by setting (Uh)(z) = U:h. In coordinates, if U = U®3, then
Uh = U%3,h = U®0h*/3z%. If U is defined only on a curve then Uh is a function
on the same curve, while if h is a function on an integral curve of U then Uh makes
sense and is again a function on the same curve.
The formula in question is

(LyW)f =V(W[) - W(V]).
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Here W is specified along an orbit of V, and f in an open neighbourhood of a point
of the orbit, so that W/ is determined along the orbit, and V, which differentiates
along the orbit, can sensibly act on it.

w

y A2

an orbit of V / a point of the orbit
Fig. 3 Specification of W and f.

The calculation entails combination of an induced map formula with the defi-
nition of Lie derivative. For any smooth map of affine spaces ¥ and any function ¢
on the codomain of ¢, Y*dg == d(g o ¢), where ¥* denotes the induced map which
pulls covectors back from ¥(z) to z (Chapter 2, Section 7). Here dg is considered
as a covector at y(z), and d(g o ¥) as a covector at z. On the other hand, the Lie
derivative of a covector field a is given by d/ds(¢,"a(s))(0). We use this expres-
sion with a the field of covectors along o, defined as follows: a(t) is the covector
determined by df at o.(t). It follows from the cotangent map formula just stated
that ¢,°a(s) = d(f o ¢,), as covectors at z. Thus with this choice of «

Lva(0) = dis(d(foes.))w)-

The calculation of each component of this covector involves first the partial differ-
entiation of the function and evaluation at z, and second the differentiation of the
result with respect to the parameter s and substitution of 0 for s. It follows from
our assumption about the smoothness of a flow that these steps are interchangeable.
Moreover, d/ds(f o ¢,) o = V/ since, for any point y, s — @,(y) is the orbit of y,

a=
to which V| is tangent. On interchanging the differentiations we therefore obtain

Lva(0) = d(V/)
(as covectors at z). We combine this result with the Leibniz formula (Exercise 47)
ViW,a) = (LvW,a) + (W, Lva);
recognising that (W,a) = W, one obtains
VWS) = (LoW)] + W, d(VS)) = (LeW)f +W(VS)

so that
(LvW)f = V(WS) - W(V]),

as asserted. This formula holds at any point where the operations are defined.
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By choosing f = z° in the formula, one obtains (Ly W) = V(W?°) — W(Ve).
The component We of W is to be regQrded a function of the parameter along an
integral curve of V, so that V(W?) = W9, thus

LyW(t) = (We(t) - W()(V°®))Ba = (W2(t) - W(t)3sV®) ..

The components of LyW are clearly smooth functions of ¢, assuming V and W to
be smooth; thus Ly W is a smooth vector field.

Exercise 50. Compute Ly W again from the data given in Exercises 40 and 41 using this
formula. o

Exercise 51. Show that for any covector field a
Lva(t) = (aa(t) + as(t)daV *)dz°. o

8. Vector Fields as Differential Operators

A vector field, like a tangent vector, is a directional derivative operator. If V is a
vector field and f a function then V{ is a function, whose value at z is V. f. These
ideas have arisen already, in the previous section, but there the vector fields in
question need be specified only along a single curve. We now consider vector fields
specified all over an affine space, or at least over an open subset of it, and describe
some of their operator properties.

The module of vector fields. The smooth vector fields on an affine space A
constitute an Abelian group (axioms 1 to 4, Note 2 of Chapter 1). Moreover, if U
and V are vector fields and f and g are functions then fU is a vector field, defined
by (fU): = f(z)U,, and

(1) f(U+V) = fU + fV

(2) (f+9)U = fU +4qU

(3) f(gU) = (fo)U

(4)1W=U
(where 1 denotes the constant function which takes the value 1 at every point).
These properties are formally similar to those which define a vector space. However,
the set of smooth functions, which here plays the role of scalars (the role played
by R in the definition of a real vector space) differs from R in one important
respect: the product of two functions may be zero without either factor being zero
(vanishing identically). Nevertheless, the set of smooth functions has many of the
other properties of R (commutativity of addition and multiplication, distributivity,
and so on), and includes R in the form of the constant functions. It is an example
of an algebra over R. A set with the vector-space-like properties enjoyed by the
set of smooth vector fields is called a module over the algebra in question (in this
case the algebra of smooth functions on A). The algebra of smooth functions on A
will be denoted 7(A), and the module of vector fields X (4). The coordinate vector
fields {3, } in any affine coordinate system constitute a basis for the module X (4):
every vector field may be written as a linear combination of these, with coefficients
from the underlying algebra of functions. The existence of a basis is a property of
all affine spaces but does not extend to manifolds. Other bases for X (A) may be
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found, not necessarily consisting of coordinate vector fields: indeed, if functions U?
are such as to form a non-singular matrix at each point of A, then the vector fields
U, = U298, constitute a basis for X (A).

A vector field V acts on functions as a linear operator which satisfies Leibniz’s
rule:

(1) V(af +bg) =aVf+bVyg a,beR, f,g€ F(A)

(2) V(f9) = (Vf)g + fVg.
An operator with these two properties is called a derivation. Thus the vector
fields on A are derivations of the algebra of functions ¥(A). It may be shown
that, conversely, any derivation of ¥(A) corresponds to a smooth vector field on A.
Besides the module and derivation properties we mention one other, the chatn rule,
which is useful for computational purposes: if A2 R — R is a smooth real function
and V and f are any vector field and any function on A, then

V(hof) = (ho f)VI.

With these properties to hand it is easy to compute the action of a vector field
V on any function given explicitly in terms of the coordinate functions, when the
components of V with respect to the coordinate basis are known: for if V = V249,
then V@ = V(z%). As an example, suppose that f = z'z2? + sin? z3: then for any
vector field V

Vi=V(z")2* +2'V(z?) + 2sinz® cos 23V (2%) = 2?V! + 2'V? + 28in 23 cos 23V 3;
and if, for example, V = 8, + 239, — 233 then

Vf=z*+z'z® - 2z%sinz3 cos z3.

Exercise 62. Let V = '3, + 2293 + 2395 and [ = 2%2% 4+ 232" + z'z?. Compute Vf. 0

9. Brackets and Commutators

The composite of two vector fields V and W —that is, the operator f +— V(W f)—is
linear but does not satisfy Leibniz’s rule:

V(W(fg)) =V(WNg + f(Wyg))
=(V(WN)g+ Wf)(Vg) + (V)(Wg) + f(V(Wg)).

However, the symmetry in V and W of the unwanted terms reveals that the com-
mutator VoW — WoV is a derivation of F(A) and is therefore a vector field. The
commutator of two vector field operators is usually written between square brackets
and is therefore called their bracket:

(V.WIf = V(Wf) - W(VS).

The geometrical significance of the bracket becomes immediately apparent if this
formula is compared with the one derived in the previous section for the Lie deriva-
tive: formally,

[V,W] = LyW.
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However, the present point of view differs from that of the preceding section: there
V was considered throughout in its role of generator of a flow, while W was supposed
specified only along an integral curve of V, which was enough for the definition of
the Lie derivative of W. Here, on the other hand, V and W have equal status in
their roles as directional derivative operators, specified everywhere on A, or at least
on an open subset. Nevertheless it should be clear that the point of view of the
preceding section can be regained by considering the restriction of W to a single
integral curve of V.

Substituting V = V29, and W = W?3,, where (z°) is any coordinate system,
affine or curvilinear, in the expression for the bracket, one obtains immediately its
coordinate expression

V,W| = (VPa,We - Wt3,V*)a,.

Notice that on restriction to an integral curve of V the first term becomes the
derivative of W¢ along the integral curve.

The following properties of the bracket are simple consequences of its definition;
they reveal some properties of the Lie derivative not so far apparent:

(1) the bracket is skew-symmetric: [V, W] = —|W, V]|

(2) the bracket is bilinear, that is linear (over R) in each argument

(3) [V, fW]| = f[V,W] + (V)W for any f € F(A)

(4) [U, [V, W]} + [V, (W, U}] + W, [U, V]| = 0.
The last of these, which is known as Jacobi’s identity, is a general property of
commutators of linear operators. Its proof is a simple computation:

(U, [V,W]] + [V, [W,U]| + [W,[U,V]]
=z=UoVoW-UoWoV -VoWoU+WoVolU
+VoWoU-VoUoW -WoUoV+UoWoV
+WoUoV -WoVoU-UoVoW+VoUoW=0.

Exercise 53. Infer that LwV = —LvW when V and W are globally defined vector
fields. ]
Exercise 64. Deduce from property (3) that for f € F(A)

Lv(fW) = fLvW + (V)W while LW = fLyW — (W[)V. o

Exercise 55. Show that Jacobi’s identity may be written in the form [U,[V,W])
{lU,V],W] + [V, |U,W]], which bears some resemblance to Leibniz’s rule.

Exercise 56. Show that Lv LwU - Lw LvU = Livw)U.

Exercise 57. Show thatif V = (A¢z* + K°)3, and W = (Bgz® + L*)d, are linear vector
fields then

ool

[V,W] = ((B2A; - A2B§)z* + (BsK® - AJL"))da.
In particular, any two constant vector fields commute; the bracket of a constant with a
homogeneous linear vector field reproduces the action of a matrix on a column vector;
and the bracket of two homogeneous linear vector fields reproduces (except for sign) the
commutator of matrices, (A, B] = AB - BA. o

Exercise 68. Show that the commutator of matrices satisfies conditions (1), (2) and (4)
above, and that so does the “bracket” of vectors in 3-dimensional Euclidean space defined
by [a,b] =a x b. o
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Exercise 569. Compute the commutator of each pair of vector fields that may be formed
from the three vector fields 8,, '3,, and (z')’a. on a 1-dimensional affine space. [s]

Exercise 60. Show that if one of the vector fields U, V and W is a linear combination
of the other two, with constant coefficients, then Jacobi’s identity is a consequence of
skew-symmetry and bilinearity of the bracket. a

Vector fields related by a smooth map. Let ¥: 4 — B be a smooth map. It
induces a linear map ¥, of vectors tangent to A at any point. However, it is not
necessarily the case that a vector field V given on 4 will map under ¥, to a vector
field on B. We may certainly form V..V, for all z € A: but if ¥ is not injective
there is no reason to suppose that ¥.;V; = ¥..V, when ¥(£) = ¥(z); even if ¥
is injective this procedure will not define a vector at each point of 8 if ¥ is not
also surjective. Thus only when ¥ is bijective can one be sure that ¥. maps vector
fields on A to vector fields on 8. When this is the case, and ¥ has a smooth inverse,
the image vector field has the flow & given by ®(t,y) = ¥(¢(t,¥~'(y)) for y € B,
where ¢ is the flow of V. (This result was obtained in Exercise 28 for a smooth
invertible map of A onto itself; the more general case is a simple extension.)

Thus for a general smooth map no theory of induced maps is possible which
applies to all vector fields. However, there are many occasions when one wishes
to consider vector fields V on A and W on B which happen to be related via the
induced maps of a smooth map ¥ in the sense that, for all z € 4,

We(s) = ¥.:Vs.

The vector fields W is then said to be W-related to the vector field V. We now
describe some properties of W-related vector fields, and in particular show that if
W, is W-related to V, and W, is W-related to V3, then [W,,W;| is V-related to
V1, Val.

Let W be a vector field on 8, W-related to the vector field V on A . We note
first of all that for any function f on 8

(W) (¥(2)) = Wy(z)f = (¥.:Ve)f = Ve(f o ¥)
and thus
(Wf)o¥w =V (foW).
Conversely, if V and W satisfy this relation for every function f on B then W is
W-related to V. This gives an alternative criterion for W-relatedness in terms of the
vector fields as operators.
The property of the brackets of W-related vector fields is now almost immediate.
Let W, be W-related to V, and W, to W;. To show that [W,,W;] is W¥-related to
[V1,V3] we have to show that for every function f on B
(|W.,W;|f) o ‘P = ‘V|,V2l(f o W)
But '
(W1, W3]f) oW = (W (W3f)) o ¥ — (Wy(W,f)) o ¥
= Vi((Waf) o ¥) - Va((W2f) o ¥)
~Vi(Valf 0 ¥)) - Va(Va(f 0 ¥))
= Vi, Val(f 0 )
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as required.
Exercise 61, Show that if W is ¥-related to V then the flow ¥ of W is related to the
flow ¢ of V by ¥(t, ¥(z)) = ¥(é(t,z)). o

10. Covector Fields and the Lie Derivative

Just as the concept of a vector field has been enlarged, from an object defined along
a curve to one defined all over the affine space, so also may the concept of a covector
field. A covector field on an affine space A is a choice of element of each cotangent
space to A. A covector field @ may be expressed in the form a = a,dz® in terms of
a coordinate system (z°), affine or not; the dz° are the coordinate covector fields.
The a, are functions on the coordinate chart; the covector field is smooth if these
component functions, for an affine coordinate system, are smooth.

A function f on A may be used to define a covector field, its differential, whose
value at z is just df at z. We denote by df the differential of f as a field also. Given
any covector at a point there is a function (indeed an affine one) whose differential
agrees with the covector at that point. However, it is not necessarily the case that
given a covector field there is a function whose differential agrees with the covector
field everywhere. The conditions for this to be so are related to the conditions for a
vector field to be a gradient which are discussed in vector calculus. We shall return
to this point in Chapter 5.

The Lie derivative may be adapted to apply to covector fields, in a pretty well
self-evident way. Properties of the Lie derivative of a covector field along an integral
curve extend to the new situation in analogy with what happens for vector fields.

Exercise 62. From the formula V(W,a) = (LvW,a) + (W, Lva) deduce that Lv Lwa —
LwLva = Lyv,wja for any covector field a. o

The definition of the bracket and the results of Exercises 56 and 62 may be
given a coherent formulation if first of all the Lie derivative on functions is defined
to be the directional derivative:

Lvf=V/,

and secondly the bracket of Lie derivative operators is defined to be their commu-
tator:

|Lv, Lw] = Lv o Lw — Lw o Lv;
for then the Lie derivative on functions, vector fields and covector fields satisfies
[Lv,Lw] = Lv.w)-

Thus the whole structure of Lie derivative operators is closely related to the bracket
structure of vector fields.

Exercise 63. Show that, so far as operation on functions is concerned, Ly od = do Lv. O
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11. Lie Derivative and Covariant Derivative Compared

In Section 9 of Chapter 2 the covariant derivative of a vector field along a curve was
defined by exploiting the parallelism of affine space to identify tangent spaces at
different points. Like the Lie derivative, the covariant derivative may be extended
to an operation of a vector field on a vector field, which results in a further vector
field. It may also be extended, again like the Lie derivative, to an operation of a
vector field on a covector field, leading to a further covector field. In this section
we shall first of all explain these constructions, and then compare the resulting
operation with the Lie derivative.

Suppose that W is a vector field defined along a curve o in an affine space 4;
then in affine coordinates the components DW /Dt of DW /Dt are given simply by
DW?e /Dt = dW*/dt. At any chosen point o(t) of the curve, therefore, the covariant
derivative of W along the curve may be expressed in terms of the tangent vector to
the curve at that point, (t), as follows:

Dw . e

3’[- = a(t)(W )6,.
(Differentiation of W along the tangent vector ¢(t) is intended on the right hand
side.) Note that, W being given, it is enough to know the tangent vector to o at
any point in order to compute DW /Dt at that point.

Suppose now that W is no longer a vector field defined along just one curve, but
is instead a vector field defined all over A, or at least on some open neighbourhood
of a point z in it. Then we may define, for each non-zero v € T, A4, the covariant
derivative of W along v as the value of DW /Dt at z along any curve through z
which has v as its tangent there. If v = 0 then we define the covariant derivative
to be zero also. We shall denote this newly defined object V,W; it is an element of
T A.

Exercise 64. Show that in terms of not necessarily affine coordinates
VW = v (8.W*® + W *)da,

where the [y, are the appropriate connection coefficients for the given coordinates. a]
Exercise 85. Devise a corresponding definition for the covariant derivative of a covector
field along a tangent vector at a point. o]

This construction may be extended to a definition of the covariant derivative
VvW of a vector field W by a vector field V', as follows: VyW is the vector field
whose value at z is Vy, W. By adapting the result of the Exercise 64 above we
obtain the following expression for the covariant derivative in coordinates:

VW = V(O W + TEW?)d,.
Exercise 86. Find the corresponding expression for the covariant derivative of a covector
field. a]
In terms of affine coordinates the covariant derivative takes the simple form
VW = V<(3.W?)d,.

However, in the more general situations to be treated later, the non-affine version
is the safer guide.
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From these expressions, or from the properties of D/ Dt exhibited in Chapter 2,
Section 9, it is easy to see that the covariant derivative has the following properties:

(l) VusvW = VyW + VW

(2) V,VW = fVyW fe ;(‘)

(3) Vy(aV + W) = aVyV + bVyW a,b€R

(4) Vu(fV) = fVyV + (Uf)V.

We consider next the relation between the covariant and the Lie derivative, via
the bracket. It is clear from the formula [V,W] = (V(W®) — W (V°))3, that Yy W
provides just the first half of [V,W], and that in fact

[V,W| = VW - Uy V.

We call this the first order commutation relation of covariant differentiation. Fur-
thermore, using the expression for the covariant derivative in affine coordinates,

Vu(WW) = Yy (V(W®)a,) = U(V(W*?))da,

and so
Vu(VvW) - Yy (VuW) = VivvW.

This is the second order commutation relation.

The formula in Exercise 47 of Chapter 2 shows that the covariant derivative
operator acts on pairings in the same way as the Lie derivative: that formula may
be written immediately in terms of vector fields

V(W,a) = (VwW,a) + (W, Vya).

Thus although covariant derivatives are defined in terms of parallelism and Lie
derivatives in terms of flows, they share many properties. We sum up by listing
first their similarities, and then their differences. We write D to stand equally for
V or for £ when a statement is true for both:

(1) each is an operator depending on a vector field, which sends vector fields
to vector fields and covector fields to covector fields

(2) each is linear in both arguments over R

(3) each satisfies the following version of Leibniz's rule in the second variable:
Dy (fW) = fDyW + (V)W

(4) for each, its operations on vector and on covector fields are related as
follows: V(W,a) = (DyW,a) + (W,Dva)

(5) for each, the commutator of operators corresponds to the bracket of vector
fields: ([Dy,Dw| = Diy,w).

The reader should be warned, however, that so far as the covariant derivative is
concerned, this last property is specific to the absolute parallelism which one finds
in affine space, and does not generalise.

There are the following differences between covariant and Lie derivatives:

(1) (Vv W), depends only on the value of V at z, whereas (LyW ). depends both
on the value of V at z and on the value of the partial derivatives of its components
at z

(2) VyyW = fUyW, but LyyW = fLyW — (W[)V (Exercise 54)

(3) for affine coordinate fields dq, Vv3a = 0 but in general Ly 3, # 0
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(4) LwV = —LyW, but in general Vy V # - VyW
(5) VwW — VywV = |V,W], whereas LyW = [V,W] (and so LyW — LwV =
2|V, W)).

Other expressions for the covariant derivative. We have shown that with
respect to non-affine coordinates (z°) the covariant derivative operator takes the
form
VW = V<(@.We + [2W?h)a,

where the connection coefficients I'2 are defined in terms of affine coordinates (£°)
by
e 9%zd
324 dzbaze

More generally, the covariant derivative may be referred to any basis of vector
fields {U,}, not necessarily coordinate fields. If we define the connection coefficients
75 with respect to {U,} by

Iy = or V5, 0y = I[}.0,.

Vo Us = v Us,
then for any vector fields V = VU, and W .- WU, (care is needed here: the V*
and W@ are functions, the U, are vector fields)
VW = V(U (W®) + 72 W?)U,.

Exercise 67. State what type of object each symbol occurring in this equation repre-
sents. o

If we express the new basis with respect to affine coordinate fields, say U, =
Ugab, then
Vi, Uy = U3(34U§)8e = UL(94UE)(U")2U,
where the (U~')} are the components of the matrix inverse to (U) (non-singular
because the vector fields U, are linearly independent); thus
e = U2(8aU5)(U)2.

It is not necessarily the case that 13 = 74, since |Us, U] is not necessarily zero; in
fact
[Us, U] = (v = W) Va-

Exercise 68. Confirm, from the definition of +,%. o
Exercise 69. Show that if {U,} is another basis, and U, = AJU,, then
ASyL ~ U(AD) + & ATAL. o

12. The Geometrical Significance of the Bracket

In this section we tease out some of the geometrical consequences of the identifica-
tion of the Lie derivative with the bracket of vector fields, and show the relation of
the bracket to the corresponding flows.

First of all we show that if the bracket vanishes then the flows commute. Let V
and W be vector fields on an affine space A such that [V,W| = 0, and let ¢ and ¢ be
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the flows generated by V and W respectively. We assume throughout this section
that the parameters labelling the flows are confined to those domains for which the
equations make sense. If the flows are one-parameter groups, the equations will
make sense everywhere on A. We showed in Section 6 that [V,W| = Ly W vanishes
on an orbit of V if and only if W is Lie transported by ¢, that is,

Woiie) = de.We.

On the other hand, from the result of Exercise 28, one may conclude, interchanging
the roles of V and W, that for each ¢, J;, = ¢op.0¢_; is a flow on A with generator
W ¢« given by

(Wé'): =Wy _ (2)

Therefore Ly W = 0 if and only if W¢ = W, It then follows from the uniqueness of
integral curves that the flows of W*' and W must coincide: ¢, = ¢roy,0d_¢ = ¥,,
whence

dtoy, =Y, 0.
This proves that if the bracket vanishes then the lows commute.

Exercise T0. Show that if the lows commute then the bracket vanishes. o

The next two exercises are concerned with a particular type of one-parameter
group of interest, the matrix exponential, which we introduced in Section 1. Re-
sults about general one-parameter groups or flows have interesting consequences
for matrices; conversely, matrix exponentials can give useful pointers to the general
theory.

Exercise 71. Show that if A and B are square matrices, then exp(tA) and exp(sB)

commute if and only if A and B commute. Infer that exp(tA) and exp(sA) always commute
and that exp(tA) commutes with A. o]

Exercise 72. Show, using the Taylor expansion given in Exercise 12, that for a commu-
tator of matrix exponentials

exp(-sB)exp(—tA)exp(sB)exp(tA) = I, — st|A, Bj
correct to second order terms in the Taylor expansion. [»]

The result of Exercise 72 suggests that it may be possible to interpret
the bracket of arbitrary vector fields in terms of the commutator of their flows
Y_,0¢_s0y,0¢. This is indeed the case, as we shall show. The following exer-
cise in coordinates paves the way.

Exercise 73. Let ¢ and ¥ be flows on A generated by vector fields V and W respectively.
Show that in affine coordinates (z°)

oi(z) =z +tVe + 1*VPaV e + Oy
¥i(8i(z) = z° +tV° +sW" + L*V'o,V°
+ stV oW + 1*WPaW*® + Os
where each of the expressions on the right is evaluated at (z¢), and Os denotes terms of
third order in s and t. Infer that
W2.(2(Wi(80(2))) = 2° + o[V, W]° + Os,
where the bracket is evaluated at (z°). o
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It appears from this result that when [V,W]|. # O the “square” obtained by
transforming the point z successively by ¢, ¥, ¢_¢ and ¢_, does not close, and
that t2|V,W|, is an approximation to the displacement vector between its ends.

¥ (¢e(z))

¢-t(ve(ee(2))

V-t(p-t(¥e(ee(2))))

Fig. 4 Non-commuting flows.

z

A more precise interpretation of [V,W|,; may be given in terms of the curve
t— w-,(¢_,(w¢(¢,(z)))). It would be pleasant to be able to say that |[V,W|; is the
tangent vector to that curve at ¢t = 0; but a mmoment’s reflection will reveal that the
curve has zero tangent vector there. However, when a curve has zero tangent vector
at a point one may define a second-order tangent vector there, as in the following
exercise.
Exercise 74. Suppose that the curve o has zero tangent vector at ¢ = 0. Show that the
map F(A) — F(A) by f — d*/dt?(f oo(t))(0) has the properties of a tangent vector (that
is, the appropriate linearity and Leibniz properties). It is the second-order tangent vector
too att=0. =]

We shall show that [V, W], is one half of the second-order tangent vector to the
curve t —s '/)_g(¢..¢(¢¢(¢¢(1)))) at t = 0. To do so we consider, for any f € F(A),
the real function F given by F(t) = f(l/)_l(¢_¢(l/)¢(¢¢(:c))))). We have to show that
F(0) = 0 and that F(0) = 2[V,W|,f. In order to compute derivatives of F it is
convenient to introduce another function G, defined on a neighbourhood of (0,0)
in R2 by

G(r,s) = [(¥-r(8-o(¥r(¢s(2)))).

We denote the derivatives of G with respect to its first and second arguments by
G, and G, respectively. Then

F(t) = G(t,t)
F(0) = G,(0.0) + G,(0,0)
F(0) = G,,(0,0) + 2G,,(0,0) + G,,(0,0).
We shall compute G,,(0,0) from G,(0,s), and we therefore require to know
only G,(r,0), G,(0,s) and G,(0,s). Now G(r,0) = G(0,s) = f(z) and so

Gr(r,0) = dG(r,0)/dr = 0, and similarly G,(0,s) = 0. Thus F(0) = 0; and
G,r(0,0) = G,,(0,0) = 0. It remains to compute G,(0,s) and G,,(0,0). To
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do so, we note that for fixed s we may write G(r,s) = f(w_,(x,(z))) where
Xr = $_,0, 0@, is a flow, whose generator is W*#-+. It is necessary, therefore, to
evaluate d/dr(f(¥-r(xr(z))))(0) where ¢ and x are two flows.

Once again it is convenient to introduce a function of two variables, say H, by
H(u,v) = f(¥u(xv(z))), whose domain again contains a neighbourhood of (0,0) in
R2, Then

LT+ (xr(2))) (0) = ~ Hu(0,0) + Hy(0,0)

But H.(0,0) = ;;n(u,O)(o) - w.f,
while H.(0,0) = ;T,H(O,v)(o) - (W),
and so Gr(0,8) = —W.f + (W*-*).f.

Thus, recalling that (W#-+). = ¢_,.W, (,), we see that

Grs(0,0) = dis(¢-—aow¢,(,))(0)f = (va)(O)f =(V,W|.f

as required.

Exercise 75. Show, using these methods, that for vector fields V, W which generate flows
&, ¥, the tangent vector at t = 0 to the curve t + ¢;((z)) is V. + W.. Show that ¢y o ¥,
defines a flow if and only if ¢, and ¥, commute for all relevant s and ¢t. (o]

Notice that if {V,W]|, # O then it is possible, by tracking round a “square”
built from orbits of V and W, to travel from z in a direction transverse to the
2-dimensional subspace of T, A spanned by V., and W,. We develop this idea in
Chapter 6.

Summary of Chapter 3

A vector field V on an affine space A is a choice of element V; of T: A for each
z € A. In coordinates, V = V23,, the V¢ being functions on A; V is smooth if the
Ve are. The collection of smooth vector fields, X'(A), is a module over the algebra
F(A) of smooth functions on A. Vector fields act linearly, as directional derivative
operators, on F(A); they also satisfy Leibniz'’s rule. The bracket [V,W] of vector
fields, which is to say, their commutator as operators, [V,W|f = V(W[) - W(Vf),
is again a vector field; [V,W] = (V*3,W° - Wb3,V °)4,.

A flow on A is a smooth map ¢ of a suitable open subset of R x A, containing
{0} x 4, to A such that ¢(0,z) = z, and ¢(s, #(t, z)) = ¢#(s+t,z) whenever both sides
make sense. Fixing z defines a curve 0., the orbit of z under the flow; its domain
may not be the whole of R; 0.(0) = z; and if y = 0.(8) then oy(t) = o, (s +¢) (this
is change of origin of the parameter). A collection of curves with these properties
is a congruence. Fixing t defines a transformation ¢;; its domain may not be
the whole of A; ¢o = ida; és 0 ¢ = dsst. When the domain of a flow is the
whole of R x A the corresponding transformations form a one-parameter group. If
these transformations are always elements of a particular group (translation group,
affine transformation group) the one-parameter group (of translations, of affine
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transformations) is the image of a homontorphism of R into that transformation
group.

Vector fields, congruences of curves and flows are equivalent to each other.
Each vector field defines a congruence, of its integral curves, which are given in
coordinates as the solutions of a system of ordinary differential equations; the con-
gruence property is a consequence of the theorem on the uniqueness of solutions of
such a system. Each congruence defines a flow, whose orbits are its curves, in which
&¢(z) is the point a parameter distance t along the curve of the congruence through
z. Each flow defines a vector field, its generator, whose value at z is the tangent
vector at t = 0 to the orbit of z.

The generators of affine transformations are linear but, in general, inhomoge-
neous vector fields; of translations, constant vector fields. The one-parameter group
generated by a linear homogeneous vector field is determined by exponentiation of
a matrix.

The Lie derivative LyW (Lva) of a vector field V (covector field a) along an
orbit of the flow ¢ generated by V is the vector (covector) field along the orbit
whose value at t is d/ds(¢. ..W (s t t)), . (for a vector field) d/ds(ds.a(s+1t)),_,
(for a covector field). In coordinates,

LyW = (W W'V%)ad, Lva=(d+ apd.V®)dz®.

If W is a vector field on A then LyW = [V, W]. The Lie derivative is then skew
symmetric and linear in both arguments, and

Ly(fW) = [LuW + (VW LpyW = [LyW — (W)Y
(LvW,a) + (W, Lva) =V (W, a) [Lv, Lw| = Livw)-
The last property is related to Jacobi's identity
UV, W] + [V,[W,U]] + [W,|U,V]] =0

If ¥: A — B is a smooth map, a vector field W on B is said to be ¥-related to
a vector field V on A if Wy(,) = V..V, for all z € 4. If W, W; are V-related to
V1, V3 respectively then |W,,W,] is W-related to [V,, V,].

The tangent vector at t = 0 to the curve t 1+ ¢¢(¥¢(z)) is V. + W, where V
and W are the generators of ¢ and ¥. The tangent vector at t = 0 to the curve
t — Y_¢(d-e(¥e(de(z)))) is zero, but its second-order tangent vector is 2|V,W|..
Flows commute if and only if their generators do.

The covariant derivative operator V is defined by (VvW), = Vy, W := DW /Dt,
where DW /Dt is the covariant derivative of the restriction of W to the integral curve
of V through z (or any other curve through z to which V, is tangent) evaluated at
z. It is distinct from the Lie derivative, depending on parallelism for its definition.
It is linear in both arguments, and

V(fW) = fOW + (VIW VW = fUyW
(VvW,a) + (W,Vya) = V(W,a) VW - VwV = |V,W]|
(Vv,Vw| = Viyw)
(this last property being special to affine space).
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In the terminology of vector calculus, the operation of directional differentiation
of a function f by a vector field V would be written V . grad f. The covariant
derivative would be written (V -grad)W. The Lie derivative is practically unknown
in vector calculus.

Note to Chapter 3

Solution of systems of ordinary differential equations. Let V¢, a =
1,2,...,n, be smooth functions defined on some open connected subset O of R™.
Then for every point (z°) € O there are smooth functions o, defined on some open
interval of R containing 0, such that

a
% = V2(o®) and 0%(0) = z°.
Moreover, the functions 0° are unique, in the sense that any other functions with the
same properties coincide with the 0° on the intersection of their domains, which is an
open interval about 0. In other words, the system of ordinary first-order differential
equations z° = V(z%) has a unique solution with given initial conditions.

This theorem is proved in many books. Very often the more general situation
in which the functions V2 depend also on the variable t is considered. However,
the result is most often proved with the assumption that the V¢ are C! only. See
for example Sanchez [1968] Chapter 6, where the problem of piecing together local
solutions to obtain a maximal solution is also discussed. The proof of the theorem
under the smoothness conditions stated above is more difficult: a proof may be
found in Lang [1969], pp 126f.

In case the map (z°) — (V(z)) is linear the equations always admit the
solution 0% = 0; thus, by uniqueness, a solution of the equations which is zero
anywhere is zero everywhere.

The books by Arnold [1973] and by Coddington and Levinson [1955] are stan-
dard.



4. VOLUMES AND SUBSPACES: EXTERIOR ALGEBRA

In ordinary Euclidean space the volume of a parallelepiped whose edges are vectors
e, ez and ej is det(e}) where 2, ¢3 and e3 are the orthogonal Cartesian components
of e}, e; and e3. In an affine space without additional structure, on the other hand,
the idea of volume is without intrinsic significance for, like length, volume is not
preserved by general affine transformations. However, as we shall show in this
chapter, it is possible, exploiting the properties of determinants, to introduce an
idea of volume into an affine space without introducing a Euclidean measure of
length. Thus the availability of a measure of length is sufficient for the definition
of volume, but it i8 not necessary.

The statement that in Euclidean space the volume of a parallelepiped is given by
a determinant requires some qualification: the value of a determinant may turn out
to be zero or negative, both somewhat unlikely “volumes”, as the word is commonly
used. However, it is convenient, in a systematic treatment, to give up the common
usage which expects volumes to be positive numbers. The value zero is obtained
when the vectors along the edges of the parallepiped are linearly dependent, so that
it collapses into a plane figure. Whether a non-zero value is positive or negative
depends on a convention. To explain the convention we distinguish between right-
handed and left-handed sets of vectors: a set of mutually perpendicular vectors e,
e; and ej in ordinary Euclidean space is called right-handed if when the vector e3 is
grasped by the right hand, thumb extended in the sense of that vector, the fingers
wrap around the vector in the sense of rotation from e; to e;. The set is called
left-handed if the same is true when the vector e is grasped by the left hand.

1 e
Fig. 1 Left- and right-handed sets of vectors.

The usual convention is to assign positive volume to a parallelepiped whose
edges can be obtained from a right-handed set by a transformation with positive
determinant, and negative volume to a parallelepiped whose edges can be obtained
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from a right-handed set by a transformation with negative determinant. Since
a left-handed set is obtained from a right-handed set by a transformzt.on with
negative determinant, a parallelepiped whose edges can be obtained from a left-
handed set by a transformation with positive determinant will have negative volume,
according to this convention. An ordered set of vectors which comprises the edges
of a parallelepiped with positive volume is said to have positive orientation, with
negative volume, negative orientation. However, it should be emphasised that an
initial choice is necessary, and that it would be perfectly consistent to assign positive
volume and orientation to left-handed sets of axes instead of right-handed ones.

To give substance to the idea of volume, one has not only to specify it, but also
to pick out those affine transformations which preserve it. As we shall show, such
transformations form a subgroup of the affine group.

Another application of determinants is to the characterisation of subspaces of
an affine space. This is so because one can identify a subspace by a determinant
of pairings formed from vectors which span it. The familiar algebraic properties
of determinants may be summed up by saying that a determinant is an alternat-
ing multilinear function on its rows or columns, and in studying subspaces one is
confronted by such functions at every turn, which leads one to investigate them
more carefully for the sake of their geometrical interpretations. The study of al-
ternating multilinear functions, which is called exterior algebra, underlies all of the
developments in this chapter.

In the first seven sections we develop first the idea of volume and then the ideas
about subspaces going, as far as possible, from geometric property to formula. In the
subsequent sections we give an introduction to exterior algebra, and go from some
of the algebraic formulae to the corresponding geometric properties. (Determinants
are defined, and some of their properties listed, in Note 2 to this chapter.)

1. Volume of a Parallelepiped

A parallelepiped is the many-dimensional generalisation of a parallelogram. The
area of a parallelogram may be written as a determinant. In this section we define
the volume of any parallelepiped in an affine space and show how it, too, may be
written as a determinant.

The argument takes place in an affine space A modelled on a real n-dimensional
vector space V. A parallelepiped (z;v,y,v2,...,v,) in A is specified by giving a point
z, the principal vertez of the parallelepiped, and a set of vectors v;,vsz,...,v, ina
definite order, its edges. The parallelepiped consists of the set of points { z + t%v, |
0 < t® < 1} (range and summation conventions for a). The vertices are the points
z + t%v, for which each 2 is either 0 or 1, and the faces are portions of hyperplanes
obtained by setting one of the t® equal to 0 or 1 and allowing the others to vary
in their domain. The 2n faces are thus divided into n pairs, the faces in each
pair lying in parallel hyperplanes. If the vectors v, are not linearly independent
then the parallelepiped will be degenerate, and some of these assertions will need
modification: some faces may be lower dimensional and some pairs of faces may lie
in the same hyperplane.
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Two parallelepipeds are counted as different, even though they comprise the
same point sets, if a different vertex is chosen to be the principal one or if the edges
are given in a different order.

An affine transformation of A takes parallelepipeds into parallelepipeds. The
affine transformation A with linear part A takes the parallelepiped (z;v;,v3,...,v,)
into (A(z); A(v1),A(v2), ..., z\(v,.)). In particular, a translation r,, takes the paral-

lelepiped (z;v),v2,...,v,) into (z + w;vy,vz,...,v,).
Exercise 1. Show that the parallelepiped r,(z; —v,va,...,us) encompasses the same
point set as (z;v,va,...,Un). 0

Volume functions. It should be emphasised that, while a parallelepiped may be
defined entirely in terms of the affine structure on an affine space, a measure of
volume of parallelepipeds is something which is introduced as an additional struc-
ture, and which entails not only a conventional choice of sign, as in the case of
ordinary Euclidean space described above, but also a choice of scale for volumes. In
an affine space there are, to start with, no orthogonal unit vectors in terms of which
to define unit volume, so that the unit of volume, as well as the orientation, has to
be chosen. It is not to be expected, therefore, that there will be a single function
with the properties of a measure of volume on an affine space, even allowing for the
ambiguity of sign.

We shall approach the investigation of volume functions by setting out axioms
which any measure of volume might be expected to satisfy. We use {1 to stand for
a volume function, and Q(z;v;,v2,...,v,) to denote the volume it ascribes to the
parallelepiped (z;v,,v2,...,v,). The axioms are as follows:

(1) the volume of a parallelepiped is a real number, and there is at least one
parallelepiped for which it is not zero

(2) volume is unaltered by translation:

Nz + w;vy,vz,...,v,) = N(z;v),v2,...,,) foralweV

(3) if an edge of a parallelepiped is scaled by factor k, its volume is scaled by
the same factor:

Nz, vy,v2,...,kve,...,va) = kQ(z;vy,v2,...,Vc,...,Un)

for all real k
(4) if a multiple of one edge is added to another, the volume is unaltered:

(z;v1,v2,. .., 08 + ke, Ve o, U,)
= (201,02, Uby- vy Vcy.onyUn) for b # c.

Assumption (1) implies that 0 is a function 4 x Y* — R (where V" means
V xV x---xV with n factors V). It prohibits the assignment of volume 0 to
all parallelepipeds—an assignment which would be consistent with practically any
other plausible assumptions about volume, but is neither useful nor interesting.
Assumption (2) requires that volumes respect the homogeneity of affine space. It
asserts that the volume of a parallelepiped depends only on its edges and not on
the position of the principal vertex, and so reduces the study of volume to consid-
erations about the vector space V underlying the affine space 4: 0 is independent
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of its first argument, and accordingly one may write Q(vy,v2,...,v,) instead of
1(z;v1,v2,...,vn) and regard 0} as a map V" — R. Assumption (3) asserts, for
example, that doubling an edge doubles the volume, and that if any edge is O then
the volume is 0. It asserts also that if an edge is reversed then the sign of the volume
is changed, the magnitude remaining the same. In view of Exercise 1 and assump-
tion (2) this is consistent with what has been said already about orientation, and will
allow us to define the orientation of any linearly independent ordered set of vectors
in an affine space with a volume function: the ordered set of vectors (v,,vz,...,v,)
will be said to have positive orientation if the volume 1(vy,v3,...,v,) is positive,
negative orientation if f}(vy,v2,...,vy,) is negative. Assumption (4) generalises the
rule that figures with the same base, lying between the same parallels, have the
same volume. Consider, for example, two parallelepipeds with the same princi-
pal vertex z and with edges (v;,vs,...,vn) and (vy,va,...,vs + kv;) respectively,
where {v,} are linearly independent. Each parallelepiped lies between the same
two hyperplanes, the one through z spanned by v,,vs,...,v,—; and the parallel
one through z + v,. The faces lying in the hyperplane through z coincide, while
in the hyperplane through z + v, the face of the second parallelepiped is obtained
from the face of the first by translating it through kv,. These two parallelepipeds
with the same base, lying between the same parallel hyperplanes, are to have the
same volume.

g==4--
"

Fig. 2 The significance of axiom (4).

Exercise 2. Show that there is a parallelepiped whose volume is 1. o

Exercise 3. Let w = w®va € V. Replace the cth edge of (z;v1,vs,...,va) by w. Show
that
v, v3,...,w,...,vn) = W vy, vs,...,vn).

Show, in particular, that if the vectors v),v;,...,un are linearly dependent then
2(vy,vs,...,un) = 0. Deduce that the edges of any paralielepiped whose volume is non-
zero constitute a basis for V. o
Exercise 4. Show that the function A on triples of vectors in 3-dimensional Euclidean
space defined by A(v,,v3,vs) = v - v3 X v3 satisfies the axioms for a volume function. 0
Exercise 6. Let {e,} be a basis for V. Let A be the function which maps (vy,vs,...,va)
to the determinant whose rows are the components of the v, relative to the e, as basis: if
vs = vdey then A(vy,vs,...,un) = det(v)). Show that A satisfies the assumptions for a
volume function. Let {6°} be the basis for V* dual to {ea}. Show that A(vy,vs,...,un) =
det((va,8%)). Show that any parallelepiped whose edges are (e1,e3,...,e) has volume 1
(as measured by A). o

Exercises 4 and 5 exhibit volume functions, and show, therefore, that our ax-
ioms for volume functions make sense. In the next section we show that the con-
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struction in Exercise 5 is essentially the only possible construction of a volume
function.

2. Volume as an Alternating Multilinear Function

A function on a vector space with two or more arguments, which is linear in each
argument, is said to be nultilinear; a function which changes sign if any two of
its arguments are interchanged is called alternating. To be explicit, suppose that
T:V? — R is a function with p arguments, each taken from V. Then T is linear
in its ith argument (1 <1 < p) if, for every vy,vz,...,v,,v),...,v, € V and every

k,k' ¢ R,
T(vi,va,... kv, + k'v),...,v,)
=kT(vi,v2, .. vy ooy up) + k' T (01,02, .., 00, .. 0p).

The function T is p-fold multilinear if it is linear in each argument. It is alternating
if

T(vi,v2,.. o 0y, Uy vp) = =T(Vg, 02,000, 00y U5, o, Up)

for every collection of vector arguments, and for interchange of any pair of argu-
ments. These two properties are of course quite independent; we shall have occasion
later to deal with functions which are multilinear without being alternating.

We show now, from the assumptions about volume, that every volume function
must be alternating multilinear. We show first, from the results of Exercise 3, that
any volume function 11 is multilinear. We have to show that

Qvy,v2,...,0c + VL, .., vn)
= Q(v1,v2,. .., Vey. . Un) + vy, 02, 00, .. U0);
since by assumption Q(vy,va,...,kv.,...,vn) = kQvy,v2,...,vc,...,VUn), this is
enough to show that 1 is linear in its c¢th argument, and so that it is multilinear
(since the same result will hold for every ¢).

Suppose first that {v,,vs,...,vc,...,va} and {vy,v2,...,v.,...,v,} are both
linearly dependent. Then {v),vz,...,vc. + v.,...,v,} is also a linearly dependent
set, and so

vy, V2,00 0 + V), .0, )
~ Qvr, vz, Ve v0) + (v, vz, 00, U)
since each term is zero. On the other hand, suppose that. at least one of these
sets of vectors, say {vy,vz,...,tc,...,Un}, is linearly independent. Then v!. =
kve + Z‘#c kqvq say, and

Qvi, vz, vc + 05, ..,vn) = Qv va, ., (1 HK)ve + 3 kqug, ..., vn)

d#c
= (14 k)(vy,v2,...,0,)

by Exercise 3, while

v, vz, 0, o vn) = k(v V2, Ve, e, Un)



90 Chapter 4

so that again

N(vi,va,... Ve + V., ..., Un)
=(v1,v2,...,Vc,...,vn) + D(v1,v2,...,0),...,v5).

Thus 1 is linear in each argument; since it has n arguments it is an n-fold multilinear
formon V.

If two of the arguments of 1 are the same, then its arguments are certainly
linearly dependent, so that, again by Exercise 3, its value is zero. From the multi-
linearity it now follows, inserting v + v’ in any two places, that

N(vyvz,..., v+ v, v+ v,.,v,) =0
= vy, 02,0,y . 3 UyooeyUn) + D(vy,v2,..0,0,...,0, 00, 05)
+ vy, v2,...,v vy un) + Qv g,V Y vR)
leaving only
N(vi,vz,...,v,..,0 0 u0) + Q(vy, 02,000,000 0,000 00) =0,

which is to say, interchange of any pair of arguments changes the sign. Hence fl
is alternating: it is an n-fold alternating multilinear form on V. An alternating
multilinear form is also called an exterior form; thus 1 is called an n-fold exterior
Jorm, or exterior n-form, or even simply n-form. These latter expressions, although
less expressive of the nature of the object, are preferred for their brevity and es-
tablished by common usage. The word “skew™ or “skew-symmetric” is also used as
a synonym for “alternating”; however, we shall reserve skew-symmetric to refer to
the components of an exterior form, to be introduced shortly.

If A is an affine space modelled on V, then an exterior form on V determines
an exterior form at each point of A. The same language is used to describe forms
on A and on V.

Volumes and determinants. We now make explicit the connections between
volumes, exterior forms, and determinants. Let (z;e,,e3,...,¢,) be a parallelepiped
whose volume is not zero. The e, must be linearly independent, and hence a basis
for V. Now let x be any permutation of (1,2,...,n). Then

ﬂ(e,“),c.m,. . ,C,,(,‘)) = t(w)ﬂ(c.,cg,. .. ,Cn),

where ¢(7) is the parity of x; because if 7 is written as a product of transpositions,
each transposition will effect a change of sign, by the alternating property of 1, and
¢(x) is just (~1) to the power of the number of transpositions. We shall express the
volume of any other parallelepiped in terms of the volume of this one by writing
the vectors which specify its edges relative to the e, as basis. For this purpose it
is convenient to introduce the Levi-Civita alternating symbol, which is a tensor-
algebraic device for constructing determinants: for each ordered set of n integers
(ay,a2,...,an) with 1 < a; <nlet

] = (@1070n o 0 if ay,a3,...,a, are not all different
Groz.-0n T ") €(r) otherwise
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where, in the second case, 7 is the permutation which brings (1,2,...,n) to

(a1,az,...,an).
Now choose any (a,,a3,...,a,), possibly with repetitions, and define

na,ag...a.. = n(ca. 1€agye- :ea..)-

These numbers (for all possible (aj,az,...,a,)) are called the components of N
relative to the basis {e,}. Notice that the array of components is skew-symmetric:
if any two of its indices are interchanged a component changes sign, and if any two
are equal it is zero. Comparing the definition of components with the expression
for ﬂ(c,“),c,(z), . .e,,(,.)) given above, one sees that

nn,ag”.a.. = (uln,...o,n(cl 1€2y. .. vcn)

with each index a, allowed to range over 1,2,...,n.
Now let (z;v1,vz,...,u,) be any other parallelepiped, and express the v, in
terms of the e,, say v, = vles. By the multilinearity of 0,

. a a a
vy, v2,...,vn) = v]'v3? - 02" (eq, a3y -+, €a,)
a a
= fa.ag..,a,.v|‘”2, . 'v:'n(tl,cz,- .- :en);

but from the definition of €q,q,...a, and the definition of a determinant,
€aya5...00V]' V37 VA" = Z c(w)v:mv;m o) = det(vh),

(the sum on the right being over all permutations x of (1,2,...,n)) since the n
summations on the left contribute only when (a,,az,...,a,) is a permutation of
(1,2,...,n). Substituting in the preceding formula, one is left with

N(vy,v2,...,va) = det(v3)(ey,e3,..., ).

Compare this with the result of Exercise 5, which is a special case. What has been
shown here is that any volume, because it is an exterior n-form, may be written as
a determinant of its edge vector components times a standard volume.

Exercise 6. Let {é,} be another basis for V, related to the basis already introduced by
éqa = hbes. Show that
ﬁo.o,,..u,. = det(h:)ﬂ.,.,“,.,, ’

where ﬁ., a,...a, 8re the components of (1 relative to the new basis. a

Exerclse 7. Let {',0%,...,6™} be a set of covectors, given in order, and let : V" — R
be the function defined by (v, vs,...,va) = det({vs,0%)). Show that 1 is an exterior n-
form, that is, that it is multilinear and alternating, and that every non-zero exterior n-form
may be so obtained, by a suitable choice of {#®}. Show that 1 takes the value zero on every
set of vectors if and only if the 6° are linearly dependent, and that if the 8° are linearly
independent then {1 takes the value zero only when its arguments are linearly dependent.

Let {6°} be another set of covectors, related to the given one by ° = k26*. Show that
{6°) yields the same exterior n-form, by det({vq,8%)), if and only if det(k¢) = 1. a

The exterior n-form defined by Q(v;,vz,...,v,) = det((vs,8%)), the covectors
8° being given, is called the ezxterior product of the §* and denoted

N=0"A00PA...A0"
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(the mark A is read “wedge”). The order of factors in the product is important.
In fact, this construction is not limited to n-forms. If {6',62,...,6"} are any r
covectors, given in order, and w: V" — R is the function defined by

w(vi,va,...,v) = det((vmaﬂ))

then w is an r-fold multilinear alternating form. Its geometrical significance will
become apparent in Section 4.

Exercise 8. Show that
"M AGPD A AP = ¢(x)0  AOP A AE"

for any permutation . Q
Exercise 9. Let 0 and {1 be two volume functions on V, let {e,} be a basis for ¥, and let
{va} be any n vectors in V. Show that if {2(vy,vz,...,us) = O then {}(v),vs3,...,vs) = 0;
and that . X

(vi,vz,...,un) _ fl(e1,e3,...,en)

(v, v2,...,va) Qe ea,...,60)
when {U(vy,vs,...,un) #0. o]

It follows from the result of this exercise that {1 differs from f1 by the same
constant factor for the volumes of all parallelepipeds, and that any volume function
is determined completely by its value on one ordered basis of V. The only n-form
which does not correspond to a volume is the zero form, which takes the value
zero whatever its arguments. Consequently, if {8°} is any basis for covectors, every
exterior n-form may be written 1 = k@' A82A ... AO" for some k, and {1 is a volume
function if and only if k # 0. The non-zero n-forms may be divided into two disjoint
sets, the forms in each set differing from one another by a positive factor and from
the forms in the other set by a negative factor. This allows one to generalise the
idea of an orientation, described in the introduction to this chapter. An orsentation
on V is a choice of one of these two sets of n-forms, and two forms in the same set
are said to define the same orientation. Choice of an orientation for V amounts to
choice of a volume function, up to a positive factor. An orientation having been
chosen, an ordered basis {e;,ez,...,ea} for V is said to be positively or negatively
oriented according as {1(e;,ez,...,e,) is positive or negative, for some, and hence
for any, volume function defining that orientation.

If A is an affine space modelled on V, then an orientation on V determines an
orientation on A. The other definitions just stated may be repeated word for word
for A. As has been pointed out before, the choice of an orientation, like the choice
of a volume form, is conventional.

3. Transformation of Volumes

We have already described the effect of an affine transformation on a parallelepiped.
We show now what it does to a volume function 1. Let (z;v),v2,...,v,) be a
parallelepiped in A, and let A be an affine transformation of A with linear part A.
The transformed parallelepiped is (A(z); A(v1),A(v2),...,A(va)) and its volume is
(A(v1),A(v2),- .-, A(va)). Notice that the function

(viyvzy...yvn) = B(A(v2),A(v2),. .., A(va))
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is alternating and multilinear, so that it is an n-form on V. It must therefore be a
multiple of the n-form (1; call the multiplying factor D()). We show that D(}) is
just the determinant of the matrix representing A, with respect to any basis. Let
{ea} be any basis for V, and let A(es) = Abes. Then

D(X)0(er,ea,...,en) = 11(A(€1), A(e2), ..., A(en))

ATPAT - A% N(eq, s €azs- -5 €a,)

= €ayaz..an A AR AR (er, €2, 80)
det(A7)N(ey, e2,...,€n).

But 1 is non-zero and {e,} a basis, so fl(e),e2,...,en) # 0. Thus D(A) = det(AF)
as asserted. Since it is independent of the choice of basis, we can write det A for
det(Ag).

Exercise 10. Show that det does not depend on the choice of 0. o
Exercise 11. Let A and M be affine transformations with linear parts A and u. By
considering the effect of Mo A on a volume form {1 show that det(uo\) = (det u)(det A). O
Exercise 12. Show that det A = 0 if and only if X is singular. o

Exercise 13. Let A be a linear map and 2 a non-zero n-form on V. Show that the
function V" — R given by

(v1,v2,...,un) — Zﬂ(u.,uz,...,A(vc),...,u..)

e=1
is an n-form on V, and is therefore a constant multiple of 2. Show that the factor is the
sum of the diagonal entries of the matrix representing A with respect to any basis for V,
and that it is independent of choice of 0. o

The factor is called the trace of A and denoted tr A.

Whether or not an affine transformation changes orientation is determined by
the sign of the determinant of its linear part: if det A > 0 then orientation is pre-
served, if det A < 0 it is reversed. The orientation-preserving affine transformations
form a subgroup of the group of all affine transformations. The linear parts A with
det A > 0 form a subgroup of the general linear group GL(V). The affine transfor-
mations with det A = 1 preserve not only orientation but volume itself, and no other
affine transformations preserve volume. A linear transformation A with det A =1 is
called unimodular, and an affine transformation with unimodular linear part may
also be called unimodular.

Exercise 14. Show that the unimodular linear transformations of a vector space V form
a group, and that this group is a normal subgroup of GL(V). Show that the unimodular
affine transformation of an affine space form a group, and that this group is a normal
subgroup of the group of all affine transformations. o

The groups of unimodular transformations of R™ and of V respectively are
denoted SL(n) or SL(n,R) and SL(V) and called special linear, “special” being in
this context a synonym for “unimodular”.

The assignment of an orientation and the assignment of a volume function are
two examples of the addition, to the affine structure of an affine space, of a further
structure whose preservation entails the restriction of transformations of the space
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to a subgroup of the affine group. This is a frequently occurring situation; further
examples will appear in Chapter 7.

It is instructive to compute the rate of change of volume under the transfor-
mations of a one-parameter affine group. Let ¢; be a one-parameter affine group,
with linear part A¢. Then

%(ﬂ(«\g(vl), Ag(vz), ceey /\g(vn)))‘=o = i'ﬂ(vl,vz, oo ,A(vc), e ,lln)

= (tr A)(v1,vz,...,vn)

where A = d/dt(A;)(0). The vector field V which generates ¢ is given with re-
spect to affine coordinates by (AZz® + B®)d,, where A = (Ag), and tr A may be
suggestively expressed in the form 3,V 2. We shall use this in the next chapter as
the basis for a definition of the divergence of a vector field. Notice that if ¢ is a
one-parameter group of unimodular affine transformations (which preserve volume)
then tr A = 0.

4. Subspaces

In this section we show how alternating multilinear forms may be used to charac-
terise affine subspaces. The setting is again an affine space 4 modelled on a vector
space V of dimension n. An affine subspace of A of dimension p, or p-plane, denoted
B, is constructed in A by attaching at the point zo a p-dimensional subspace W of
V. In Chapter 1, Section 2 we described two different ways of characterising the
p-plane 8:

(1) parametrically, choosing a basis {w,} for W (a = 1,2,...,p): any point y
of 8 may be written y = 2o + y®w,

(2) by constraints, choosing a basis {6”} for constraint forms of hyperplanes
which intersect in the p-plane (p = p+ 1,p+2,...,p + n): any point y of 8 must
satisfy the equations (y — z,0°) = 0.

These two descriptions are related by the fact that the constraint forms vanish
on vectors which lie in the p-plane, so that (w,,8°) = 0 for a = 1,2,...,p and
p=p+1,p+2,...,n. They may be regarded as dual descriptions, in the sense that
one is in terms of elements of V, the other in terms of elements of the dual space
V*. This duality pervades the developments which follow. The notation will be
adapted to it: throughout this section, indices a, 8 from the beginning of the Greek
alphabet will range and sum over 1,2,...,p, and indices p, ¢ from the middle of
the alphabet will range and sum over the complementary values p+ 1,p + 2,...,n.
Latin indices a, b will range and sum over 1,2,...,n as hitherto.

Hyperplanes and multivectors. Each of the descriptions of a p-plane men-
tioned above is highly redundant; the p-plane may be determined by any set of
p independent vectors which lie in it or any set of n — p independent constraint
forms for hyperplanes which intersect in it, and in choosing any particular set of
either one is giving unnecessary information. Experience shows that descriptions
which include the minimum of unnecessary information are likely to be the most
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revealing, and so it is worth seeking a less redundant description. A description in
terms of determinants is suggested by the facts that one could change the order of
the vectors, or constraint forms, in the independent set, or add a multiple of one of
them to another, without changing the p-plane—compare the properties of volumes
set out in previous sections.

A determinantal description turns out to be convenient, and to have other
important applications. In formulating it we suppose the point zo at which the
subspace B is attached to be fixed once for all, so that we may as well deal with the
position of the subspace W in the vector space V as with the position of the affine
subspace B in the affine space 4.

Out of the basis {w,} for W we construct a p-fold alternating multilinear
function W on the space V* of all covectors, as follows: for any n!,n?,...,n? € V*,

W(n',n%,...,n") = det((wa,n?)).
Writing this determinant out with the help of the Levi-Civita symbol one finds
W(”l!ﬂz;- .. "’p) = ‘a|ag...a,.(wa' -nl)(waa’nz) e (wa,.,'lp)
e Arwdl wd? - wirng ma, ok

— Wala:...a,.n‘:l ’7:2 “ee nl’l’,,

=€

where

6183...0) _ G Q3...Qp 0,81 2,82 o8y
w =¢ wo' wal wor

are the components of W with respect to a basis for V, in which the w, have
components w3, while the n® have components ng with respect to the dual basis
for V.

Exercise 156. Verify that this function W is alternating and multilinear. o]
Exercise 16. Show that if w, = kSws, where {t,} is another basis for W, and if
W(n',n?,...,n%) = det({1a,n")), then W = det(k2)W. o

A multilinear alternating function on V* is called a multivector, and a p-fold
multivector is called a p-vector. A 2-vector is usually called a bivector. It follows
from the last exercise that each p-plane determines a p-vector, up to a non-zero
scalar factor. Any one of these p-vectors will be called a characterssing p-vector for
the p-plane. The p-vector W defined above is denoted

W:w./\wgf\---/\w,,

and called the ezterior product of the w, (and A is again read “wedge”). Any
multivector which may be written in this way as an exterior product of vectors is
called decomposable, but not all multivectors are decomposable.

One can easily retrieve from a decomposable p-vector W a basis for the vector
subspace which it characterises, but one cannot, for p > 1, reconstruct the individual
vectors of which it was formed as exterior product—the whole idea, after all, was
to find a description of the p-plane avoiding any particular choice of basis for it.
The retrieval can be carried out by acting with W on p — 1 covectors, leaving one
argument to be filled: W( - ,n?,...,7n"), with first argument left empty, is a linear
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form on V°, to be evaluated by filling in the first argument, and is thus an element
of V. Explicitly,

W(-,n%...nP) = €% (wo,,n?) - (Wa,,nP)wa,;

this is a linear combination of the original vectors, hence lies in the subspace W.
Choosing the n® p — 1 at a time from a basis for V, one recovers a spanning set for
W. This shows that the p-vector W determines the subspace W, and hence also,
given a point zq on it, the p-plane 8.

Exercise 17. By completing {wo} in any manner to a basis for V, and choosing the n®

from the dual basis for V*, show that W( - ,n?,...,n") spans the subspace W as the n®
are varied. o

Exercise 18. Let x be a permutation of (1,2,...,p). Show that

We(1) AWe(a) A s AWe(p) = (M)W Awa Ave- Awp, o]
Exercise 19. Let {e;} be a basis for V, relative to which a p-vector W has components
We1%3-9; Jet {¢,) be another basis for V, related to {e.} by é, = hley; and let We192-9»
be the components of W relative to {¢,}. Show that W12 ¢ = hythg .- h::W" 308y
Thus each index of W transforms in the same way as a vector index under change of basis. O

Hyperplanes and exterior forms. We now develop the dual description of a
p-plane, in terms of constraint forms for the hyperplanes which intersect in it. The
process is very similar to that just carried out. The notation is as before: {6°}
is a basis for constraint forms determining the affine subspace 8 constructed by
attaching at the chosen point zo of A the vector subspace W of V. Therefore
(w,0?) = 0 for every w € W and for p = p+ 1,p + 2,...,n. Out of the basis {8¢}
for covectors annihilating all vectors in W we construct an (n — p)-fold alternating
multilinear function w on V , as follows:

W(Vps1,Vps2y...,0n) = det((v,,87))

for any vp41,vp42,...,Un € V. Writing this determinant out with the help of the
Levi-Civita symbol one finds

w(”p+l'vp+2v oo ,vn)

= (P.-nﬂ.-oz' Pn (”p+l ’op,.“ )(vp+2’op"’) ce (V'uop')

= P+ @Prea .., @Pn yy0r+1 Bpe2 0
- (P,-Hﬂ,-n"'ﬂuon:.:.acz.n on:vp+l "'p+2 v,"

= w“r#l;‘p#:"“n v;:-’l' v::-’z’ vt v:u
where
wﬂp#lﬁlw}' an = ‘ﬂr#lﬂr#i""‘n o:::: ag"':: vt 0::
are the components of w with respect to a basis for V*, in which the 6° have
components 8%, while the v, have components vy with respect to the dual basis for
V. In this calculation repeated as sum over 1,2,...,n and repeated ps sum over
p+1,p+2,...,n.
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Exerclse 20. Verify that this function w is alternating and multilinear. Show that
if ¢ = k26°, where {6°} is another basis for forms which annihilate W, and if
W(Vp+1,Vps3,y... Un) = det((v,,é’)), then w = det(kf)w. o

Generalising from the nomenclature for a volume function, one calls any mul-
tilinear alternating function on V an erterior form; an r-fold exterior form is
called an ezterior r-form, or simply an r-form. The number r is called the de-
gree of the form. In particular, a covector is also called a I-form, and a vol-
ume function is an n-form. The exterior (n — p)-form w defined, as above, by
W(Vp4+1,Vp42,...,Vn) = det((v,,07)) is denoted

w=0PH AQPYI AL A"

and called the exterior product of the 8°. Any exterior form which may be written
as an exterior product of 1-forms is called decomposable, but not all exterior forms
are decomposable.

A decomposable form which is the exterior product of independent constraint
forms for an affine subspace is called a characterising form for the subspace and for
the corresponding vector subspace W. If any one (or more) of the vectors on which a
characterising form w is evaluated lies in the subspace W which it characterises, then
the value is zero. If, for example, w lies in W and vp4,,...,v, are arbitrary vectors
then w(w,vpy3,...,v,) is a determinant whose first column consists of pairings of
w with §p+! gp+2 9% in turn, and all these pairings yield zeros. Conversely, if
w(w,vp42,...,Un) = O for some fixed w and all vpyz,...,v,, then w must lie in
the subspace W, for otherwise the constraint forms 8P+! 9P+2 _ 6™ could not be
independent.

Exercise 21. Let w be a decomposable r-form. Show how to recover a basis for the

1-forms of which it is the exterior product. o
Exercise 22. Let » be a permutation of (1,2,...,p) and let 6% be 1-forms. Show that
"M AGTI A AGTP) = ¢(r)0' ANOP A AGP. o

5. The Correspondence Between Multivectors and Forms

We now display a relation between the characterising multivector and characterising
form descriptions of a subspace. Once again let V be an n-dimensional vector space
and let W be a p-dimensional subspace of it. Let W be a characterising p-vector
for W, and w a characterising (n - p)-form. Then there is a basis {w,} for W
such that W = w; A wa A -+ A wp; and if {0} is any other basis for W such that
W =1, Az A--- Ay then W, = kPwpg with det(kf) = 1.

Now suppose given a volume form fl1 on V. Let @ be the function on V"7 de-
fined by filling in the first p arguments of the given volume form with wy,w;, ..., wp:

@ =M(wy,wa, ..., wp, <yt e, )

Then w takes n -- p vectors as arguments, and is alternating and multilin-
ear in them, and is therefore an (n ~ p)-form on V. Moreover, if &' =
N(wy,03,...,%p, -, *,..., - ) is the (n — p)-form constructed in the same way
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from the basis {4,} then @' = &, as can be seen by filling in the remaining ar-
guments arbitrarily with vectors chosen from V and recalling that the matrix re-
lating the W, to the w, has determinant 1. Hence w is completely determined
by the characterising p-vector W, irrespective of the choice of basis for which
W = wy Awz A -+ A w,. We shall show now that @ is a multiple of the char-
acterising (n — p)-form w.

To this end complete {w, } arbitrarily to a basis {w,} for V by specifying n—p
further vectors wpy),Wpy2,...,wa. Let {8°} denote the dual basis for V*. Then
(wq,0?) = O for each a = 1,2,...,p and each p = p+ 1,p + 2,...,n. Therefore
the 67 are constraint forms for the subspace W, and §P+! A §P+2 A ... A 9" iz a
characterising form for it. By the result of Exercise 20, 9P+ A @P+2 A ... A O™ = cw
for some (non-zero) number c. Moreover, since {8°} is a basis, {1 = c'0' A§2A-..AO"
for some (non-zero) number ¢’. Now let v,41,vp432,...,Un be any n — p vectors in
V and evaluate @ on them:

t;’(vp+ltvp+2v~-'vvn) = n(wlvwzv- ‘-owp»vp-}lpvp-&?'---ovn)
=c(0' AP A AO™)(wy,wa,...,va).
Apart from the factor ¢, this expression is a determinant, which we divide into
pxp,px(n-p)(n-p)xpand(n-p)x(n- p) blocks:
I, ((v,,0°)
0 ((v,,8°)

fecson] oo

since {w,} and {6°} are dual bases. Thus

l ) _
E;W(Upu.vpn, oy Un) =

W(Vp4+1,Vps2,-..,Un) = c' det((v,,8%))
=c(0P* AT AB™)(VprtyUpsy--eaUn)
= cc'w(v,,+..v,,+g,....tr,.).

Thus & is indeed a non-zero multiple of the characterising (n — p)-form w, and is
therefore itself a characterising form for W.

We have shown that every characterising multivector determines a character-
ising form, by the construction

W= (w1, Wa,.. . Wpy © 1yt gy o),

the w, being vectors which can be determined from the characterising form by the
construction explained in the last section. The characterising (n — p)-form con-
structed in this way is called the dual of the characterising p-vector W with respect
to the given volume form 1. Choice of a different volume form will yield a dual
which differs from this one by a scalar factor. It follows from these constructions
that if a volume form is given on an affine space then it may be used to establisha 1 :
1 correspondence between decomposable p-vectors and decomposable (n — p)-forms.
Exercise 23. Let W?'°2- % be the components of a given decomposable p-vector W

relative to a chosen basis {e,} and let {2 be any volume form such that {2(e},e3,...,e,) = 1.
Show that

Wa, 418,42 .80 = €ajaz  apa,4 e, W
are the components of the dual w of W relative to 1. o
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Exercise 24. Let w be a characterising (n — p)-form for a p-plane. Show that

won a3z ..ay = tan ax 9pdpey - o"wo'., 843 Gn
are components of a characterising p-vector W for the p-plane, and that w is a multiple of
the dual of W. o]

6. Sums and Intersections of Subspaces

We now explain, by means of some examples, how the sums and intersections of
subspaces may be characterised. Let A be an affine space of dimension n, modelled
on a vector space U, and let B and C be affine subspaces of A, modelled on vector
subspaces V and W respectively. We shall assume that 8 and C have in common at
least one point zo, and so consider them to have been constructed by the attachment
of V and W to A at that point. The intersection BNC of B and C means the largest
affine subspace of A which lies in both; it comprises their common points, and is
constructed by attaching VNW at z,. The sum B+ C of B and C means the smallest
affine subspace of A which contains them both; it comprises points which can be
reached from z, by a displacement in B followed by a displacement parallel to C or
vice versa, and is constructed by attaching V + W at zo. The formula

dim(8 + C) + dim(8n () = dimB8 + dim(

follows from the corresponding one for vector subspaces (Chapter 1, Section 3).

(1) Suppose that B and C are distinct hyperplanes. Let n and ¢ be constraint
forms, hence characterising forms, for B and C respectively. Points in 8 N C must
satisfy both (z--zo,n) = 0 and (z —zo,¢) = 0; and therefore n A¢ is a characterising
form for B N C, which must be an (n — 2)-plane. (In this case B + C is the whole
space A, as follows from the dimension formula).

(2) Suppose that B is a p-plane and C a g-plane, and that B + C is the whole
of A, which entails p+ ¢ > n. Then dim(B N C) = p+ ¢ — n. We shall characterise
B n C. Any characterising form for 8 is a decomposable (n — p)-form, say w =
nP*' AnPt2 A ... An", and for C, an (n — ¢)-form, say x = ¢9t' A¢9+2 A A gn,
A point of B N C must satisfy (z — zo,n*) = 0, where p=p+1,p+2,...,n, and
(z - 20,¢°) = O, where 0 = ¢ + 1,9 + 2,...,n. If these constraints are linearly
independent then there are 2n -- (p + ¢) of them, so that they are satisfied on a
subspace of dimension n - (2n - (p+4¢)) = (p+g) —n, which is exactly the dimension
of BN C. Hence a characterising form for BN C is

r}"“Ar}"“/\-u/\ry"/\gq“Au-Ag",

formed by taking the exterior product of all the constraint forms for the two sub-
spaces. This product is written w A x and called the ezterior product of these two
exterior forms.

(3) Suppose that B is a p-plane and C a line through zo, and that one wishes
to find their sum. If the line lies in the p-plane then the sum is the p-plane itself,
but if it does not, then the sum is a (p + 1)-plane, and the intersection is just the
point zo. We show how to find the sum in this case. Let w be a characterising
(n — p)-form for the p-plane and let v be a (non-zero) vector tangent to the line.
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Since v does not lie in the p-plane, w(v,vp432,...,vn) does not vanish for every
choice of vp42,...,va. It does vanish, however, if one or more of vp43,...,v4 is a
linear combination of v and a vector which lies in the p-plane. Moreover, v being
kept fixed, w(v,vp43,...,v,) is alternating and multilinear in vp43,...,vs. Thus,v
being kept fixed, w(v, -,..., -) is an exterior (n —p—1)-form which vanishes precisely
when one or more of its arguments lies in B + C; it is therefore a characterising form
for B+ C. This (n — p — 1)-form is denoted v Jw (J is read “hook”); once more,
explicitly,
(vIw)(vps2y---2¥n) = w(v,vp42,...,Vn).

The form v Jw is called the interior product of v and w (if the line lies in the p-plane,
then v Jw, so defined, is zero).

These examples do not exhaust the possibilities for the intersections and sums
of subspaces; but we have done enough to indicate how intersections of subspaces
may be characterised by exterior products, and the sum of a subspace and a line
by an interior product.

7. Volume in a Subspace

The idea of volume introduced in Section 1 may be extended to the case of an affine
space which is a subspace of a larger space. Suppose that B is a p-dimensional affine
subspace of an affine space A constructed by attaching the vector subspace W of V
(the space on which A is modelled) to A at some chosen point zo. Then a volume
form {1y may be chosen on W and used to compute the volumes of parallepipeds
in B. Since B is p-dimensional, 1y must be a p-form, but it will differ from the
p-forms, with p < n, introduced so far, because it will need to be defined only on
vectors in W (and be non-zero on every basis) whereas a p-form which arises as a
characterising form is defined on all vectors in the ambient space V, and vanishes
on those which lie in the (n — p)-dimensional subspace which it characterises.

It is a straightforward matter to define a p-form on W, given a p-formw on V,
with the help of the inclusion map i: B — A and the corresponding inclusion map
W — V which (in view of the developments in Chapter 2) we denote ¢.. Given any
p-form w on V one can define a p-form on W, denoted i*w and called the restriction
of w to W, by

Cw(wy,wa,. .., wp) = w(low,tow,,...,l.wp).

Note the role of the inclusion map in distinguishing two rather different objects:
{'w, whose arguments may come only from W, and w, whose arguments may be
any elements of V.

Now i°w will serve as a volume form on W only if it does not vanish on a basis
of W. This is easy to ensure, as follows. Let U be any subspace of V complementary
to W,sothat V = WU, and let w be a characterising form for U. Sincedim W = p,
dimlU = n - p, so that w is a p-form. We show that ¢*w is a volume form for W.
Let {ea}, a=1,2,...,p, be a basis for W and {e,},p=p+1,p+2,...,n, a basis
for U, so that {e,}, @ = 1,2,...,n, is a basis for V. Let {#°} be the dual basis.
Then 6',62,...,0° are constraint forms for U, and so w = c6' A@> A--- A 0P, where
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¢ is some non-zero number. Therefore
i"wler,ez,...,¢p) = cdet((eq,8%)) =c,

and 8o 1w is a volume form. A different choice of complementary subspace will
yield a different w, but 1°w can change only by a scalar factor.

Thus the characterising form for any subspace will serve, by restriction, as vol-
ume form for a complementary subspace. Suppose that w and x are characterising
forms for complementary subspaces U and W respectively, so that the restriction of
w to W is a volume form on that subspace, as is the restriction of x to U. Then wAx
is an n-form on V, which is non-zero (it is a characterising form for the zero sub-
space!); thus w A x is a volume form on V. If (zo;v1,v2,...,Vn) is a parallelepiped
whose first p edges belong to W and whose last n — p edges belong to U then its
volume as measured by wA x is just w(vy,va,...,9p)x{(Vp+1,Yp42,...,Un). One may
regard (zo;vi,vs,...,vp) as a parallelepiped in 8 and (zo; Vp+1,Vp42,--.,Vn) 88 8
parallelepiped in C. The forms w and x define (by restriction) volume functions
in B and C, and then w(vy,vs,...,v,) and x(vp41,Vp+2,-..,vn) are the volumes
of these parallelepiped faces in B and C respectively. The exterior product gener-
alises, in this sense, the familiar formula “base areaxheight” for the volume of a
3-dimensional box.

An important instance of these ideas arises when W is of dimension n — 1, so
that the complementary subspace U may be any 1-dimensional subspace not lying
in W. In this case a basis for U consists of a single vector u. The dual of u with
respect to a volume form 1 on V, which is a characterising form for W, is simply
the interior product u Jf1. In this case the restriction of u I} is a volume form for
w.

Finally, we consider the orientation of a hyperplane. An orientation for W is a
set of volume forms on W which differ from one another by positive factors. Thus
the vector u determines one orientation of W, that corresponding to u Ifl, and —u
determines the opposite orientation. Thus if an orientation has been chosen for
V, and W is a subspace of V of codimension 1, then any vector u not tangent to
W determines an orientation for W, called the orientation of W induced by u and
the orientation of V: if 11 determines the orientation of V, then the restriction of
ulfl to W determines the induced orientation of W. Likewise, if A is an affine
space modelled on V and B a hyperplane in A modelled on W, if 0 is a volume
function on A, and if u is any vector given at a point of B but not tangent to it,
then u JQ) determines an orientation of B, called the orientation induced by u and
by the orientation of A.

Notice that the establishment of an induced orientation, as here set out, has
nothing to do with whether u is orthogonal to W: only the sense of u is relevant,
and the concept of orthogonality is not required.

8. Exterior Algebra

The definition of volume and the characterisation of subspaces are only two of the
many applications of multivectors and exterior forms in geometry. We therefore
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supply, in the rest of this chapter, the apparatus for these applications, in an expo-
sition of the algebraic properties of multivectors and exterior forms and of exterior
and interior products. Here we give prior place to algebra, not geometry. One of
the principal ideas of this section is that forms or multivectors of a given degree
may be considered to constitute a vector space.

We begin with a recapitulation of the ideas introduced so far. An alternat-
ing multilinear function on a vector space V is called an exterior p-form on V.
An alternating multilinear function on V* is called a p-vector on V. The p-form
(viyva,...,vp) — det((vo,oﬁ)), where 6!,62,...,60P are given 1-forms, is denoted
6' AG2 A --- A6P and called a decomposable p-form; it is the exterior product of
the 8. A p-vector (n',n?,...,nP) v det((wa,n?)), where w;, w,,...,w, are given
vectors, is denoted w; A wa A -+ A w, and called a decomposable p-vector; it is
the exterior product of the w,. If w is any p-form, and v a vector, then vJw is
the (p — 1)-form defined by vJw(vy,va,...,vp-1) = w(v,vy,...,vp_1). If w is any
decomposable p-form and x is any decomposable g-form, say w = n! An2 A ... P
and x = ¢'A¢?A---A¢?, and if {n',...,nP,¢!,...,¢} are linearly independent,
then w A x is the (p+ ¢)-formn' An2 A--- AnPAC  AGEA- - AgY.

The symmetry between V and V" expressed by (V*)* = V entails that a p-
vector on V may also be regarded as a p-form on V*, and that a p-form on V may
also be regarded as a p-vector on V*, but to reduce confusion we shall write “p-
form™ to mean “p-form on V" only, and “p-vector” to mean “p-vector on V" only.
By far the greater part of our treatment will refer only to forms; it should be clear
how, by interchanging the roles of V and V*, it could be extended to multivectors.

Vector spaces of multilinear maps. Let w, and w; be p-forms, and let ¢, and
¢z be numbers. A p-form ¢ ,w, + caw; is defined by
(crwr + cawa)(vi,va,. .., vp) = rwy(vi,v2,...,Vp) + cawa(vy,v2,...,vp)

for all vy,va,...,v, € V.

Exercise 26. Check that cyw; + cawsi, so defined, is alternating and multilinear. o

Exercise 26. Let W, and W; be p-vectors, and let ¢; and ¢z be numbers. Devise a
definition of ¢;W; + c2W; on the model of the definition for forms, and confirm that the

object thus defined is indeed a p-vector. a
Exerclise 27. Check that these definitions make the p-forms on V, and the p-vectors on
V, into vector spaces. o

The vector space of p-vectors on V will be denoted A” V, and the vector space
of p-forms on V will be denoted A? V*. It can be shown that A? V* is naturally
isomorphic to the dual of AP V, but we shall not prove this here. Note that /\l v
is just V itself, and /\l V*is just V*.

The advantage of forming a vector space of (say) p-forms is that one may apply
the methods and results of linear algebra to it. The disadvantage is that not all of
its elements have the simple geometrical interpretation which we have described in
earlier sections. For example, there is no reason to suppose that a linear combina-
tion of two (decomposable) p-forms which characterise distinct (n — p)-dimensional
subspaces characterises any subspace at all. This observation (which raises the
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question of how one determines which forms are decomposable) is considered again
in Section 12.

The multilinearity is more fundamental than the alternating property in the
construction of these vector spaces. In fact, if T} and T; are any two p-fold multi-
linear maps VP — R, not necessarily alternating, and ¢, and ¢; are numbers, then
¢1 Ty + ¢2T, defined by

(C|T| + Csz)(vhvz,...,UP) = C]T](Uhvz,...,v,,) +63T3(U),'}2,...,0p)

is also a p-fold multilinear map, and the set of all p-fold multilinear maps is made
into a vector space by this definition.

Multilinear maps may also be multiplied together. If S is a p-fold multilinear
map V? — R and T is a ¢-fold multilinear map V9 — R then their tensor product
S ®T is the (p + ¢)-fold multilinear map VP+9 — R defined by

S®T(v1,v2,...,Upsq) = S(vi,v2,..., )T (Vps1,Vpsa,. .., Upigq).

Exercise 28. Check that S ® T is multilinear. [=]

For the purposes of exterior algebra it is necessary to be able to pick out
the alternating part of an arbitrary multilinear map. For example, one may form
the tensor product of two alternating maps, but the result, though multilinear,
will not be alternating. The extraction of the alternating part of a multilinear
map is achieved by an operation which is a generalisation of the construction of a
determinant. Let T be a p-fold multilinear map VP — R. Define the alternating
part of T, alt T, by

1
alt T(vy,v2,...,vp) = 5 Y )T (ve(a)s Vu(z)s- -1 Vn(p))s

the sum being taken over all permutations 7 of (1,2,...,p).
Exercise 29. Show that alt T is alternating, that alt(altT) = altT, and that if w is a
p-form then altw = w. o

Now let {e,} be a basis for V. The components of T relative to this basis are
the numbers

Ta.a;...a,. = T(ca. 1€agy .- sca,.)~

There is a special notation for the components of alt T: instead of (alt T)a,a,...a,
one writes

T[o. az...ap)"

Exercise 80. Show that if Tas are the components of a 2-fold multilinear (bilinear) map
T then
Tias) = 5(Tas — Toa);
while if T is 3-fold multilinear (trilinear)
Tlabcl = %(Tok 4 Toca + Teas — Tacs — Toac — Tesa)- o
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The exterior product. A general definition of the exterior product may be
expressed in terms of the operation alt. Let w be any p-form and x any ¢-form.
Their exterior product w A x is defined by

(p+q)

WAX = P alt(w ® x).

The awkward numerical factor, if suppressed here, will pop up elsewhere. In terms
of its action on vectors, one may read off w A x from the definitions of ® and alt:

(wAXx)(vr,va,... vp4g)

1
=g Y €M (Or1)s Ur(ays - 1 Vr () X (Vm(pa1)s Urip2)s- -2 Unipra))
~

where the sum is taken over all permutations = of (1,2,...,p + ¢).
Exercise 31. Show that (according to this formula) if n' and n? are two 1-forms then
(n" An*)(v1,v2) = (v1,n")(v3,n%) = (v1,n%)(va,n") = det((va,n"))

(where a,8 = 1,2). Show further that if  is a 1-form and w a 2-form then

(n Aw)(u,v,w) = (y,N)w(v,w) + (v,N)w(w,u) + (w,n)w(y,v).
Deduce that if n!,n?,n° are any three 1-forms then

(n' A (0 An®))(v1,v2,vs) = det({va,n”))

(where now a,8 = 1,2,3). o

We now discuss some of the algebraic properties of the exterior product. It is
clear from the definition that it is distributive:

(crw) + cawz) Ax = qwy A x + cawz A x
wA(cix1 +e3x3) S cqwA X1+ cawA Xz
for any numbers c,,c3. The exterior product is also associative:
WA(XAY) = (WAX)AY

for any three forms w, x,¥. This is not so easy to see, though Exercise 31 gives a
clue as to what happens when the forms are all 1-forms: it turns out that in this
case ((n' An2) An®)(vy,v3,v3) = det((va,n”)) also. The basic idea of the proof
of associativity is to show that w A (x A ¥) and (w A x) A ¢ are both equal to
alt(w ® x ® ¢¥) (apart from numerical factors, the same in each case). It depends on
the fact, obvious from the definition, that the tensor product of arbitrary multilinear
maps V" — R, r = 1,2,... is associative.

First, let S be any p-fold multilinear function and T any g-fold multilinear
function on V, neither necessarily alternating. We show that if altS = 0 then
alt(S ® T) = 0. Partition the symmetric group on p + ¢ elements into equivalence
classes by the rule that ' ~ = if #/(1,2,...,p + ¢) has the same last ¢ entries as
7(1,2,...,p+¢q), in the same order. Then in each equivalence class all permutations
of the first p entries occur, and so since alt S = 0 the contribution of each equivalence
class to the sum in the evaluation of alt(S®T) is zero. In components, this amounts
to

sla.a,...a,.Ta,.‘.a,,n...a,...,l =0 if s[a.a,‘..a,,l =0.
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Now write alt(w ® x) — w ® x in place of S in this argument, and ¢ in place of T
Then alt(alt(w ® x) - w® x) = alt(w ® x) - alt(w ® x) =0, so that

0=alt((alt(w®x) ~w®x) ®¢) =alt(altfw ® x) ® ¥) —alt(w ® x ® ¥).

(The associativity of the tensor product has been assumed here.) But this says
(putting in the numerical factor)

. ]
(WAX) A = %alt(w@x@d’)

(where w is a p-form, x a g-form, ¥ an r-form). Now apply the corresponding
argument to the formation of w A (x A 9).

Now that associativity has been established it is no longer necessary to include
the brackets in expressions such as w A (x A ¥); and this is equally true of products
involving more than three terms. In particular for any 1-forms n',n?,...,n" the
expression ! An? A--- An" is unambiguous, and in fact

(' An?A- AR (viiva, ..., v)
r!
= alt(n' ®n2®---®@n")(vi,va2,...,9)
= Z‘(")(vw(l)"l|)(vr(2)"’2)"'(”w(r):”r)
~
= det((vov'lﬁ))

where a,8 = 1,2,...,r and the summation is over all permutations 7 of (1,2,...,r).
In this way we recover the formula for the exterior product of 1-forms used exten-
sively in previous sections of this chapter.

Though exterior multiplication shares with ordinary multiplication of numbers
the properties of distributivity and associativity, it is not commutative. In fact if
w€ APV and x € A V* then

x Aw = (-1)Pw A x.
This may be seen as follows: if » is the permutation
(,2,...,p+1,p+2,...,p+q) = (P+1,p+2,...,p+¢,1,2,...,p)
then
(X Aw)(v1,v2,. .. Vp, Vpi 1, Vpsa, ..y Vpigq)
= €(M)(X A w)(Vp+1,Vpt2s-. -1 Uptqs V1, V2,4 Vp)
= €(n)(w A X)(V1,v2,. .. Up, Ups1,Ups2y..y Upsg)s

and ¢(m) = (—1)P9 since 7 involves transposing each of vp41,Up42,...,Vp4q With
each of vp,vp..1,...,v in turn. Thus for any two 1-forms 7, ¢

AN = —nAG

and in particular the exterior product of a 1-form with itself is 0.
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Exercise 32. Show that, more generally, if w is a p-form and p is odd thenw Aw =0. O

With these algebraic properties of the exterior product to hand it is easy to
calculate exterior products of forms directly, without having to appeal to the def-
initions in terms of alternating multilinear maps. As an example we consider the
direct calculation of the exterior product of three 1-forms on a 3-dimensional vector
space. Let {6°} be a basis for 1-forms on the vector space and let

w=(n]0"+n30% + ni6%) A (n}8' + n36% + n30>) A (n76' 1 n36% + n36%)

where the n¢ are numbers. Carrying out the multiplication of the first two factors

one obtains
nin2e' A6' + nlnie' A 6% + ninie' A o3

+nin302 A 8" + nini6® A 6% + ninle? A 63

+ 030203 A 0" +nin36® A6 + ninled A 6d.
Deleting terms with repeated factors and rearranging the others so that all the basis
forms appear in order one obtains from this

(nin3 — nyni)0' A 6% + (nin3 — n3n})8' A 6 + (nin3 — n3n3)6* A 6°.

Multiplying this by the last factor and omitting terms containing a repeated factor
one obtains

(nin3 ~ nini)n3(0' A 6%) A6° + (nin3 — n3ni)n3(6' A 6°) A O*
+(nzn3 - n3n3)n3 (6> A 6°) A 6"
Again rearranging factors so that the basis forms appear in order one is left with
(nin3n3 — ninin3 + nanin3 — nining + ninini — ngnin})0' A 67 A 6°

(a change of sign occurs for the middle term since 8' A 83 A 82 = —@! A 62 A 63).
The result is in fact det(ng)8' A 62 A 63.

Exercise 33. Let {°} be a basis for i-forms on a 4-dimensional vector space, and let

n=0"+20%-0%and w=20"'A0%+6A0' Compute nAw and w Aw. o
Exercise 34. Show that if n',n?,...,n" are linearly dependent 1-forms then n' A p? A
A "’ =0. o]

Exercise 33 provides an example of a form w such that w A w # 0; it is, necessarily,
a form of even degree.

9. Bases and Dimensions

Several of our earlier calculations and results should suggest how one may construct
a basis for p-forms. In fact one may construct a basis for A? V* out of a basis
{62} for V*, as follows. For each collection of distinct integers a,,a3,...,a, (with
1 < a; < n=dimV) the p-form 8% A 8% A ---A8° is non-zero: for if {e,} is the
basis for V dual to {6°} then

(0% AO% A---AB°)(ea,,€a;,---1a,) =1
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(no summation) by the determinant formula. The p-forms 6% A 8% A ... A 6% and
0% A @°1 A --- A @° differ only in sign, if at all, when (by,b2,...,b,) is merely a
permutation of (a),as,...,a,). Consider, therefore, the p-forms

{6 AG**A---NO |1<@a <az<---<a<n}

Each of these forms is certainly non-zero, and no coincidences among them can arise
from reordering. We shall show that they form a basis for A” V*. To do so we must
show that they are linearly independent, and that every p-form may be expressed
as a linear combination of them.
Note first of all that, by the determinant formula,if 1 < 4, <b3 <---<bp<n
then
(6% A% A---NB%)(ep,,e5,,..-,€,) =0

unless a; = by, az = by,...,b, = ap. Suppose that
Zkﬂnﬂ:...uroa’ A o“’ A--- A 0"" = 0’

the sum being taken over all p-tuples of integers (a,,az,...,a,) with1 < a, < a3 <
- < ap < n, the ks being certain numerical coefficients. The expression on the left
is a p-form, and asserting that it is zero is equivalent to asserting that the result of
evaluating it on any p vectors is zero. But

Y Kayar..a, (8% AO%T A AB%)(en, by sen,) = Kbyby.b,

if 1 <by < bz <:-+ < b, <n. Thus the p-form can be zero only if all its coefficients
are zero: and so the forms {% A @°1 A--. A §°} are linearly independent.

If w is any p-form then (since it is multilinear) the value of w on any collection of
argnments is known if its value is known whenever its arguments are basis vectors.
But (since w is alternating) its value on any collection of p basis vectors is known
if it is known when the basis vectors are distinct and arranged in increasing order
of their suffices. It follows that

w = Zw(e.ll 1€ass---1€q,)0% AO%T A AG%,

the sum being again taken overall 1 <a; <az<:--<ap < n.

We have shown that {62 A8%2 A---A@% |1 <@ <@a;<:---<@a,<n}is
a linearly independent set of p-forms that spans A V*, and so is a basis for that
space. The dimension of A? V* is thus the number of ways of choosing integers
a),az,...,ap to satisfy 1 < a; < az < --- < ap < n, which is n!/p!(n - p)! (or the
binomial coefficient (;) or nCp), provided p < n. If p > n there are no non-zero p-
forms. The space A" V" is 1-dimensional with basis the single n-form 8! A@2A. . .AQ"
which confirms the observations of Section 2. At the other end of the scale, the space
/\l V* has dimension n according to this result, as is required by its identification
with V°. It is frequently convenient to regard R itself as constituting the space of
O-forms: with the usual interpretation of 0! as 1, the formula n!/0! (n — 0)! gives the
correct dimension; moreover the exterior product rules continue to apply if exterior
multiplication by a O-form is taken to be scalar multiplication.
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It is sometimes advantageous to lump all forms, of degrees 0 to n inclusive,
together, to form one big space, which we denote A V*. This space is defined as
the direct sum of the spaces AP V" from p = 0 to n: it is thus a vector space
of dimension Z;=o (;) = 2", Its elements may be thought of as formal sums of
p-forms of varying degrees (the use of the word “formal” is intended to indicate
that such a sum may not be considered as an alternating multilinear map if terms
of different degrees are involved). It is, moreover, equipped with an associative,
bilinear (but non-commutative) product, the exterior product; and is therefore an
example of an algebra. It is called the ezterior algebra of V.

Finally, a computational point. The summation convention has been in
abeyance during this discussion of bases of spaces of p-forms, and it would be
convenient to restore its use. But then certain adjustments must be made to
the coefficients of forms to take account of the fact that without the condition
a) < az < -+- < ap the p-forms {6 A% A ... A%} are no longer independent,
though they do span AP V*. The following two exercises deal with this matter.

Exercise 35. Let w be a p-form, {e.} a basis for V, {§°} the dual basis for V*, and let

w(ea,,€ay,.--1€a,) = Waya; .3, = Wia,ay ..a,] D€ the components of w relative to {ea}-
Show that
1
W= wais a0 NG A NG
(summation over repeated indices intended). a

Exercise 36. Show that if w,,0° A 8° = 0 for linearly independent 8%, then wia = wes,
but it is not necessarily the case that w,s = 0. o]

(Alternative treatments of the numerical factors in wedge products are de-
scribed in Note 3.)

10. The Interior Product

The interior product may also be generalised to arbitrary exterior forms. Let w be
any p-form and v a vector. The interior product of v and w is the (p — 1)-form v Jw
(read “v hook w") defined by

(viw)(vi,va,...,vp_1) = w(v,v1,v2,...,05))

for all choices of the vectors vy,v3,...,v,_. (The interior product is also frequently
denoted 1,w.) It has the properties

(1) if p=1 then viw = (v,w)

(2) vJ(C|W| + Czwz) = c.(v le) + Cg(v Jwg)

(3) if w is a p-form, and x a form of any degree, then

viwAx) = (vdw)Ax + (-1)Pw A (v]x).

The first two of these follow immediately from the definition. To prove the third
we observe that as a result of the second it is enough to know that it holds when w
and x are exterior products of 1-forms, that is, when they are decomposable. Now
ifw=n'An?A..-AnP say then for any vectors v3,v3,...,vp, (vIw)(v3,vs,...,vp)
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is a determinant whose first column has the entries (v,n!), (v,n?),...,(v,nP). Ex-
panding by the first column, alternating the signs in the usual way, we obtain

(viw)(va,vs,...,vp)

= (n! AntA s AnPHv,vg,. ., 1)

P ~
= Z(_'])'_l(”»ﬂ')('ll A ...nl el A nP)(vz’va'”. ’vp)

1=1

where, in the sum, the caret mark is used to indicate that the 1-form below is to
be omitted from the exterior product. Thus

p -~
vin'An?A-ApP) = Z(_l)'-l(.,,,,*)(,,l A-eoqi-o-AnP).

Now suppose that x = ¢! A¢? A---A¢9. Then

P
vJ(w/\x) = (Z(—l)'_l(v,n')nl /\...';l.../\”}’) A X

1=1

9
FwA D D)PH T o) A g AP
=1
=(vdw) A x+ (-1)PwA (vix)
as asserted.
Exercise 37. Show that,if dimV =4, ifw =0"'A0%+6°A 0%, and if v = ¢; (where {4}
and {6°)} are dual bases) then vJw = 6%, while if v=e; + es then viw = -6' +6*. 0o

Exercise 38. Show that if v = v®e, with respect to a basis {e,} for V (and {6°} is the
dual basis for ¥*) then

1
vilw = mu"wu.o:. a,- oa. AB®I A A

when w is expressed as in Exercise 35. o
Exercise 39. Show that for any w € A? V*, 6° A (eq Jw) = pw (summation intended).
(This formula is analogous to Euler’s formula for derivatives of a homogeneous polyno-
mial). o]

Note the following useful property of the interior product: for fixed w € AP V*
one may regard the rule v — v Jw as defininga map V — /\”_l V*; this is a linear
map, as follows immediately from the multilinearity of w.

11. Induced Maps of Forms

Linear maps of vectors and covectors may readily be extended to multivectors and
exterior forms. The induced maps of forms are of much the greater importance,
and we confine our exposition to them. We have already given two examples:
the induced map of a volume form in Section 3 above, and the restriction of a
decomposable form by the inclusion map in Section 7.
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Recall that a linear map A\: V — W of vector spaces induces a contragredient
linear map A* of the dual spaces, by (v,A*(n)) = (A(v),n). This construction may
be extended to p-forms, to give a linear map of forms, also denoted A* and also
contragredient, defined as follows. For x € AT W* set

(A x)(vi,v2,..,0p) = x (A1), A(v2), .., A(vp))

for all vy,vz,...,v, € V. Evidently A*x, so defined, is alternating multilinear and
is therefore an element of A" V*. Moreover, A*: A* W* — AP V* is a linear map.
It is called a map of forms induced by A.

Note that if x € A’ W* and p > dimV then A*x is necessarily zero.

The induced map of a composite of two linear maps is the composite of the
induced maps in the opposite order, as is required by contragredience: if x:U — V
and A:V — W are linear, then (Aox)*: AP W* — AP U* isgiven by (Aok)* = x*0A".

One important property of induced maps of forms is that they preserve the
exterior product, in the sense that A*(x A ¢) = (A°x) A (A*¢). We now prove this
result. Suppose that x € AP W* and v € A" W*. Then

A (x AY)(vi,va,. ., vp4q) = (X AW)(A(v1), A(v2),... ,A(v,+,))
: Z ‘(’)(’\(vw(l))v ’\(07(2))’ (AR ’\(v'(p)))

T
X YA (Vn(p4) MVn(p42)r-- 2 A(Vn(ptq)))
l . .
= ﬂzt(")('\ X)(Vx(1):Vn(@)s- -2 Vn(p)) (A ) (Va(pt1)s Un(p2)s - 2 Un(petq)

= (/\.x) A (/\"l’)(vl,va . -'”P+q)'

The sum is taken over all permutations x of (1,2,...,p + g).
These ideas may be extended to any affine map of affine spaces by taking its
linear part for A.

13. Decomposable Forms

The forms which we introduced in Sections 1 to 7 were all decomposable, that is,
exterior products of 1-forms. In particular, a characterising form of a subspace is
the exterior product of 1-forms which vanish on the subspace. In general, elements
of A’ V* are not decomposable: each is a linear combination of decomposable p-
forms, since the basis we constructed consists of decomposable forms, but this is
the most that can be said. We now explain how the decomposable forms may be
singled out in a convenient way.

The problem is that it is not immediately apparent from the expression for a
form in terms of a basis (for example) whether or not the form may be expressed
as an exterior product of 1-forms. Consider a 4-dimensional vector space V, and
compare (to take a simple example) the 2-forms 8! A 82462 A 64 and ' A3 + 83104,
(Here the 8° are supposed to constitute a basis for V*.) It takes only a moment's
thought to realise that the first of these 2-forms is decomposable (it may be written
(6" — 64) A 6%). But what of the second?
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Suppose that w = 8' A 82 + 83 A 6% were decomposable, so that one could find
two linearly independent 1-forms n',n? such that w = n' A n%. Then w would
be the characterising 2-form of a 2-dimensional subspace, spanned by any pair
of linearly independent vectors v;,v; such that (v,,n®) = 0, a¢,b = 1,2. Then
vy Jw = v2Jw = 0. In fact, the linear map V — /\l V* by v — vJw would have
kernel of dimension (at least) 2. On the other hand, considering the same map
with w expressed in its original form, one sees that with {e,} the basis of V dual
to {8} the forms {es Jw} are linearly independent: they are {42, -6',04, -63}. It
follows that the map v~ v Jw is actually an isomorphism. The hypothesis that w
is decomposable is therefore untenable.

A vector v € V is called characteristic for the exterior form w if vJw = 0. The
set of characteristic vectors of a given form, being the kernel of a linear map, is
a subspace of V. This subspace is called the characteristic subspace of w and will
be denoted charw. If w is a decomposable p-form, which is a characterising form
for an (n — p)-dimensional subspace W of V, then charw = W. For suppose that
w=n'An2A---AnP, where w € W if and only if (w,n') = (w,n?) = - (w,nP) = 0.
Then for anyve V

viw = (v,r’l)r’z/\.../\y’)" _ (v’r’Z)nl AndA.e.. AnP
+o 4 (=17 o nP)nt AP AL AP

the (p — 1)-forms occurring on the right hand side are linearly independent, since
the n© are, and so v € charw if and only if v € W.

Thus a decomposable p-form on an n-dimensional space has characteristic sub-
space of dimension n —p. Other p-forms may have characteristic subspace of smaller
dimension—indeed, we have given an example whose characteristic subspace has di-
mension 0.

Exercise 40. Show that if w € A® V' and the dimension of charw is greater than n — p
then w = 0. o

We show now that the decomposable forms are precisely those non-zero forms
whose characteristic subspaces have maximal dimension. We show, in fact, that if
w € A’ V* and dim charw = n—p then w may be written as an exterior product of p
1-forms. Let {e,} be a basis for V such that {ep41,€p42,...,€n} is a basis for charw;
then w(e,,ez2,...,¢,) # 0 (or ¢; would also be a characteristic vector) and so we may
assume, without loss of generality, that w(e;,ez,...,¢ep) = 1. Let {6°} be the dual
basis for V*. Thenw = 8'A02A---A6P, since w may certainly be expressed as a linear
combination of terms 6%t A8%2 A---A0% with1 < a) <@z <:-: < ap < n,but the
occurrence of any ax > p is prevented by the fact that the vectors ey y,€p42,...,¢€n
are characteristic, while (8' A2 A --- A 6P)(ey,e2,...,¢p) = 1.

Exercise 41. Show that two decomposable forms have the same characteristic subspace
if and only if one is a scalar multiple of the other. o

Exercise 42. Show that if {1 is a fixed non-zero n-form onh an n-dimensional vector space
then the map v ~— v Jf] is an isomorphism of vector spaces of dimension n. Deduce
that every (n — 1)-form is decomposable; and in particular, if n = 3 then every p-form is
decomposable, p = 1,2, 3; while if n = 4 the only non-decomposable p-forms occur when
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p = 2, and any such may be expressed in the form 8' A 8% + 6% A 8* with {6°} a suitable
basis for 1-forms. o

The rank of a p-form w is the codimension of its characteristic subspace, namely
n — dim charw. The annihilator of the characteristic subspace, annw, is the sub-
space of V* consisting of those n such that (v,n) = 0 for all v € charw.

Exercise 43. Show that the dimension of annw is equal to the rank of w. Show that annw
is the subspace of V* spanned by all elements of the form v} Jva X... K vp-1 Jw)...)) for
any v1,v3,...,vp-1 € V. Show that w may be expressed as a linear combination of p-fold
exterior products of elements of a basis for annw, which is the smallest subspace of V*
with this property: thus the rank of w is the smallest number of linearly independent
1-forms required to express it. o

Exercise 44. Show that a non-zero (n — 2)-form is of rank either n — 2 or n. o

Exercise 45. Show that if w = Jwa8° A8® (wse = —was) is & 2-form such that w3 # 0,
and if x = w — (w12) " (w140° A w2,6°), then &) Ix = e3 Jx = 0, where {e.} and {6°} are
dual bases. Deduce that there is a basis {¢°} of V* such that
w=¢l,\¢1+¢s/\¢l+”.+¢1r-l/\¢)r

where 2r is the rank of w gand @' = (w12) ""(w148°) and ¢? = w3,6*, for example). Show
that wAwWA -+~ Aw = rig! A¢? A... A ¢ (there being r factors on the left hand side);
deduce that a 2-form w has rank 2r if and only if w Aw A--- Aw # 0 when there are r
factors, = O for r + 1 or more factors. Show that the map ¥V — V* by v ~— vJw has
rank (as a linear map) the rank of w (as a 2-form). Show that this map can never be an
isomorphism if n is odd; if n = 2k is even, then the map is an isomorphism if and only if
wAwA: - Aw (k factors) is a volume. o]
Exercise 46. Show that if W is the characteristic subspace of a p-form w and 6 is a 1-form
such that § Aw = 0 then 0 is a constraint form for W. Show that the converse is not true
by considering the 2-form w = 8 A % + 6% A §* (where {6°} is a basis for 1-forms on a 4-
dimensional vector space), whose characteristic subspace consists of just the sero vector:
show that @ A w is never zero for any non-zero 1-form 6. Show that if w is decomposable,
on the other hand, then every constraint form 6 for its characteristic subspace satisfies

0Aw=0. o
Exercise 47. Show that w is a characterising form for a subspace W if and only if 0Aw =0
for every constraint 1-form 6 for W. o

Exercise 48. Let x be a p-form on V which is zero when restricted to a subspace W of
V, and let w be a characterising form for W: show that x A w = 0. Show that, conversely,
if w is a characterising form for W and x a form such that x Aw = 0 then x restricted to
W is zero. ’ o

13. An Extension Principle for Constructing Linear Maps of Forins

The most approachable p-forms (in concept) are the decomposable ones; as we
have mentioned, we have built the linear spaces A? V*, whose elements are linear
combinations of decomposable p-forms, mainly in order to take advantage of the
convenience of linearity (compare the case of tangent spaces, where it is very useful
to be able to add tangent vectors, though there is no natural way of combining curves
which results in the addition of vectors tangent to them). Accordingly, one is often
faced with constructions which appear natural in terms of decomposable p-forms,
which one wishes to extend to the whole space A” V* in a linear way. One might try
to tackle this head on, but that would involve a complicated check of consistency
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because a non-decomposable p-form may be written as a linear combination of
decomposable p-forms in many different ways. We now present a useful technical
lemma which states, roughly speaking, that a map of decomposable p-forms into a
vector space W may be extended to a linear map of A’ V* into W.

Each decomposable p-form is the exterior product of p linear forms, that is, p
elements of V*. The construction of decomposable p-forms is therefore represented
by amap 6: V*P — AP V* whereé(n',n2,...,nP) = n' An?A---AnP. It follows from
the properties of the exterior product that § is multilinear, which means linear in
each variable separately, and alternating. Suppose, for the purposes of illustration,
that one is given a linear map A: AP V* — W: then X 0 6 in a way represents the
restriction of A to decomposable p-forms, though it is in fact a map V*? — W and
as such is again multilinear and alternating. The resuit we shall prove is essentially
the converse of this: if 4 is any alternating multilinear map V*? — W then there is
a unique linear map A: A’ V* — W such that Aoé = u. Thus it is enough to check,
for a map defined on decomposable p-forms, that it is alternating and multilinear,
to know that it extends to a linear map of the whole space A\ V*.

The proof depends on the observation that the set of all alternating multilinear
maps V°P — W and the set of all linear maps A? V* — W are both vector spaces,
that these vector spaces have the same dimension, and that composition with § is
a linear map from the second space to the first. We denote by AF(V*, W) the set of
all alternating multilinear maps VP — W and by L(AP V*, W) the set of all linear
maps AP V* - W.

Exercise 49. Show that taking linear combinations of images imposes on each of these

sets the structure of a vector space. o
Exercise 50. Show that the dimension of the space of linear maps L(A® V*, W) is given
by dim A" V* x dim W = (7) dim W. o
Exercise 51. Show that dim A”(V*,R) = (7). o

From the last exercise it follows that dim AP(V*, W) = (;) dim W, for if {e,} is
a basis for W, where a = 1,2,...,dim W, then each u € AP(V*, W) determines
uniquely dim W elements of AP(V*,R), its components with respect to {e,}, and
conversely. Thus AP(V*, W) has the same dimension as L(A? V*, W).

Now the map which associates with each element A of L(A” V*, W) the element
Ao b of AP(V*, W) is evidently a linear one. Moreover, its kernel is just the zero
element of L(A" V*, W), for if Ao 6 = O then, for any basis {6°} of V* and for any
1 <ay <az <~ <ap<n A% AG%2A---A0%) = 0, and 80 A = O since
these p-forms constitute a basis for A? V*. It follows that A +» X 0 § is a bijective
map, and so given any u € AP(V*, W) there is a unique A € L(A? V*, W) such that
u=2Aoé.

As an example of the application of this result, we consider once again the
linear map of forms induced by a linear map of vector spaces. Let x:U — V be a
linear map. The construction is based on the adjoint map x*: V* — U*. For any
linear forms n',n%,....,nP € V set

m'nd )=kt ) AR () A A x*(nP).
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Then by linearity of x*, £°* is multilinear; it is evidently also alternating, so R* €
AP(V*, AP U"). There is thus a unique linear map A? V* — AP U*, also denoted «*,
such that

AR AARP) =k (n") AR (NP A A K (nP).
Note that, for any u,,u3,...,up € U,
k' (n'An?A-AnP(uy,uz,...,up)
= (' AnP A ARP)(x(ur),k(u2), ..., K(up)),

and so the same holds true for any p-form w on V:

(Rt w)(ur,uz,...,up) = w(x(uy),&(uz),...,&(up)).

So the definition given in Section 11 is recovered. From this new point of view the
property of preserving exterior products plays the key role.
We shall have occasion to use this extension result again in Chapter 7.

Summary of Chapter 4

A map VP — R is said to be multilinear if it is linear in each argument. A
multilinear map is called alternating if interchange of any two arguments changes
the sign. An alternating multilinear map VP — R is called an (exterior) p-form on
V. An alternating multilinear map V*? — R is called a p-vector on V. The p-forms
comprise a vector space A" V* of dimension (;) (where n = dim V); likewise the

p-vectors comprise a vector space, of the same dimension; /\0 V* =R, /\l V=V,
and A? V* consists of just the zero vector for p > n.

The p-vector (n',n?%,...,n") — det({wa,n”)) is denoted wy A wg A+ A wp,
and the p-form (w,ws,...,w;) — det({wq,n?)) is denoted n' An? A---AnP. The
p-vector wy Awa A -Awp is a characterising p-vector for the p-dimensional subspace
spanned by its constituent vectors; the p-form n! An2 A... AnP is a characterising
form for the (n — p)-dimensional subspace for which its constituent covectors are
constraint forms.

The exterior product w A x of a p-form w and a ¢g-form x is a (p + ¢)-form
defined by

(wA x)(vi,v2,...,Vp4q)
1
= o D (M) (Un(1),Un (@) -2 V() X(Vm(p41)s Vn(p2)s -2 V(b))
L4

the sum being over all permutations 7 of (1,2,...,p + g), the sign ¢(x) of a per-
mutation 7 being +1 if # may be represented as a product of an even number of
transpositions, —1 otherwise. The exterior product is distributive and associative
but not commutative: x Aw = (—1)Pw A x.

The inner product of a vector v and a 1-form w is the (p — 1)-form v Jw such
that (vJw)(vi,v2,...,vp_1) = w(v,v),v3,...,vp_y). The set of vectors v such that
vJw = 0 is called the characteristic subspace of w, charw; if w # 0 its dimension is
at most n — p, and w is decomposable when it is equal to n — p. Not every p-form
is decomposable, but every p-form may be expressed as the sum of decomposable
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p-forms. In fact if {#%} is a basis for V* then {% A@%3 A-..A8% |1 <a) <a;<
-+ < ap < n}is a basis for A’ V* each element of which is decomposable.

A non-zero n-form 1 on a vector space of dimension n defines a volume func-
tion on any affine space modelled on it: the volume of a parallelepiped with sides
Vi, V2,...,Vn i8 }(vy,v2,...,v,). This vanishes if the parallelepiped is degenerate
because its sides are linearly dependent; otherwise, its sign determines the orienta-
tion of the sides of the parallelepiped, in the order given. The facts that 0 is multi-
linear and alternating correspond to properties of volume, and this prescription gen-
eralises the determinant rule for the volume of a parallelepiped in Euclidean space;
in fact 01 is a basis-independent version of the determinant, and if {¢,} is a basis for
V such that (e}, ez2,...,en) = 1 and if v, = k3e) then Q(vy,vz,...,v,) = det(kb).
The exterior product of a decomposable p-form and a decomposable g-form, where
p + ¢ = n, reproduces the principle “volume=base areaxheight”. With respect to
a given volume form a 1 : 1 correspondence may be established between p-vectors
and (n — p)-forms.

If there is given any alternating p-fold multilinear map from the dual of one
vector space to another one then there is a unique linear map from the space of
p-forms on the first vector space to the second which agrees with the given map on
decomposable forms.

Notes to Chapter 4

1. The symmetric group. The group of permutations = of (1,2,...,n) with
composition of permutations as the group multiplication is called the symmetric
group on n objects. It has n! elements. A pair of numbers (1, j) is called an inversion
for the permutation 7 if ¢ < j and n(1) > #(j); the total number of inversions for
n is denoted ##, and the sign of m is ¢(r) = (~1)*#". A permutation of sign +1
is called even and a permutation of sign -1 is called odd. The map x — ¢(x) is
a homomorphism from the symmetric group to the multiplicative group with two
elements {+1, —1}.

A permutation which interchanges two numbers without other change is called a
transposition. Every transposition is odd, and every permutation may be expressed
as a product of transpositions—an even permutation as the product of an even
number of transpositions, an odd permutation as the product of an odd number.

See MacLane and Birkhoff [1967], pp 91-96, for proofs and further develop-
ments.

2. Determinants. Let A be an n x n square matrix, and let A% denote the
element of A in the bth row and cth column. The determinant of A, denoted det A
or det(A?), is the number

det A= Y e(m)AT M A7 P) ... 47(m)
n

the sum being over all permutations n of (1,2,...,n). The determinant has the
following properties:

(1) if two columns of A are interchanged, det A is multiplied by —1

(2) if a column of A is multiplied by a number k, det A is multiplied by k
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(3) if a multiple of one column of A is added to another column, det 4 is
unaltered

(4) det AT = det A, where AT is the transpose of A, obtained by interchanging
its rows and columns

(5) det A # 0 is a necessary and sufficient condition for the existence of an
inverse matrix A~! suchthat AA~!' = A-'A =1,

(6) det AB = det A det B.

See MacLane and Birkhoff Chapter 9, pp 294fT, for proofs and further devel-
opments.

3. Two conventions for exterior algebra. As almost any excursion into the
literature will show, there are two different conventions for numerical coefficients in
exterior algebra. An author’s choice of convention may be identified from his or her
definition of either the interior or the exterior product. All authors seem to agree
that the alternating part of a p-fold multilinear form T should be defined by the
formula

1
altT(v,,vg,...,v,.) = ;' Zc(w)T(v,(,),v,(g),...,v,(p)).

~

Any other numerical factor would lead to failure of the formula altaltT = altT.
The two conventions may then be established by setting either e = 0 or e =1 in

the formula e
WAY = (g{”_’%) alt(w ® x)

for the exterior product of a p-form and a g-form. 1t is then necessary to define
(viw)(vi vz, .. vp0) = p'"‘w(v.v.,vg,...,v,,_|).

Further differences arise in exterior calculus (see Chapter 5). In this book we have
adopted the conventione = 1.

4. The isomorphism between A" V* and (A" V)" asserted in Section 8 is proved
in Sternberg {1964) Chapter 1, for example.



5. CALCULUS OF FORMS

We move now from the algebraic properties of forms to their differential properties.
The first step is similar to steps we have taken before: from affine lines, and affine
maps generally, to smooth curves and smooth maps, for example. In place of the
forms on vector spaces of Chapter 4 we now consider fields of forms, which, as
maps of tangent spaces, share the multilinearity properties of forms, but may vary
from point to point of the affine space. Next we exhibit the exterior derivative,
which is a generalisation from the operators curl and div of vector calculus. We go
on to discuss the relationships between the.exterior, covariant and Lie derivatives.
Finally, we prove a generalisation of the result of vector calculus that if the curl of
a vector field is zero on a suitable domain then the vector field is a gradient.

1. Fields of Forms

The tangent space T A at any point z of an n-dimensional affine space 4 is a
vector space. One may therefore construct the space of p-forms AP (T A), for each
integer p between 0 and n. The elements of A\P(T; A) are alternating multilinear
maps (T:A)P — R, for p > 1; A\°(T; A) = R, while \'(T; A) = T; A. For each p,
AP(T; A) is a vector space of dimension ("), and has a basis constructed by taking
exterior products of basis elements for T; A. As basis for T 4 it is often convenient
to choose the coordinate differentials {dz®} where (z*) are coordinate functions for
some system of coordinates around z.

Exerclse 1. Show that {dz?' Adz?? A---Adz® |1 < aj <az <: < ap <n} isa basis
for AP(T; A). a]

A field of p-forms w on A is a choice of an element w, of AP(T; A) for each
point z € A. One tests a field of p-forms for smoothness by reducing the question to
another which one knows already how to deal with, as follows. If V;,V3,...,V, are
vector fields and w a field of p-forms then w(V),V3,...,V,) is a function on A whose
value at z is wz(Viz,Vaz, ..., Vpz). The field of p-forms w is said to be smooth if this
function is smooth for every choice of smooth vector field arguments. A smooth
p-form field on A is usually called, for brevity, a p-form on 4.

Exerclse 2. Show that a 0-form is a smooth function and that a l-form is a smooth
covector field. o

In the case of a i-form @, the value of 8 on a vector field V may be denoted
with angle brackets, thus: (V,8), as well as 8(V).

Two p-forms may be added, and a p-form may be multiplied by a smooth
function, to give in each case another p-form; these operations are carried out point
by point. Moreover, one may define the exterior product of a p-form and a g-form,
again on a point by point basis; the result is a (p + g)-form. Again, given a vector
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field and a p-form one may construct a (p — 1)-form by taking the interior product
point by point. Such operations are often referred to as pointwise operations.

As we noted in Chapter 3, Section 10, associated with any smooth function f
there is a 1-form, whose value at a point is the covector df at that point: we shall
denote this 1-form df also.

Exercise 8. Show that for any vector field V, (V,df) = df(V) = V/. o

Sometimes it will be necessary to deal with objects which behave like forms,
but which are not defined on the whole of 4, only on some open subset of it. As
an example consider dz®, where z° is a coordinate function: if the coordinates in
question are global (affine, for example) then dz® is a 1-form; but in general for
curvilinear coordinates this will not be the case. We call such objects local forms.
Thus if the z® are coordinate functions of some (not necessarily global) coordinate
system we may build up p-forms (local if the coordinates are not global) by taking
exterior products of 1-forms chosen from the dz®, multiplying the results by smooth
functions (or smooth local functions, with domain containing the coordinate patch),
and taking sums. The operations concerned work as well for local forms as for
globally defined ones, but one has to bear in mind the possibility that the domain
may turn out to be significant.

The construction of forms from coordinate 1-forms indicated above generates
all (local) forms. As we have already pointed out, the coordinate covectors may be
used to define a basis for AP(T; A) at each point z; and so each p-form whose domain
includes the coordinate patch of the coordinates (z°) may be expressed uniquely
(on the patch) as a linear combination of the (local) p-forms dz®' Adz®* A-.-Adz®,
1<a) <az <:-<ap < n, with coefficients which are local functions.

Let w be a p-form. The components of w relative o the given coordinate system
are defined by

Wa,a;5...8, = w(aol iaﬂgv cee ’aa,)-

They are smooth functions on the coordinate patch and satisfy wa,a,..a, =
Wla,a,...a,) (the bracket notation for indices is explained in Chapter 4, Section 8).
The p-form w may be written out in terms of its components in two different ways,
as has already been indicated in Chapter 4 for the case of forms on a vector space.
If the summation convention is suspended, as one finds in many books, then w may
be written as a linear combination of basis p-forms, each occurring once:

w= Zwa.c,...,,dz“' Adz® A AdZ®

the sum being over all (a),a3,...,ap) with 1 < a) < a3 <::- < ap < n. Restoring
the summation convention, and allowing each basis p-form to recur p! times with
its indices in all possible orders, one obtains
w= lw‘,,‘,,,.,.,'d:l:"‘ Adz® A - Adz.
p'

Where this coordinate patch overlaps another one, with coordinates (£2), the
change of components is given by
9t% Afbr  9gbr

Uc,og...o' = aza‘ a:G’ e a:‘i‘ wb.b’...b')
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the Jacobians and the functions all being evaluated pointwise.

The definition of a p-form in tensor calculus begins with this last formula. One
specifies a set of smooth functions-—the components—in one or more coordinate
patches, in such a way that the change of components is given by this formula in
any overlapping patches; one may then determine the p-form from its components by
multiplying by exterior products of coordinate differentials and adding, as explained
above.

Exercise 4. Show that a p-form (in the sense of Chapter 4) on a vector space V defines
a p-form (in the present sense) on an affine space A of which V is the underlying vector
space, whose coefficients with respect to affine coordinates are constants. o

Exercise 5. Show that if, with respect to arbitrary coordinates,
a =z'dz? Adz® - 2%dz A dz® + 23dz! A do?
and B = z'dz' + 2%dz® + °dz®
then anB=((z") +(z%) + (2°)*)dz* Adz® Adz®. o

The algebra of forms on an affine space is like the algebra of forms on a vec-
tor space as described in Chapter 4, with the smooth functions replacing the real
numbers in the role of scalars. In fact a p-form w on A may be considered as an
alternating multilinear map of the ¥(A)-module X (A)? to ¥(A), where now multi-
linearity is over 7(A) rather than R: for any vector fields V; and V, and functions

f and f'

w(Vth,...,fV,' +f’Vl-',...,Vp)
= fw(Vth,...,V.‘,...,Vp) +f’w(Vl,Vz,...,V'«',...,Vp),

and similarly for the other arguments. Conversely, any alternating, and in this sense
multilinear, map of the 7(A)-module X (A) to #(A) is a form. We denote by AP A°
the space of p-forms on A.

We described in Section 11 of Chapter 4 the construction from a linear map
of vector spaces of an induced linear map of forms over those vector spaces, which
acts contragrediently to the initial linear map. Any smooth map ¢: A — B of affine
spaces induces a linear map ¢.::T: A — Ty4(;)B, and this may be used to induce a
further map of forms, which again acts contragrediently. This construction works as
follows. If w is a p-form on B define, for each z € A, an element (¢*w). of AP(T: A)
by

(¢‘w)z(u|,02, v ,v,) = w¢(,)(¢.,v,,¢.,v,, vee ,¢.,v,)

where vy, v3,...,v, € T;A. Then ¢*w, the p-form field whose value at z is (¢°w),,
is smooth; it is often called the pull-back of w by ¢.

Exercise 8. Show that ¢'(w) + w3) = ¢'w) + ¢°w3; that ¢*(fw) = (f o ¢)¢°w; that
¢ (wAx) = (6°w) A (¢°x); and that ¢°(df) = d(f o ¢), where w,, w3, w and x are forms
on B, w; and ws having the same degree, and f € 7(8). la]

If (z°) are the coordinate functions of a coordinate system on A and (y*®) those
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of a coordinate system on B then

¢ (}%wa.a;...a,dyal Ady? Ao A dy.a')

1 . i W
= ;(wa.ag...a,. o @) dy™ AP dy®> A AP dy°r

= x%(“’o.og...a,, o ¢)d¢°' A d¢°3 Ao A d¢°’

a¢°' a¢°’ DR a¢
dzo 9z%: oz

where the ¢ are the functions which represent ¢ with respect to the two coordinate
systems. The calculation of ¢*w in coordinates is therefore very straightforward:
one substitutes ¢* for y® wherever it appears in w, including those places where it
appears as dy®; in the latter case one evaluates d¢*, regarding ¢ as a function,
expressing the answer in terms of the z°; finally one carries out any necessary
algebra. Thus, for example, if

a
= —l'(wcna:...a,. °¢) ’dzal A dz? A"'Adz.’v
p! ap

w=dy'Ady> and  ¢(z',z%) = (z' cos z?,z' sinz?)
then
¢°w = d(z' cos 22) A d(z' sin z?)
= (cos z3dz' - z'sinz%dz?) A (sin z2dz' + z' cos z2dz?)

= z'(cos? z? + sin? 2%)dz! A dz? = z'dz' A dz?.

Exercise 7. Show that if w = dy' A dy? A dy® and
#(z',2%,2°) = (2' sinz® cos 2%, 2! sin 2 sin z°, 2" cos %)
then o'w= (z‘)’ sin z2dz' A dz? A dz®. o
Exercise 8. Show that if ¢ is a smooth map of A to itself and 3 = fdz! Adz?A... AdZ"
is an n-form on A (n = dim A) then
¢'w=(fod)(detd.)dz' Adz? A-. - AdZ"

where the function det ¢. on A has as its coordinate representation with respect to any
coordinate system for A the determinant of (3s¢°), which is the Jacobian matrix of the
coordinate representation of ¢. o

2. The Exterior Derivative

We have already observed that given a function (or O-form) f on an affine space we
may define a 1-form df, its differential. We also call df the ezterior derivative of
[; its expression in coordinates is df = (3,f)dz®, and so the operation of forming
the exterior derivative of a function is closely related to the operation of taking a
gradient in vector calculus. Our intention now is to show how the exterior derivative
may be extended so as to apply to a form of any degree. The exterior derivative
of a p-form will be a (p + 1)-form; in the case of 1- and 2-forms in a 3-dimensional
space the resulting operations will have very close affinities with curl and div of
vector calculus.
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Consider, first, a p-form w whose expression in terms of some affine coordinates
(z*) takes the simple form w = fdz®' A dz®® A--- A dz®" for some function f. A
straightforward way of extending the exterior derivative of functions so as to apply
to such w suggests itself: construct the form

df Adz® Adz®* A - Adz® = (0,f)dz® A dz® Adz® A---Ad2®r.

This is a (p + 1)-form. Since every p-form is a sum of p-forms of this type it is easy
to extend the construction to an arbitrary p-form, to obtain from

1
w = ;’—'wd,,,,.,ard:"' Adz® A - AdZr

the (p + 1)-form

1

—dWa,a;..0, A Az A dZ? A A d

p!
So far, the construction may appear to depend on a particular choice of affine
coordinates. Suppose, however, that £ = k#z® + c® are new affine coordinates.
Then

fd2® Ad£*2 Ao A dz®r = (kpkp2 - Kyt f)dz Adzb A A dzt

and
d(kg! kg2 - kyr f) Adz® ndzb Ao A dabe
= (kg'ky2 - kyr)df Adz® Adzb A - A dat
=df Adi® AdE* A - A dE%r,

Thus carrying out the prescribed construction in any affine coordinate system gives
the same answer. We may therefore define the exterior derivative operator, d, as
follows: for any p-form w, whose expression in affine coordinates (z°) is
1
w = —'w.,,,.,,_,.,,,d:"' Adz®* A - AdZOr,
p

the exterior derivative dw is the (p + 1)-form defined by

1
dw = --'dw.,“,:.,,,,,, Adz™ AdZ®? Ao AdIOr.
p!

Strictly speaking one should distinguish notationally between the exterior derivative
operators for forms of different degrees (by writing, say, d, for the operator on p-
forms), thus making it clear for example that the d on the left hand side of the
definition (since it operates on a p-form) is a different operator from those on the
right hand side (which all operate on functions, the case which is assumed already
known). However this distinction is rarely if ever enforced, and indeed the various
operators are so similar that the distinction is hardly necessary.
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Exercise 9. Show that, in dimension 2, if w = p)dz! + padz? then

dp:  9m 1 3,
(az' a,)dz Adz®,

in dimension 3, if w = pydz' + padz? + psdz® then
=(%-2p—’)dz’/\dz’-—(aﬂ-—ap’)d Adz +(2&-—ap')dz Andz?,

dz? 9z 9z 0Jz! dz! 9z?
while if w = pydz® Adz® + padz® Adz! + pydz! A d2?
dp1 , 9p2 , 9ps ) 1 2 s
t ==+ — + — A .
hen do= (304 + 2224 2P2) ds! nds’ ndz o

Exercise 10. Let
6 =z2'22'dz" + 2'2%2%dz? + 2'2%2'd2s” + 2'2¥23ds!
n = z°z'dz' Adz? + 2'2%d1® A d2
¢ =z'dz? Adz® Adz' + 22dz Adz® Adz' + 23dz' Ad2? Adz' 4 2'dz Ade? Ads®

w=z'dz' + 2%dz® + 2%dz® + £'dz*.
Show that dd = 0; dn = ¢; d¢ Odw-o‘d( /\q)..O d&&/\w/\r))—o and that
d(wAn)=((z')? - (z')' + (z’)' (z*)?)dz' Adz? Adz® Ad2t. o
Exercise 11. Show that the exterior derivative of any n-form on an n-dimensional affine
space is zero. o

The results of Exercise 9 reveal the similarities between d and the operations
curl and div (the similarity between d operating on functions and grad has already
been remarked on several times). Thus up to a point vector calculus is subsumed in
exterior calculus. However, some caution is necessary, because here the operands are
not vector fields, nor are the results of carrying out the operations. To recover the
operations of vector calculus in their entirety one needs to use the metric structure
of Euclidean space.

We have so far dealt with the expressions for exterior derivatives of forms only in
terms of affine coordinates. Conveniently, and remarkably, the same expressions ap-
ply in any coordinate system (this fact lends emphasis to the cautionary comments
in the previous paragraph). For consider the p-form w = fd£®' A d£° A ... A d£%°
as before, except that the coordinates (£°) are no longer assumed affine (and may
indeed be defined only locally). In terms of some affine coordinates (z%) we have

a, Asa £a,
w:(af 9z 9z% )dz"'/\dzb’/\--'Adz""

dzb dzbs  dzbr /

In computing dw we must now (in contrast to the case of a coordinate transformation
between two sets of affine coordinates) take into account the partial derivatives of
the terms 3£°/3z®. The derivative of the first such term in the expression for w
contributes a term

32i°' 3:’:"" af"" b b b b
O A VA TAA 4
(8::"8::"! 355 3 f) dz’ A dz dz dz
to dw; this term is actually zero, since the second partial derivative is symmetric in
b and b, and so
a2io.

) by _
8::"3::91'13 Adz” = 0.
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Similarly, all the other contributions to dw arising in this way vanish, and all that
remains is
ai% 9% aisr .
L 22 Vdf Adeb A ba A A dh
(31"1 Azt  9zbr frdzt ndz z

=df Ad2® Ad2% A --- A dECr

as before. Thus the formula for the exterior derivative given previously for affine
coordinates applies in fact for any coordinates.

This calculation reveals what is perhaps the key factor behind the simplicity
and utility of exterior calculus, namely the way in which the alternating character
of forms eliminates second partial derivatives from consideration. The reader will
notice several occurrences of the same effect below.

3. Properties of the Exterior Derivative

We now display the most important properties of exterior differentiation.
From the definition it is clear that exterior differentiation is R-linear:

d(k.w, -+ kgwg) = kydw; + kawa ki, k2 € R.
It is not however #(A)-linear: in fact
d(fw) -+ fdw + df ANw J € F(A).

This follows from the rule for evaluating the differential of a product of functions,
d(fg) = fdg + (df)g: for if w == gdz®* A dz®* A--- Adz® then

d(fw) =d(fg) Adz® Adz®* A---Adz™ = fdw +df ANw.

With respect to the exterior product the exterior derivative obeys a rule some-
thing like Leibniz’s rule, except for some differences in matters of sign: if w is a
p-form, and x another form, whose degree is unimportant, then

dwAx) =dwA x4+ (-1)Pw A dy.

This again is a consequence of the Leibniz property of the differential, but now the
properties of the exterior product also come into play. If w = fdz® Adz®?A---Adz®"
and x = gd::"' Adz® A - A dz* then

wAX ~ fgdr® Adz® A---Adz® Adzh Adzb Ao A dzb
and so
d(w A x)
= ((df)g + fdg) Adz® Adz® A---Adz™ Adzh Adzb Ao A dzhe
= (df Adz™ Adz™ A Adz®) A (gdzh A dz?? A oo A dzby)
F (—1)P(fdz™ Adz® A---Adz%) A (dg A dzh Adz? A--- A dzbe)
=dwAx 4 (-1)'wAdy

since p interchanges are required to move dg into position. The full result follows,
again, by linearity. The exterior derivative is said to be an anti-derivation of the
algebra of forms.



124 Chapter 5

Finally, the exterior derivative enjoys an important property which generalises
the familiar facts that curl(grad f) = 0 and div(curlX) = 0: for any form w,
d(dw) = 0, or in short,

d*=0.
(This means, if dp represents the exterior derivative of p-forms, that dp40d, = 0.)

This is again a consequence of the symmetry of second partial derivatives: for if
w = fdz® Adz®* A ... Adz®", 80 that

dw:d//\dz"'/\dz“’/\~~-/\d:c°"=;—Tf;dz“/\d:“‘/\dz°’/\--~/\dz°",
then
d(dw) =d ﬂ Adzb Adz® Adz™ A--- Adzr
azb
azf b a a a
= 3749 bdz“/\dx Adz® Adz®* A---Adz?r =0,
2901

A coordinate independent expression for d. The exterior derivative has been
introduced in a coordinate-dependent form. For aesthetic reasons, and for many
theoretical purposes, it is desirable to have a definition which is independent of
coordinates. This we now explain.

Such a definition uses vector fields in a “catalytic” role, and uses the facts that
if w e AP A and V,,V;,...,V, are smooth vector fields, then w(V,,V3,...,V}) is
a smooth function, that w is an alternating ¥(A)-multilinear map from X (A)* to
F(A); and that any such map defines a p-form. The shape that the required formula
might take is suggested by the following exercises.

Exercise 12. Show that the components of dw are given by the following equivalent ex-
pressions:

p+l
dw (30,0031 -1 Baysy) = I _(~1)" 100, (W(ay,0a;,- - By -1 Bayy )
r=1
(d“')dudzmﬁrn = (P+ ‘)al¢|w¢9 el
(The caret indicates a term to be omitted.) a

Exercise 18. In the case of a 1-form w
dw(84,0) = 84(w(s)) - s(w(da)).

Show that direct transliteration of the right hand side of this expression, when the co-
ordinate vector fields are replaced by arbitrary vector fields V, W, namely V(w(W)) —
W (w(V)), fails to satisfy the correct rule for the effect of multiplying a vector field by a
function, and does not represent a 2-form. Show that yx, given by

x(V,W) =V (w(W)) - W(w(V)) - w(V,W]),

does satisfy the rules for a 2-form however. Conclude that since the bracket of coordinate
vector fields vanishes, x agrees with dw on coordinate vector fields, and that x = dw. @
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The required formula for the exterior derivative of a p-form w is

p+!
dw(Vi,Va,.. V1) = D (=) Ve (w(Vi, Vi, .. Vr o V)
r=1

+ Z (-l)'“w([V,,V,],V,,...f’\,...f’\,...,V,“).
1<r<a<p+1

This agrees with the first formula in Exercise 12 when the arguments are coordinate
vector fields; it agrees with the formula obtained in Exercise 13 when p = 1, and
reduces to the definition of the exterior derivative of a function when p = 0. To
complete the proof of the formula (that is, the confirmation that the expression on
the right hand side does indeed give the (p + 1)-form dw as defined previously) it
remains to show that the right hand side is ¥(£)-multilinear and alternating and
so corresponds to a (p + 1)-form. This is more complicated, but no more difficult
in principle, than the particular case already tackled in Exercise 13. We therefore
leave it as a further exercise; the reader may find it helpful to consider the case
p = 2 first.

Exercise 14. Show that

dw(U,V,W) =U(w(V,W)) + V (w(W,U)) + W (w(U,V))
~w([U,V],W) - w(lV,W],U) - w([W,U],V)

for any 2-form w, by showing that the right hand side defines a 3-form, and then evaluating
this 3-form with coordinate vector fields for arguments. Then complete the proof of the

general formula for dw when w is a p-form. a
Exercise 15. Use the coordinate-free definition of d to show that d* = 0, first for p = 0,
1, and 2, and then in general. o

The exterior derivative and smooth maps. Let ¢: 4 — B be a smooth map
of affine spaces and let w € A" B. We explained in Section 1 how to define and
calculate the pull-back ¢*w € AP A. We now show that

¢°(dw) = d(¢"w);
in other words, that the pull-back operation commutes with exterior differentiation.

We may for simplicity assume, as before, that w = fdy®' A dy®* A --- A dy®?; the
general case follows by linearity. Then

vu- (2228

jo¢)dz°‘ Adz® A-.- Adz®r

dzo1 dre:  dzor
and so
a, a ay,
d(¢'w) =d(‘;‘:a‘ %%;...‘;_ﬁa—"[od,) Adz® Adz® A---AdI®r

_ ( 00 || Ol e

- dz®r  3z°dzo.  dzor

r=1

)([o¢)dz‘/\dz°' A--- Adz®r

+ (ad:‘“ o™ | 9¢°r
9z%1 Jr™ dzor
=¢"(df Ady™* AdyT> A .- Ady?r) = ¢°(dw),

)¢‘(d[) Adz® Adz® A---Adz
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the terms under the summation sign contributing nothing because of the symmetry
of second partial derivatives.

4. Lie Derivatives of Forms

The definition of the Lie derivative of a covector field (in present terminology, a 1-
form) which was given in Chapter 3, Section 6 is easily adapted to apply to forms of
other degrees. The definition given in Chapter 3 was applied to a form defined along
an integral curve of a vector field, and then (in Section 10) by an obvious extension
to a form defined all over the affine space (or at least on some open subset of it). In
the present discussion we shall concentrate from the start on the latter situation; it
is easy to see how to recover the former, if necessary.

Let w be a p-form on an affine space and V a vector field which generates a
one-parameter group ¢;. The Lie derivative of the p-form w with respect to V,
Lyw, is the p-form given by

d, .
Lvw = Z(‘”‘ w)i_or
The value of Lyw at the point z is thus
d, . . L1,
(Lvw): = a-‘(tﬁt (Wor () (o = ‘h_ljz, ;(¢c (we, (2)) — we).

This rather more complicated formula serves to define Lyw in the case that V
generates, not a one-parameter group, but only a flow.

The Lie derivative measures the rate of change of a form under the action of
the flow of a vector field: so, for example, if w is a p-form invariant under the flow
(¢° (wg,(z)) = wz for all t) then Lyw = 0. The converse is true, as will be shown
below.

We now list the main properties of the Lie derivative of forms, most of which
are consequences of the definition or known properties of the induced map as given
in Exercise 6 and Section 3.

From the definition and from the linearity of induced maps it is clear that the
Lie derivative is R-linear in w:

Lv(kywy + kawz) = ki Lywy + kaLvw, ki, k2 € R.
It is not ¥(A)-linear; rather,
Lv(fw) = fLvw + (Vf)w fe F(A).

This follows from the fact that ¢¢*(fw) = (f o ¢¢)d¢ "w. Unlike the exterior deriva-
tive, the Lie derivative is a derivation of the algebra of forms:

Lyv(wAx)=(Lvw)Ax +wA (Lvx).

This is a consequence of the fact that ¢¢"(w A x) = (¢¢"w) A (¢¢'x). From the
commutativity of pull-back and exterior derivative, d(¢:*w) = ¢;*(dw), it follows
that Lie and exterior derivatives commute:

d(Lvw) = Lv(dw).
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This has already been pointed out, in the case where w is a O-form, or function, in
Section 7 of Chapter 3, where we stated that Ly (df) = d(Vf); Lie derivative and
directional derivative coincide for functions.

With these rules at one’s disposal, the calculation of Lie derivatives in
coordinates becomes quite straightforward. A p-form is a sum of terms like
fdz® A dz® A ... A dz®"; by linearity of the Lie derivative, it is permissible to
deal with each term separately and sum the results, as before. Now

Ly(fdz® Adz® A .- Adz®)
= fLy(dz® Adz® A ... Adz®) + (Vf)dz® Adz® A--- Adz®.
The second term on the right hand side may be computed as it stands; to simplify
the first, the derivation property is used:
Ly(dz®*' Adz®* A - Adz®)
= Ly(dz™)Adz®* A Adz® + dz® A Ly(dz®?) A--- Adz® +---
+dz® Adz® A .- A Ly(dzor).

Now the commutativity of £y and d comes into play:
Ly (dz®) = d(Vz°) = dV*
where V = V99,. Thus
Ly (fdz® Adz® A--- Adz®)

L
= (Vf)dz®*' Adz®* A--- Adzo +de’°' Ac-AdV® Ao Adz®r.

Exercise 16. Show that if V = (2')20, +(2?)?82+(2°)?9s and w = z?2%dz' + z'z%dz* +
z'z%dz> then
Lvw =2'2%(22" + 2% + 2%)dz" + 2'2% (2" + 22° + 2%)d2® + 2’27 (2 + 2* + 22°)d2®
while if V = 229, - 2'9; and w = ((z')? + (z?)?)dz' A dz? then
Lvw = 0. a

Exercise 17. Show that if 1 = pdz' Adz? A..- Adz" is an n-form on an n-dimensional
space and V = V%9, then

Lyl = (pB.V° + Vp)dz' Adz?* A--. Adz". a

Exercise 18. Show that if w = }%w.,.,,, 0,dz? Adz® A ... Adz® then

l a a,
Lvw = ;!al.. (V‘wlﬂlﬂo”‘ﬂpl)d: YAdZ®I AL AdI,

where the bars around the suffix a indicate that it is to be omitted from the skew sym-
metrisation. a

We next show how Lyw depends on V. This is not so straightforward to derive;
to obtain the required results we first generalise the formula for the Lie derivative
of a 1-form a given in Chapter 3, Exercise 47, which may be written

(Lva)(W) =V (a(W)) - a(|V,W]).
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This throws V into more tractable positions, from which such a property as the
R-linearity of Ly a in V becomes obvious. This result follows from the fact that
&¢. is the adjoint of ¢,°, and so an expression involving ¢:* acting on a 1-form may
be converted into one involving ¢;. acting on a vector argument introduced for the
purpose. The same strategy works in the general case, and produces a somewhat
similar result. We show that for a p-form w and vector fields W,,W,,... W,

(Lvw) (W1, Wa,... \W,) = V(w(W),Wy,...,\W,)) = Y w(Wy,...,[V,W,],... . W,).

By definition,
(B¢ wey(n)) (W1 w2,y wp) = we, (2)(Brawy, Growy, ..., drawy)

where wy,w;,...,wp are the values of W,,W;,...,W, at a point z. But ¢, w,
is approximately the value of the vector field W, — tLyW, at ¢(z), from which
the result follows. An alternative method of obtaining the same result is to adapt
the method used to obtain the cordinate-free definition of d in Section 3, as in the
following exercise.

Exercise 19. Show that if

|4
oW\, W, ..., W,) =V (w(W),Ws,...,W,)) - Zw(w.,...,[v, W,),...,W,)

r=1
then © is 7(A)-multilinear and alternating and is therefore a p-form. By evaluating this
expression when W, ,Wj, ..., W, are coordinate vector fields, show that © = Lyw. o

It follows immediately from this formula that Lyw is R-linear in V:
Lk, v, +kava)w = ky Ly, w + ka Ly, w.

Other properties may be deduced from the same formula.

It is convenient at this point to make use of the interior product of a form
by a vector field. As with all the other algebraic operations involving forms, this
involves nothing more than applying the corresponding vector space concept from
Chapter 4 pointwise. Thus, if w is a p-form and V a vector field, then V Jw is the
(p — 1)-form defined by (V Jw), = V; Jw,. For any vector fields W, ,W,,... ,Wp_,

(V Jw)(W|,w:,...,W,,_|) = w(V,W|,W3,...,W,,_|).

Exercise 20. Show that, for any smooth function f,
Lyvw = fLvw +df A(V Jw)
(use the formula for Lvw given in Exercise 19 and above). o]
Exercise 21. Show that
Lv(Lww) — Lw(Lvw) = Lv,ww
and that Lv(Wlw) = (LvW)Jw+ W lLlvw. o
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The significance of vanishing Lie derivative. We now consider the conse-
quences of the condition Lyw = 0. We pointed out above that if w is invariant
under the flow generated by V (in other words, if w is Lie transported by this flow)
then Lyw = 0; we seek now to prove the converse. In order to do so we first de-
rive a result concerning the behaviour of the Lie derivative under smooth invertible
transformations.

Let ® be a smooth invertible map with smooth inverse. We wish to derive an
alternative expression for Ly (®°w). Now if V generates a one-parameter group ¢,
then

¢ (P'w) = (Pode)'w=2"(Pogeod ')w,

from which the required formula will follow by differentiation with respect to t.
The reason for choosing this rearrangement of terms is that ® o ¢; 0 ®~! is also
a one-parameter group: its generator is the vector field V® defined (Chapter 3,
Exercise 28) by

(V®): = @z (Vo-1(a)) -

Thus
Ly(®°'w) = & (Lysw).

In particular, taking for & an element of the one-parameter group generated
by V', and using the fact that V is invariant by such a transformation, one obtains

Ly (¢s'w) = ¢5°(Lyw).

If Lvw = 0 it then follows that Lv(#,'w) = O for all s and therefore that ¢¢‘w is
independent of t. Thus in this case ¢;'w = ¢o°w = w, and so w is left invariant
by the one-parameter group generated by V. (If V should generate only a flow the
result remains true though the argument must be modified.)

6. Volume Forms and the Divergence of a Vector Field

A volume form, in the terminology of Chapter 4, is simply an n-form on an n-
dimensional affine space arising from an n-form on its underlying vector space.
Such a form defines a volume element on the affine space (to use the appropriate
phrase from multiple integration) which is invariant under translations.

Exercise 22. Show that an n-form {2 on an n-dimensional affine space is invariant under

all translations if and only if its (single) component with respect to affine coordinates is
constant. o

In the present context it is appropriate to generalise this concept and to call
any nowhere vanishing n-form on an n-dimensional affine space a volume form. A
volume form determines an orientation of the affine space. Relative to positively
oriented affine coordinates it may be written pdz' A dz* A - A dz™ where p is a
positive function. If one thinks of dz' Adz? A--- A dz" as determining a volume in
the usual geometric sense then it is natural to interpret p as (for example) a density
function.
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In Exercise 17 the following formula for the Lie derivative of an n-form was
obtained: if @ = pdz' Adz? A---Adz" and V = V23, then

dze

If N is a volume form, so that p never vanishes, this may be written

a
Lyl = (pQL +Vp) dz' Adz* Ao A dZ™.

9z p dze

In the case p = 1 the coefficient on the right hand side is just the usual expression
for the divergence of the vector field V. More generally, if 1 is invariant under the
one-parameter group generated by V, then

7]
dzs
which is the continuity equation of fluid dynamics. So much may be said under the
assumption that the coordinates are affine, but the formula holds for any coordi-
nates. In fact there are present here the basic ideas for a coordinate independent
definition of the divergence of a vector field.

Given a volume form 0 on an affine space A4 of dimension n any n-form on A
may be expressed uniquely as a multiple of 2 with a coefficient which will in general
be a smooth function on A. In other words {1 will serve as a basis for the module
of n-forms on A over ¥(A4). In particular the n-form Ly 0, for any vector field V,
may be so expressed: the coefficient in this case is called the divergence of V with
respect to {1, written divq V. Thus

LvQ = (diva V)A.

a
Ly = (-‘?X— + lvp) n-= ,1’ 9 (o).

(bV*?) =0,

By its very definition, divg V describes how the volume form 01 is changed under
the action of the flow of V; in particular, divq V = 0 is the necessary and sufficient
condition for the vector field to be volume-preserving.

Exercise 23. Prove that if 11 is a volume form and V is a vector field whose flow is
volume-preserving, so that divaV = 0, and if W is a vector field whose flow consists of

symmetries of V, that is, transformations which leave V invariant, so that LwV = 0, then
divq W is constant along the integral curves of V, that is, V(diva W) = 0. o

We now have two ways of constructing quantities which generalise the diver-
gence of vector calculus: this, and the exterior derivative of an (n — 1)-form, as
exemplified in Exercise 9. In fact a natural way of expressing an (n — 1)-form w is
as follows:

w=pdz? Adz® A Adz" — padz' Adz3 A AdZ" + -
+(-1)""'ppdz' Adz? A - A dZT?

n
= Z(—l)"'p,dz' Adz? A ---dzt - Adz",
r=1

Then in the computation of dw the only derivative of p, which contributes is the
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one with respect to z,, and in fact

"9
dw:( p')d:'/\dzzl\u-/\dz".
maz'

The two constructions of the divergence are related as follows. The particular
expression for w used above is just what would be obtained as a result of taking the
interior product of the n-form dz' A dz? A--- A dz" with a suitable vector field. In
fact, given a volume form 1, any vector field V determines an (n — 1)-form V i1,
and it is easy to see, either directly or by considerations of dimension (compare
Chapter 4, Exercise 42), that every (n — 1)-form may be expressed uniquely in this
way. In the case in which the n-form is just dz' Adz*A-.-Adz" (and the coordinates
are taken to be affine) the (n — 1)-form corresponding to the vector field V = V29,
is

n
Z:(-J)"'V'd::l Adz*A---dzm - Adz".
r=1

As has already been shown, the exterior derivative of this (n — 1)-form is indeed the
divergence of V times dz' Adz?® A--- Adz™. Thus, with Qg = dz! Adz®A--- Adz",
we may write

LvQlo = d(V Jno).

In fact this formula holds with any volume form in place of f19. This result
may be obtained directly, or alternatively by the following argument. Let 2 = pQo,
where p is a non-vanishing smooth function. Then

Ly = Lv(pfo) = (Vp)Qlo + pLv o
while
d(V 10) = d(V 1p0s) = dp A (V o) + pd(V 1MNo).

The expression dp A (V J{lp) may now be simplified by the following trick. Since
1y is an n-form dp A Uy, being an (n + 1)-form on an n-dimensional space, is zero.
Thus

0=V Jdp Afg) = (Vo) —dp A (V 10o).
On combining these various expressions we obtain

Ly = d(V 10) = (divg V)N

Exerclse 24. By using similar arguments show that for any volume form 1 and any
non-vanishing function f

divn V = ;_divn fv. o
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6. A Formula Relating Lie and Exterior Derivatives

The formula Ly 1! = d(V J01) obtained above is the particular case (for n-forms) of a
simple and important general formula relating Lie and exterior derivatives and the
interior product. In order to derive it we consider the expression Lyw — d(V Jw),
where w is a p-form; we use the coordinate independent expressions for Lie and
exterior derivatives to evaluate this expression. For any vector fields W, ,W,,..., W,
we have

£vw(W,,W3, . ,W,) - d(V Jw)(W;,W,, e 'WP)

P
=V(wWi,Wa,... \Wp)) = Y w(Wy,... [V, Wi,..., W)

P
=Y ()W (w(V, W, W W)
r=1

- Y e W W), W W, W)
1<r<s<p

P
=V (w(Wi,Wa,...,Wp)) + ) (1) 1?W, (w(V,W),... W,...,W,))

r=1

|4
+ () ([V, W), W, WL W)

r=1
_—

+ Y (FYH (WL WLLY, W, LW, W)
1<r<s<p
Careful inspection of this final expression reveals that it is just an exterior derivative:
it is in fact dw(V,W,,...,W;). Thus on elimination of the “catalytic” vector fields
W,,W3,...,W, and rearranging one obtains

Lvw =d(VIw) +V Jdw.

The final term is missing when w is an n-form on an n-dimensional space. Note
that in that case this formula slightly generalises the one obtained in the previous
section, because w is not restricted to be nowhere vanishing.

Exercise 25. Show that on evaluating the expression d(V Jw) + V Jdw with coordinate
vector fields for arguments one recovers the expression for the components of Lvw given

in Exercise 18. a
Exercise 26. Repeat the calculations of Exercise 16 using this expression for the Lie
derivative. a

7. Exterior Derivative and Covariant Derivative

Among the properties of the covariant derivative operator there are two, namely
Vu+vW = VyW + WyW
VIV = fVVW,
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which show that, for a fixed vector field W and 1-form 8, the map V — (Vy W, 8) is
a 1-form. We shall rewrite some of the theory of the covariant derivative in a way
which takes advantage of this observation.

Let {U,} be a basis of vector fields and {6°} the dual basis of 1-forms. Then
for each U, the map V — (VyU,,6°) is, as we have remarked, a 1-form, which we
shall denote wg. The 1-forms w? are called the connection forms associated with
the basis of vector fields U,. For any vector field V,

YUy = (V,wp)U,

and therefore

W = (V(We) + (V,w)W?)U, where W = WeU,.
Also (Chapter 3, Section 11)

(Ue,wg)Ua = Yy, Us = v Ua
and therefore
wy = Y5 0°

Exercise 37. Show that if U, = U2, with respect to a basis of affine coordinate vector
fields then w@ = (U~")2dU§ or in matrix notation w = U~'dU. o

Now the components W? of the vector field W with respect to the basis {U,}
are given by W = (W, 6%, Thus

W = (V(W,0° + (V,wp)(W,8°)U,.
We may express the first order commutation relation VyW — VyV = [V, W] as
follows:
V(W,6%) - W(V,0%) + (V,wi)(W,0%) - (W,wi)(V,6°) = ([V,W},6°)
which on rearrangement gives
doc(V,W) + (wg A 8%)(V,W) = 0.
It follows that
do® + wg A8® =0.

Exercise 28. The same result may derived in another way. Show from the relation Vy W —
VwV — |[V,W]| = 0 that for any I-form @, d8(V,W) = (W,Vv8) — (V,Vw#8). Show that
(V,w) = —{Ua, Vv8*) and deduce that d6° = —w A 6°. o

The second order commutation relation Vy Vi — Vw Vy — Vjy | = 0 for an
affine space may be expressed as follows. For each basis vector field U,

Vv (VwUs) = Vv ((W,wg)Ua)
=V ((W,wp))Ua + (W,w})Vy U
= (V((W,w})) + (V,w2)(W,w§))Ua
which may be written

(Vv(Vwlh),8%) =V ((W,w5)) + (V,w)(W,wp).
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Subtraction of the similar term with V and W interchanged and of the term
(Viv.w)Us, 0°) yields

V((W,wp)) + (Viw)(W,wi) =W ((V,wg)) = (W,wi)(V,wg) = (V. W], wg) = 0.

This is to say
dwi(V,W) + (w? Awf)(V,W) =0.

Since this holds for every pair of vector field arguments
dwi + w Awf =0.

The equations d0° + wi A 8® = 0 and dw{ + w? Awf = 0 are called the first and
second structure equations for the connection with respect to the local vector field
basis.

8. Closed and Exact Forms

A p-form given on an affine space is said to be closed if its exterior derivative is
zero, and to be ezact if it is itself the exterior derivative of a (p — 1)-form. An exact
form is necessarily closed, since if w = dx then dw = d(dx) = 0. We shall show that
in an affine space an everywhere-defined closed form is necessarily exact.

Exercise 39. Show that with respect to any coordinates the condition for a 1-form a =

a,dz® to be closed is that d.as = dsaas. Show that for it to be exact there must be some
function f such that a, = 3,.f. o

The general result includes, in a sense, the following results from vector calcu-
lus: that a vector field is a gradient if and only if its curl is zero, and that a vector
field is a curl if and only if its divergence is zero. However, we deal here only with
forms, whereas the classical results make implicit use of the metric of Euclidean
space to identify forms with vector fields. The classical results are developed in
Chapter 7.

In vector calculus, if curl X = 0, then a potential function ¢ for which X =
grad ¢ is constructed by setting

P

¢(P) = X-dl

Pl‘\
where P is a conveniently chosen point and the line integral is taken along any
smooth curve from P to P. It follows from Stokes’s theorem that the function
so obtained is independent of the choice of path of integration. This method is
not directly applicable to exterior forms of degree greater than 1, but suitably
reformulated it yields a construction which can be generalised to treat such forms.

Expressing a closed 1-form as an exterior derivative. Consider, therefore,
on an affine space A a closed 1-form a. We shall construct a function f such that
a=df.

Choose any point zo of A. This point may be joined to any other point z by
an affine line segment ¢;:t — zn + t(z ~ Zo). In affine coordinates (z2) with z as
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origin, one may write @ — a,dz®, and the line €, is t +-» (tz%). We define a function
f by the formula

1
[7(z%) --/; ap(tz<)zbdt.

In the integration the z°, which are the coordinates of the endpoint of the segment,
must be understood to be constants: only t is a variable of integration. In effect
we are computing the line integral of a along the line segment ;. The function f
is smooth, if a is, and its exterior derivative may be computed directly:

P oy, 9o o b .
df = 8x¢dz —{/0 (aa(t::)+‘—9;a(tz )tz® ) dt ; dz°,

the second term being rearranged by change of dummy indices to yield dz° as
common factor. However, since a is closed, dya, = d,as (Exercise 29), and so the
second term may be rewritten again to yield

df = {/OI (a.,(tz‘) t %(tt‘)t:b) dt} dz°.

But this integrand is the derivative with respect to ¢t of the function t — ta,(tz¢);
thus

df = {/0l %(ta,(t:‘))dt} dz® = aq(zf)dz® = a.

This establishes the construction for a 1-form.

Exercise 30. Show that the 1-form z?dz' + z'dz? is closed ; construct by the above

method a function f for which df = z?dz' + z'dz?. o
Exercise 81. Show that the 1-form —-z?dz! + z'dz? is not closed; verify that the integral
defined above is zero for this form. o

Exercise 82. Show that the 1-form

-zldz! + z'dz?

on R? is smooth except at the origin, and closed wherever defined. Verify that, although
fo' a.(tz°)z°dt is not defined, lim._o f" aq(tz°)z%dt = 0. Show that, for z! > 0, a = df

where f = arctan(z? /:'), and show how to extend this function to one which is smooth
everywhere except for z* =0, 2! <o. (s}

a=

There is in fact no smooth function f on R2, or even on R? with the origin removed,
such that df is the 1-form a of Exercise 32, even though a is closed. Even so, one
frequently writes d¥ for a, where 9 is the angle of plane polar coordinates! The
moral of Exercise 32 is that for locally defined forms closure does not necessarily
imply exactness.

Expressing a closed form of any degree as an exterior derivative. The
integral defined above is meaningful, and yields a smooth function f, whenever a
is an everywhere smooth 1-form, whether or not it is closed. Moreover, there is a
relation between df, a and da which suggests a way of generalising the construction
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to forms of higher degree. To discover this relation, compute df in affine coordinates,
as before, but no longer assuming that a is closed:

df = {/:(a,(tz‘) +a.,a,,(tz°)¢z°)dt} dz°,

and add and subtract a dya, term inside the round brackets:

df = {Al(aa(tz‘) +6l,a.(tz‘)tz")dt}dz°
- {/ol(aga.(tz‘) - a.ab(tz‘))tz"dt} dz®
=a- {L'(da)‘b(tz°)tz°&} dz®.

The final term on the right is constructed from da in much the same way as
f is constructed from a. On the route to generalisation, we define linear maps
hy:A"A = A°Aand ha: A4 = A\ 4 by

1
hy(a) = / ag(tzf)zdt where a = a,dz®
0

1
ha(B) = {/ ﬂao(t:°)tz°dt} dz®
)
where = 18a4dz® A dzb. Then
d(hi(a)) = & - hy(da),

so that do hy + hz o d is the identity map on 1-forms.

The key step in the generalisation is to construct a linear map h,: AP 4 —
AP~! A for each p = 1,2,...,n, similar to h, and h3, such that do hp + hpy 0 d is
the identity map on p-forms. If this composite map is applied to a closed form w it
will yield d(hp(w)) = w, showing that w is exact, as required.

A clue to the construction of the maps h, is gained from an analysis of &, and
h,. Each of these maps is effected by carrying out the following steps: first, contract
the coefficients of the given form with z°%; then change the argument to tz° and
multiply by a suitable power of ¢; then integrate with respect to t. Now the process
of contracting the given form with z° is equivalent to taking its interior product
with the vector field A = z29,. This vector field generates the one-parameter group
of dilations &;: z +—+ z¢ + e!(z ~ z) or, in affine coordinates based on z (as we have
been using), (z%) — (e*z®). The integral curve of A through z is (almost) the line
segment ¢, used in the construction, though differently parametrised. However, the
origin of affine coordinates zo does not lie on the integral curve of A through any
other point z, but is itself a (degenerate) integral curve. On the other hand, for
each point z, the limit of §;(z) as t — —o00 is zo. If we change the variable in the
integrals defining h; and h3 to e' we obtain

hi(a) = /0 aq(efzf)etzodt
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0
h2(B) = {/ ﬂab(C'xc)e":‘dt} dzb.

Now
6 a = ag(e'zt)e'dz®
6¢°8 = 1Bab(ez%)e? dz® A dz’.

On taking the interior products of these forms with A we recover the integrands of
the above integrals. We may therefore express h, and h; as follows:

hi(a) = /O (A 16:° a)dt

0
ha(B) = / (A 16, B)dt.

Integration here means integration with respect to the parameter ¢, the coordinates
z° being regarded for this purpose as constants. Therefore any operation which
affects only the coordinates may be interchanged with the integration. Using this
fact, and also the fact that the exterior derivative commutes with the pull-back, we
write the formula a = d(h)(a)) + h2(da) in the following way:

a=d (A J/:ooo(&‘a)dt) + AJ/;l(&‘da)dt.

Compare this with the Lie derivative formula
Laa =d(Ala) + A Jda.

It is apparent that, suitably formulated, the integration process is simply the inverse
of the Lie derivative along the generator of dilations.

A similar construction works for a form of arbitrary degree. If w is a p-form
then

. 1
b'w = mena...np(e'xc)c"‘dz"' Adz® A .- Ad2®,

and so lim¢_, _ o 6¢°w = 0. Moreover, from the definition of the Lie derivative,

- d . d *

La(b'w) = 2;(5.“ W)e=0 = 3(51 w)
and so on the one hand
° d
—(6¢*'w)dt = 6w = w,

/_w ar (% wldt = b

while on the other hand

/_:, %‘6‘"")‘“ = /_ Ooo La(8'w)dt = / L(d(A 16" w) + A Jd(6°w))dt

=d(a J/O (6e°w)dt) + A.l/0 (8¢° (dw))de,
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again using the fact that integration here is with respect to ¢t to interchange the
order of operations. Therefore

w = d(A J/o (6¢'w)dt) + AJ/O (6¢'(dw))dt.

Dropping any notational reference to degree, as is customary also for d, we denote
the map w — AJf_(_)oo(&‘w)dt by h, and infer that for any p, doh + hod is the
identity on p-forms. Therefore if dw = 0 then w = d(k(w)) and every closed form
on an affine space is exact.

Note that for a given closed p-form w there are many (p — 1)-forms x such
that dy = w: the addition of a closed (p — 1)-form to any such form x will pro-
duce another with the same property. This operation is sometimes called a “gauge
transformation”.

Exercise 33. Let A,, A; and As be given functions, smooth everywhere on a 3-
dimensional affine space. Show that the necessary and sufficient condition for there to
exist functions fy, f3 and fs such that (in affine coordinates)
=0 o, 0 0L 0 0N 9
T 3r% ax? L FTI P 37 377~ 3!

9A, , 9A;  dAs

o T 0 @
Exercise 34. An open subset of an affine space is said to be star-shaped with respect to
a point zo in it if for each point z which lies in the subset the line segment joining zo to
z also lies in it. Show that any local form, defined on a star-shaped set, which is closed is
necessarily exact. o

A

is that

Exercise 35. Show that the Lie derivative with respect to the dilation field is an iso-
morphism of forms: that is to say, if Law = O then w = 0; and if w is & form specified
everywhere then there is a form x of the same degree such that w = Lax. Show by exam-
ple that this is not true if the form w is undefined at some point (consider the form a of
Exercise 32). o

Summary of Chapter b

A p-form on an affine space is a choice of element of AP(T; A), the vector space
of alternating R-multilinear forms of degree p on T: 4, for each point z € 4. If w
is a p-form and V,,V3,...,V, are smooth vector fields then w(V},V3,...,V,) is a
function on A, and w is smooth for all choices of arguments. Alternatively a p-form
is an F(A)-multilinear alternating map X (A4)? — F(A). The operations of exterior
algebra (including the exterior and interior products) are carried out on forms
pointwise. A p-form w may be expressed in terms of coordinates in the following
way: w = ’—:,w.,.,,,,,,'dz" Adz®* A---Adz°", where the functions wg,q,...s, satisfy
Wa,0;...a, = Wa,a;...a,]- A smooth map ¢ induces a map of forms by w — ¢*w where
(*w)e(vi,v2,...,0p) = wy(e)(devy,$ev3,...,4.v,); this map is contragredient to
¢, is R-linear, and satisfies ¢*(w) Awz) = (¢*wy) A (¢*w2).

The exterior derivative of a p-form w is the (p + 1)-form dw given by dw =
df A dz® Adz®* A---Adz® if w = fdz® A dz®* A-.-- Adz?, and extended to
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arbitrary forms by linearity. A coordinate-free definition is
p+1

dw(Vi,Va,... Vpir) = (-1 WV (wVi,oo . Vr o Vo)
r=1
+ Y DRV Ve Vi VeV V).
1<r<s<p+1

The exterior derivative generalises the operations of vector calculus. It has the
following important properties:

d(k.wl + kgu)g) = kydw, + kawz d(fw) = fdw +df Nw
dwAx)=dwAx+ (-1)PwAdy if w is a p-form
=0 ¢ (dw) = d(¢*w).

The Lie derivative of a p-form w by a vector field V is the p-form Lyw given
by d/dt(¢¢°w)e=0 where V generates the flow ¢. Alternatively,

(Lyw)(Wh, W3, ..., W,) =V (w(W),Wa,...,W,)) - zp:w(w,,...,|V,w,],...,w,).
r=1

The Lie derivative measures the rate of change of w under the action of the flow of
V. It has the following important properties: it is R-linear in both w and V; Ly
commutes with d;

Lv(fw) = fLvw + (Vf)w Lv(wi Awz) = (Lvwi) Awz + wy A (Lvws)
Lyvw = fLvw+df A(VIw)  Lv(Llww) - Lw(Lvw) = Ly,ww
Ly(Wlw) = (LyW)Jw =W I Lyw.

The Lie and exterior derivatives are related via the interior product by

Lyw =d(V Jw) + V Jdw.

The connection 1-forms w! associated with a basis of vector fields {U,} are

defined by (V,wb) = (VyU,,0%) where {6°} is the basis of 1-forms dual to {U,}.
The connection forms satisfy df® + wg A 6 =0, dwg + w? Awf = 0, the structure
equations for the vector field basis.

A form w is closed if dw = 0 and is exact if w = dx for some x of degree one less.
Every exact form is necessarily closed; for forms globally defined on an affine space
the converse is true, as may be shown by constructing a family of linear operators
h such that doh + hod is the identity on p-forms for each p. However, a local form
may be closed without being exact.
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If $: B — A is a smooth map of affine spaces then, for any y € B, the set of vectors
{¢.w |w e TyB} is a linear subspace of T4(,)A. It would be natural to think of
this vector subspace as consisting of those vectors in Ty(,)A which are tangent to
the image ¢(B) of B under ¢. In general this idea presents difficulties, which will be
explained in later chapters; but one case of particular interest, in which the notion
is a sensible one, arises when ¢., is an injective map for all y € B, so that the
space {¢.w | w € Ty B } has the same dimension as 8 for all y. In this case we call
the image ¢(B) a submanifold of A (this terminology anticipates developments in
Chapter 10 and is used somewhat informally in the present chapter). Since it has
an m-dimensional tangent space at each point (where m = dim B) the submanifold
¢(8) is regarded as an m-dimensional object. Our assumption of injectivity entails
that m < n = dim A.

A curve (other than one which degenerates to a point) defines a submanifold
of dimension 1, the injectivity of the tangent map corresponding in this case to
the assumption that the tangent vector to the curve never vanishes. We regard
R, for this purpose, as a 1-dimensional affine space. In the present context the
image of the curve will play a more important role than the curve (as map) itself.
A congruence of curves on an affine space A defines a vector field on A; if the
parametrisation of the curves is disregarded, then one obtains a collection of 1-
dimensional submanifolds of A, exactly one through each point, and associated
with it there is a field, not of vectors, but of 1-dimensional subspaces of the tangent
spaces to A. Again, degenerate curves are not allowed.

An obvious, and as it turns out, important, generalisation of this idea is to
consider collections of submanifolds of A, exactly one through each point of A, and
all of the same dimension m, but with this common dimension not necessarily being
1. Such a collection of submanifolds defines on A a field of m-dimensional subspaces
of the tangent spaces to A, which we call a distribution of dimension m. The m-
dimensional subspace of T; A determined by the distribution is just the subspace
consisting of vectors tangent to the submanifold through z. So in this way, starting
with a suitable collection of submanifolds one may construct a distribution. But one
may imagine a distribution to have been defined initially without reference to any
submanifolds; the question then arises, is there even so a collection of submanifolds
whose spaces of tangent vectors coincide with the given distribution? When m =1
there will be such a collection of submanifolds, as follows from (though it is not
quite equivalent to) the theorem on the existence of integral curves of a vector field.
But in the more general case the answer to the question is: not necessarily. A
certain condition must be satisfied by the distribution to ensure the existence of
submanifolds with the required property—integral submanifolds we shall call them,
in a natural extension of the terminology for vector fields and curves.
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In this chapter we describe the geometry of distributions, state the condition
for the existence of integral submanifolds, prove its sufficiency, a result known as
Frobenius’s Theorem, and make some applications.

1. Distributions and Integral Submanifolds

Distributions. An m-dimensional distribution D on an affine space A is an as-
signment, to each point z € A, of an m-dimensional subspace D; of T A. Naturally,
we shall be concerned only with distributions in which D, varies smoothly, in some
appropriate sense, from place to place. Before making this precise, however, we
consider the various ways in which a distribution may be specified, making use of
geometric objects already defined.

Since we are concerned with subspaces of vector spaces, the methods of Chap-
ter 4 suggest themselves. Thus for each £ we may specify D, simply by giving a
basis for it (consisting of elements of T; A), or by giving a suitable m-vector at z.
Alternatively we may use a dual approach, and specify D, by giving n — m linearly
independent constraint 1-forms at z for it, or by giving a characterising (n — m)-
form at z for it. Each of these methods is useful in an appropriate context. For the
present we concentrate on the specification of a distribution using forms.

Given a distribution D, we call any local 1-form 6 which vanishes on D (in the
sense that at each point z, 8, vanishes when restricted to D;) a constraint 1-form
for D. An m-dimensional distribution on an n-dimensional affine space is smooth if
one can find n — m smooth local 1-forms §? (where p = m + 1,m + 2,...,n) such
that, for each z, the 62 constitute a basis for the constraint 1-forms for D at z.
Given n — m smooth constraint 1-forms 8” as described in this definition, one can
express any other smooth constraint 1-form 6 uniquely in the form 6 = f,0° with
smooth local functions f, for coefficients. Because of this we shall call such a set of
constraint 1-forms {67} a basis for the constraint 1-forms for D. Bases of constraint
1-forms for distributions are not uniquely determined: if {6#} is one basis and if
(n — m)? smooth local functions A% are given, such that for each z the matrix
(A£(z)) is non-singular, then { A267} is another basis for the constraint 1-forms for
the same distribution, and any two bases are related in this way on their common
domain.

Almost all of the indeterminacy inherent in the use of 1-forms to specify a
distribution may be avoided by using instead a characterising (n — m)-form. A
smooth local (n —m)-form w is called a characterising form for a smooth distribution
D if w, is characterising for D; for all z. Any basis {6°} for the constraint 1-forms for
D defines a characterising (n — m)-form w = §m*+' A9™+2 A...Af". Conversely, any
characterising form must be decomposable, in the sense that it may be expressed
as an exterior product of 1-forms, and these are then constraint 1-forms for the
distribution.

Exercise 1. Consider the 1-form § = —z?dz' + z'dz? + dz® in a 3-dimensional affine

space. Show that 0 is a constraint 1-form for a 2-dimensional distribution D, and that the
vectors 9; + 2°3s, 32 — z'3s constitute at each point z a basis for D,. [a]
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Exercise 2. Consider the two 1-forms 84 = -z?dz! + z'dz® + dz3, 6° = -z1%dz® +
z3dz* + dz® in a 5-dimensional affine space. Show that they constitute a constraint basis
for a distribution D, and find a characterising form for it. Find a vector basis for D; in
terms of coordinate vectors. o

Exercise 8. Find a basis for the constraint 1-forms for the distribution (on a 4-
dimensional affine space with affine coordinates (z!,z?, 2% z%)) which has the (decom-
posable) 2-form dz' A dz? + z3dz' A dz® - 222%dz? A dz® as a characterising form. o
Exercise 4. The 1-forms dz' + z2dz®, dz' + z3dz? do not, as constraint 1-forms, define
a distribution: why not? o

Exercise 5. Suppose that w is an (n — m)-form on an n-dimensional affine space, which
is nowhere vanishing and is decomposable (in the sense explained above). Show that if,
for each point z, D, is the characteristic subspace of w, then the D, constitute a smooth
m-dimensional distribution. o

Exerclse 8. Show that two (n — m)-forms, both decomposable, determine one and the
same m-dimensional distribution if and only if one is a multiple of the other by a nowhere
vanishing smooth function. a

Constraint forms and characterising forms for the same m-dimensional distri-
bution are related as follows: if w is a characterising (n — m)-form, and therefore
decomposable, then # is a constraint 1-form if and only if § A w = 0 (Exercise 46
of Chapter 4); again, w is a characterising form if and only if 8§ A w = 0 for every
constraint 1-form @ (Exercise 47 of Chapter 4). This can be taken somewhat fur-
ther. We shall say that the distribution D is isotropic for a p-form yx if, for every
point z, x. is zero when restricted to D, (that is, xz(v),v3,...,v,) = 0 when all
of the p arguments vy,v;,...,vp lie in D;). Thus in particular D is isotropic for all
its constraint 1-forms and for any linear combinations of p-fold exterior products
of them, including its characterising (n — m)-forms; but more generally than this,
D is isotropic (for example) for a A @ where 8 is a constraint 1-form and « is any
form whatsoever. The case of a characterising form is rather special: it gives zero
when just one of its arguments is taken from D. The forms for which D is isotropic
have a significant role to play in the argument. They may be specified as follows:
D is isotropic for x if and only if x A w = 0, where w is a characterising form for D
(Exercise 48 of Chapter 4).

Exercise 7. Let {6’} be a basis for the constraint 1-forms for a distribution D, and let
x be a p-form for which D is isotropic. Show that there are (p — 1)-forms A, such that
X =A,NO%. a

A set of forms (of differing degrees) is called an ideal if it has the property that
for every form x it contains, it also contains A A x for every form A (this includes
the possibility of A being a 0-form, that is, a function). Every set of forms, even a
finite set, is contained in some ideal, though possibly the only ideal containing it is
the whole algebra of forms. The smallest ideal containing a given finite set of forms
is said to be generated by it.

Exercise 8. Let {6’} be a basis for the constraint 1-forms for a distribution D: show
that the ideal generated by this finite set of forms consists of all the forms for which D is
isotropic. a

Integral submanifolds of a distribution. We have introduced above the idea
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of a submanifold, and pointed out its relation to the idea of a curve. Just as it
is desirable to allow the domain of a curve to be an open interval of R and not
necessarily the whole of it, so it is desirable to allow the domain of a map defining
a submanifold to be an open subset of an affine space and not necessarily the whole
of it. Allowing for this, we define a submanifold of an affine space A as follows. Let
$ be a subset of A. We call § a submanifold of 4 if there is another affine space 8,
an open subset O of 8, and a smooth map ¢: 0 — A such that S is the image of 0
under ¢ and that for every y € O the linear map ¢.: TyB — Ty(y)4 is injective.

The map ¢ in the definition is not unique. In particular, if ¥:0 -+ P is a
smooth map of the open set O to an open set P in 8 which is bijective and has a
smooth inverse, then ¢:0 —+ A and ¢ = ¢o ¥ ': P — A determine the same sub-
manifold. We call any map ¢ with the properties of the definition a parametrisation
of the submanifold S, and any map ¢ as just described a reparametrisation of ¢.

If : 0 — A is a parametrisation of a submanifold S of A then, for any y € O,
¢. maps TyB linearly and injectively into Ty(y)4, and so ¢. (T,B) is a subspace
of T: A which is isomorphic to TyB. Moreover, if ¥ is a reparametrisation of ¢,
then ¢ and ¢ determine, in this manner, the same subspace of T; 4 at each point
z of S. We call this subspace of T, A the tangent space to the submanifold S at
the point z € §. All of the tangent spaces to S have the same dimension, namely
m = dim B, so we say that S has dimnension m. The tangent space to § at z will
be denoted T S.

-9

B

Fig. 1 Tangent spaces to a submanifold.

Exercise 9. Show that the map given by (y',y?) +— (cosy' siny?, siny siny?,cosy?) for
0 < y? < = is a parametrisation of a submanifold, but that it is not so on any larger
domain. o
Exercise 10. Show that if R is regarded as a 1-dimensional affine space then any curve
with non-vanishing tangent vector is a parametrisation of a 1-dimensional submanifold,
and that its tangent space at any point is the 1-dimensional space spanned by the tangent

vector to the curve at that point. o
Exercise 11. Show that any affine p-plane in an affine space is a p-dimensional subman-
ifold of it. a

Exercise 12. Show that the tangent space at r to a submanifold § of A, through z,
consists of the tangent vectors at z to all curves in A which liein §. o]
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Exercise 138. Let ¢: O — A be a parametrisation of a submanifold § of A (where O is an
open subset of 8) and let y € 0. Define an affine map ®: 8 — A in terms of the linear
map ¢.:T,B — Ty(,)A as follows. For each z € B regard z — y as an element of T,B
and set ®(z) = ¢(y) + ¢.(z — y), where ¢.(z — y) € Ty(,)4 is to be identified with an
element of the vector space on which 4 is modelled. Show that ® attaches B at ¢(y) as
an m-dimensional affine subspace of 4, and that this affine m-plane touches § at ¢(y) in
the sense that its tangent space there coincides with Ty(,)$. a

We call this m-plane the tangent plane to S at ¢(y).

Suppose now that there is given, on an n-dimensional affine space A, an m-
dimensional smooth distribution . An m-dimensional submanifold S of A is called
an integral submanifold of D if at each point z € S, Te S = De. Thus § is an integral
submanifold of D if at each point z through which it passes its tangent space is just
the subspace D; of T; A already given there by D.

It is not necessarily the case that a distribution admits integral submanifolds:
our aim is to give a necessary and sufficient condition for it to do so. A distribution
D such that through every point of A there is an integral submanifold of D is said
to be integrable.

A simple example of an integrable distribution is the one defined on a 3-
dimensional affine space by the single constraint 1-form given in affine coordinates
by dz3. Its integral submanifolds may be parametrised by (y!,y?) — (y',¥% ¢),
where ¢ is a constant, different integral submanifolds being obtained for different
values of ¢. The integral submanifolds are simply the 2-planes parallel to the r!z3-
plane. There is one and only one integral submanifold through each point of the
3-dimensional affine space: since the z3-axis cuts each integral submanifold just
once it is convenient to distinguish the integral submanifolds from each other (in
this example) by using the points on that axis, and in fact the constant ¢ in the
parametrisation given above is just the z3 coordinate of the point in which the
integral submanifold intersects the z3-axis.

On the other hand, the distribution (on the same space and with the same
coordinates) defined by the constraint 1-form —z2dz' + z'dz? + dz® (Exercise 1) is
not integrable. We may indicate why by assuming that it has an integral submani-
fold through some point and deriving a contradiction. This is particularly easy to
do when the point in question is the coordinate origin. As in the previous example,
the constraint 1-form at that point is just dz3, and so the tangent plane to the
integral submanifold through the coordinate origin (supposing one to exist) would
have to be the z'z2-plane. Accordingly it would be possible to use for parameters
on the integral submanifold the first two coordinates of the points on it—at least for
points close enough to the origin. In other words it would be possible to regard the
integral submanifold as the graph of some function f on R2, and having therefore
the parametrisation ¢:(y',y?) — (y',¥%,f(y',y?)). The function f is required to
satisfy f(0,0) =0, 9,f(0,0) =0, 32/(0,0) = 0. Now

o(Z)-2e 2
dy! dz! ' Jy! 9z3
NEANE ]
dy? dz2 QJy2 0z3
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and these vectors belong to the distribution at ¢(y) (as they must if ¢ is to be a
parametrisation of an integral submanifold) if and only if

-y +0:f=0, y'+df =0

Cross-differentiating makes it clear that there is no smooth function f satisfying
both these equations simultaneously. The distribution cannot be integrable.

Before turning to the question of the necessary and sufficient conditions for
integrability, we point out that when they do exist integral submanifolds of a dis-
tribution share one property with integral curves of a vector field: there is one, and
only one, integral submanifold passing through each point of the space. If one has
found a parametrisation ¢ for the integral submanifold through a point z,, and
z7 is some other point or it, then a parametrisation for the integral submanifold
through z; can differ from ¢ only by being a reparametrisation of it. In the case
of integral curves of a vector field one is able to go further and say that such a
reparametrisation can be no more than a change of origin, but this depends on the
fact that one is dealing with a vector field rather than a 1-dimensional distribution,
and there is no analogue of that particular aspect of the congruence property of
integral curves which applies to integral submanifolds of a distribution.

2. Necessary Conditions for Integrability

The task now is to find conditions on a distribution necessary and sufficient for the
spaces that make it up to fit together to form the tangent spaces to a collection of
submanifolds, in other words, for it to be integrable.

It is easy to derive a necessary condition, as follows. Suppose that D is an
integrable distribution, and that ¢: 0 — A (where O is an open subset of an affine
space B) is a parametrisation of one of its integral submanifolds, so that for any
y € 0, ¢.(TyB) = Dy(y)- Then if 8 is any constraint 1-form for D, and w any
element of Ty B, we have (¢.w,04(,)) = 0; from which it follows that (¢*9), = 0.
This holds for all y, so that ¢°@ = 0. Since the exterior derivative commutes with
the pull-back, it follows that ¢*d6 = 0. Then for any y € O and any w,,w; € T} 8,
dbg(y)(d.wy,$.w3) = 0, which means that the restriction of db4(y) to Dy(y) is zero.
Since by assumption there is an integral submanifold through every point of 4, this
property holds at every point of A. Thus if D is integrable, and 8 is any one of its
constraint 1-forms, then D is isotropic for df. Using the results of Section 1 this
conclusion may be equivalently expressed in several different ways: if D is integrable
then

(1) if w is a characterising form for D and 6 a constraint 1-form then

ddAw=0
(2) if {67} is a basis for the constraint 1-forms for D then
doP NG AGTHIA.. A" =0

(3) if {6°} is a basis for the constraint 1-forms for D then there are 1-forms A2
such that
der = X% A 6°.
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This gives, in various forms, a necessary condition for the integrability of D: it is
known as the Frobenius integrability condition.

Exercise 14. Show that the distribution defined by the i-form -z?dz! + z'dz? + dz*
(Exercise 1) fails to meet the Frobenius integrability condition in any of its forms. o

Exercise 15. Show that the Frobenius integrability condition for the distribution defined
on a 3-dimensional affine space with affine coordinates (z',z?,z%) by the constraint 1-form
Pydz' + Pydz? + Pydz® (where the coefficient functions P. do not all vanish simultaneously)
amounts to the condition

P\(33P; — 33 Ps) + P3(81Ps — 33 P\) + Ps(3:P, - 8, P3) = 0. o

(In more classical language, with the P, identified as components of a vector field
P, this would be written P - curl P = 0, and regarded as a necessary condition for
the family of 2-planes orthogonal to P to be integrable.)

Exercise 16. Show that the three conditions given above are indeed equivalent to each

other and to the condition that D be isotropic for d6. o
Exercise 17. Show that the Frobenius integrability condition is automatically satisfied
for any 1-dimensional distribution. o

Exercise 18. The 1-forms A} in condition (3) above are not uniquely determined. Verify
that this is so by showing that if u4 = A% + L/,6", where the functions L/, satisfy
LS = LZ,, then d6° = p’ A 0° also. Show that conversely, if d8” = A, A0° = us A 6°,
then A} and u) must be related in the way just described. o
Exercise 19. Show that if d§” = A5 A6°, and 6” = A%0°, where the functions A% are the
elements of a non-singular matrix (so that {6’} is another basis for constraint 1-forms)
then
do® = Ao A6° where AL =dAZ(A'), + AZAT(ATY))

(up to multiples of 87 as in Exercise 18), (A~')% being the elements of the matrix inverse
to (A5). o
Exercise 20. Show that if D is integrable and x is any form for which it is isotropic then
D is also isotropic for dx. Deduce that if D is integrable then the ideal of forms generated

by any basis for its constraint 1-forms contains the exterior derivative of every form in
it. o

3. Sufficient Conditions for Integrability

As it turns out, the Frobenius integrability condition (in any of its equivalent forms)
is sufficient, as well as necessary, for the distribution to be integrable. This result
is known as Frobenius's theorem. We now embark on the proof of sufficiency.

It should be stated at the outset that several steps in the proof work only
locally: that is to say, they involve assumptions or known results which may hold
only in a neighbourhood of a point and not all over the ambient space. The result is
therefore also local: it guarantees the existence of an integral submanifold through
every point, but only in a neighbourhood of the point.

We deal with an m-dimensional distribution D on an n-dimensional affine space
A. 1t will be convenient to use affine coordinates throughout, and to employ indices

a, B in the range 1,2,...,m

p,ointherangem+1,m+2,...,n

a, b in the range 1,2,...,n.
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The distribution D is assumed to satisfy the Frobenius integrability condition:
its most convenient expression for our purposes is the one given under (3) in the last
section. The aim is to show that through every point of A there passes an integral
submanifold of D. The strategy of the proof is to construct an integral submanifold
of D through an arbitrary point z, of A, starting off rather in the manner proposed
for the 1-form @ = -z2dz' + z'dz? + dz® towards the end of Section 1 (though
in that case the construction turned out to be unsuccessful for reasons now clear).
That method depended rather heavily on a particular property of 6, namely that
it contains a coordinate 1-form with coefficient 1, to which 8 reduces at the origin.
The first step in the general construction is to take advantage of the freedom of
choice of a basis for constraint 1-forms (underlined by Exercise 19) to pick a basis
with an analogous property.

Let {é"} be any basis of constraint 1-forms for D, with ° = égdz". The fact
that the 7 are linearly independent implies that at each point z € A the matrix of
coefficients (62(z)) has rank n —m, that is, has n - m linearly independent columns.
After renumbering the coordinates if necessary, it may be arranged that at zo the
last n - m columns of this matrix are linearly independent; the same will remain
true in some neighbourhood of zo. Then the (n — m) x (n — m) matrix (62) will
be non-singular on this neighbourhood. Let A2 be functions such that the matrix
(A2) is inverse to (62): then the 1-forms 87 = A26°, which also constitute a basis
for constraint forms, have the expression

8 = 6°dz® + dz*

for certain functions 8. Furthermore, it may be arranged, by an affine transforma-
tion of coordinates, that z, is at the origin of coordinates, and that each constraint
1-form 67 actually reduces to dz” there.

Exercise 21. Show that, supposing the origin already to have been fixed, the affine co-
ordinate transformation £* = 1%, £/ = 2 + 0%(z0)z® has the required effect. o

After these adjustments to constraint 1-forms and coordinates have been made
we are left with a basis of constraint 1-forms {6”} such that §? = 65dz* + dz” with
6% (x0) = 0 and with z; as origin of coordinates. It is required to find an integral
submanifold § of D through zo. As a consequence of our choice of {67} the tangent
plane to § at zo must consist of the coordinate m-plane spanned by the z%, and
given by zf = 0. In constructing the integral submanifold § we shall use the z° as
parameters: that is to say, we shall give a parametrisation of § in the coordinate
form

(v oyl y™) e (v T (), € R (v0), L € (vP))

for certain functions £”. Represented in this way, the integral submanifold may be
thought of as a graph: it is the graph of the map £&: R™ -+ R"~™ whose components
are the functions £°.

We denote by B the coordinate m-plane z# = 0, considered as an affine space;
we denote by n the projection map A — B which maps each point of A to the point
with the same first m coordinates in 8; we denote by N the neighbourhood of z¢ in
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A on which the constraint 1-forms 6 are defined. Observe that at any point z € 4,
a vector v = v®9, + v#d, belongs to D, if and only if

vf = —-0%(z)v°,

and that v®9, = 7,v € Ty(;)8. Conversely, given any vector v®d, € Ty(,)B there
is a unique vector v € D, such that r,v = v®3,, namely

v =v%9, ~- 0°(z)v°9,.

We call this vector the lift of v* € Ty (;)8 to z. Given any pointy € n(N) C B, one
may construct the lifts of a vector at y to all the points z in N such that »(z) = y.
The “lift” of a vector from the coordinate origin of 8 to the coordinate origin, zo,
of A coincides with the vector itself.

This lifting construction is the basis for our construction of an integral sub-
manifold. First, we show how it may be extended to curves in 8. The aim, given a
curve v in B, is to find a curve T in A which projects onto v (r o' = v) and which
is tangent to D (I'(t) € Dr(ty)- But then the tangent vectors to I' must be lifts of
tangent vectors to 4. Thus the coordinate functions for I' must satisfy

re(e) = +%(¢)

re(t) = -05(r°(t))4°(t).
The latter equations constitute a system of n — m first order ordinary differential
equations for the functions I'?, and therefore admit a unique solution with specified
initial conditions. Thus given a curve « in #(N), a number t, in the domain of 4,
and a point z in N such that x(z) = 4(to), there is a unique curve I' in N such that
mol =, [(t) € Dr(¢), and I'(to) = z. We call T the lift of 4 through z. One further
useful property of the lift of a curve stems from the fact that the defining system
of differential equations is line.ar in 4%. It follows from this that if y = yoh is a
reparametrisation of «, its lift I is obtained by applying the same reparametrisation
to the lift of v: I = [ o A.

We now use this lifting construction for curves to construct a parametrisation
¢ of a submanifold of A, as follows. Let (y®) be the coordinates of a point y in
n(N) C B and let 4 be the curve given by 7v@(t) = ty®, that is, the radial line joining
the origin to the given point. The idea is to take for ¢(y*) € A that point on the
lift of 4 through zo which projects onto y, that is, the point I'(1). To investigate
the validity of this process, we must look more closely at the properties of I in this
context.

We shall denote by ¢t + I'(t,y?) the lift through zo of the radial line t — (ty®)
in B, to make clear its dependence on (y®). Its component functions satisfy the
equations

re(e,y®) = ty°
3
B () = 02 T7)y°
re¢(o,y?) = o.
The differential equations are to be regarded as ordinary differential equations, as
before, in which the y@ are regarded as parameters. The existence of a solution
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Fig. 2 Lifting a radial line.

is guaranteed, for each (y*), for t in some open interval containing 0. Moreover,
the right hand sides of these differential equations are assumed to depend smoothly
on the y*; the solutions of a system of differential equations depending smoothly
on parameters will themselves depend smoothly on those parameters, so that the
I'® may be regarded as smooth functions of the y®. Furthermore, because of the
reparametrisation property mentioned above,

T(t,ky®) = T'(kt,y°) for any k € R.

As suggested above, we wish to define ¢ by ¢(y*) = I'(1,y*); but there remains
one technicality to be dealt with before we can do 8o, which is concerned with the
domain of ¢. The problem arises that for arbitrary (y*) there is no guarantee that
I'(t,y*) is defined for t = 1: we know only that it is defined for —€ < t < € for
some positive €. But here the reparametrisation property for lifted curves comes to
the rescue, for although I'(1,y*) may not be defined, it is true that (for example)
I'(1, Jey®) is defined: in fact, ['(1, jey®) = I'(3€,y®). Thus there are points y in
each direction from the coordinate origin in B for which I'(1,y®) is defined, and
in fact there is an open neighbourhood O of the origin in B such that I'(1,y°) is
defined when y € 0.

We may accordingly define a map ¢: 0 — A by ¢(y®) = I'(1,y*). The map ¢
is smooth; it is given in coordinates by

(v*) — (v*.T°(1,¥%))

and is therefore the graph of a map &:R™ — R"~™, where £7(y®) = ['(1,y%). It
follows that ¢. is necessarily injective at each point, so that ¢ is a parametrisation
of a submanifold S of 4. The submanifold S certainly passes through the coordinate
origin zo. At each point z on it, its tangent space T; S has at least a 1-dimensional
subspace in common with D,, namely that spanned by the lift of the radial vector
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at 7(z); while its tangent space at zo actually coincides with the space determined
there by D. It remains to show that § is actually an integral submanifold of D.

For this purpose we shall take a point z € § and a vector v € T, S and show
that v is annihilated by the constraint 1-forms 62. To do so we consider how these
1-forms vary along the lifts of radial curves which were used to define S. It is
therefore desirable to introduce a vector field tangent to these curves. Now the
dilation field A = y®d, on B has for its integral curves the radial lines in 8, albeit
reparametrised exponentially (apart from the origin, which is itself a degenerate
integral curve). Let A be the lift of A to N C A: the integral curve b of A through
a point z = ¢(y°) € § is given by b,(t) = ¢(e'y®). This curve again degenerates
to a point, namely zy, when y® = 0; otherwise, it does not pass through zo, but
5,(!) — zo as t — —oco. At each point z of § other than zo, A, spans the known
common l-dimensional subspace of T, $ and D;,.

For any v € T, S, we define a vector field V along &, by Lie transporting v by
A: thus V(0) = v, and L4V = 0. The curve 4, lies in §, A is tangent to §, and
so is v: it follows that V(t) is tangent to $ at &.(t) for all t. Thus lim;—. _o V (t)
is tangent to § at zo. Since the tangent space to § and the space determined by
D coincide at zo, it follows that lim¢_._.(V,0°) () = 0. We consider next how

(V, %) varies along b, using the Frobenius integrability condition d6° = AL NGO

d “
5 (V100 = A((v.0)

= (V,L£;0°) since L4V =0
= (V,d(A 16°) + A 1d0°)
= (V,AJAE A 6%)) since (A,6°) =0

= (A,20)(v,67).

The functions (V, 6°) therefore satisfy a set of linear ordinary differential equations.
Furthermore, A enters linearly on the right hand sides of the equations, and there-
fore a reparametrisation s = e! of 6, will not change the form of the equations. The
reparametrised curve is just s — ¢(sy®) = I'(s,y?), with tangent vector I': thus

%(v,oﬂ) = ([, A0)(V,6°).

Now s — 0 as t — —oo, and therefore (V,6°) = 0 at s = 0. But the uniqueness of
solutions of systems of ordinary differential equations implies, for linear equations,
that a solution which vanishes anywhere vanishes everywhere. Thus (V,68°) = 0 all
along the curve, and in particular (v,6¢) = 0.

We have shown that any vector at z tangent to § lies in D;, and so T.$
coincides with D;. Thus § is indeed an integral submanifold of D, and the proof is
complete.

Exercise 22. Show that the single 1-form ¢ on a 3-dimensional affine space given in affine
coordinates by 8 = z3dz' + z3dz? - dz> satisfies the Frobenius integrability condition.

Use the construction given in the proof in the text to show that the integral submanifold
through the point with coordinates (0,0, c) is given by ¢(y', y?) = (y*,y?, cexp(y'+y?)). O
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Exercise 23. In the above proof of Frobenius’s theorem the integrability condition is
not used in the construction of the submanifold §, only in showing that § is an integral
submanifold. Carry out the construction of the submanifold through the origin of coordi-
nates for the distribution defined by the 1-form —z%dz' + z'dz? + dz® of Exercise 1, and
investigate why it fails to be an integral submanifold. o

A vector field version of the integrability condition. So far we have worked
entirely with the specification of a distribution using forms. Dually, one may specify
a distribution using vector fields, and the Frobenius integrability conditions may
also be stated conveniently in terms of vector fields.

A vector field V on 4 is said to belong to a distribution D if for every z € A,
V. € D.. The distribution being smooth, one can find (at least locally) a set of m
vector fields V,,V,,...,V,, which serve as a basis for the distribution, in the sense
that the vectors V,,, form a basis for D, at each point z. This follows from the
fact that any basis for the constraint 1-forms {6#°} may be extended to a basis of
1-forms on A; the first m members of the dual basis of vector fields will serve the
purpose. One says also that such vector fields span the distribution. Any vector
field belonging to the distribution may be uniquely expressed as a linear combination
{with variable coefficients) of basis vector fields.

Exercise 24. Find a vector field basis for each of the distributions of Exercises 2 and 3. O

Exercise 25. Show that the following is an alternative definition of the smoothness of a
distribution: D is smooth if it has everywhere a basis of smooth local vector fields. o

Now let V, W be vector fields belonging to a distribution D and let 8 be any
constraint 1-form for it. Then (V,0) = (W,8) = 0 because 8 is a constraint form for
D: it follows that

do(V,W) = —([V,W],9).

Thus if D is integrable, so that it is isotropic for df, then (|V,W],8) = 0; since this
holds for any constraint 1-form 8, it follows that [V,W] belongs to D. So if D is
integrable, the bracket of any pair of vector fields belonging to D also belongs to D.
Conversely, if this condition is satisfied, it follows that D is isotropic for every one of
its constraint 1-forms, and so D is integrable. The Frobenius integrability condition
may therefore be stated in the following way: a distribution D is integrable if and
only if the bracket of every pair of vector fields belonging to D also belongs to it.
When D is integrable the vector fields belonging to it are tangent to its integral
submanifolds.
Exercise 26. Show that this vector field version of the Frobenius integrability condition

is equivalent to the following (more operational) one: D is integrable if and only if, given
a basis {Va} for it, there are functions f_} such that [V,,Vs] = [a'; V,. Investigate how

these functions are affected by a change of basis for D. o
Exercise 27. Confirm the integrability or otherwise of the distributions in Exercises 1, 2,
3 and 22 by using the vector field criterion of Exercise 26. o

Exercise 28. Derive the necessity of the bracket condition for integrability in another
way, as follows. Suppose that ¢: O ~+ A defines an integral submanifold of D. Let V, W be
vector fields belonging to D: deduce from the injectivity of ¢. that there are vector fields
V', W' on O to which V, W are ¢-related (Chapter 3, Section 9). Conclude that [V, W]
must also belong to D, at least on the image of ¢. o
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The two versions of Frobenius’s theorem which have been presented here link
up with different parts of the book. The vector field version is related to the ideas
of Chapter 3, as the last exercise shows. Again, it will be recalled that it was
shown in that chapter that the bracket of two vector fields may be interpreted as
the (second-order) tangent vector to a curve built out of the flows generated by
the vector fields. This result is closely related to the present discussion: for if two
vector fields are tangent to a submanifold, then their integral curves through points
of the submanifold lie in it, and so their bracket at any point of it is also tangent to
it. Frobenius's theorem shows in effect that a converse to this assertion holds true.
The form version of Frobenius’s theorem, on the other hand, is related to material
on connections to be found in Chapter 11 and beyond.

4. Special Coordinate Systems

In this section we shall show how to construct special curvilinear coordinate systems
adapted to distributions.

We consider first of all a 1-dimensional distribution, and show that curvilinear
coordinates may be introduced such that the first coordinate vector field 3, spans
the distribution.

There will be locally a non-vanishing vector field V which spans the distri-
bution. Local coordinates are constructed as follows. A point zo is chosen, and
through it a hyperplane B such that V., is not tangent to B. It will remain true
that V is not tangent to 8 in some neighbourhood of zo: we say that B is transverse
to V. Affine coordinates (£°) are now chosen in such a way that z, is the origin, 8
is the coordinate hyperplane #' = 0, and V,, coincides with 3,. A map ® of some
open subset of R" to R" is defined by setting (#°(¢!,€2,...,£")) equal to the affine
coordinates of the point ¢¢: (£) where ¢ is the flow of V, and £ is the point with
affine coordinates (0, £2,...,£") and is therefore a point of 8. The Jacobian matrix
of ® at the origin is easily seen to be the identity, and & therefore defines a coor-
dinate transformation to local curvilinear coordinates, say (z®). In terms of these
coordinates V is the generator of the flow (¢,z!,z%,...,z") = (z! +¢,23,...,2"):
thus V = 9, everywhere on the coordinate patch.

Note that as a result of this construction we may assert that, given a point
Zo, there is an open set O containing zo and a hyperplane 8 through zo such that
each integral submanifold of the 1-dimensional distribution spanned by V intersects
B in O once and once only. The special coordinates we have constructed may be
described as follows: for any z € O let £ be the point of O N 8 on whose orbit under
the flow of V the point z lies; then (z2,...,z") are the affine coordinates of £ and
z! is the parameter distance from £ to z.

Exercise 29. Show that if {6%,6% ...,0™} are constraint 1-forms for a 1-dimensional
distribution then it is possible to find functions A% forming the entries of a non-singular

matrix, and coordinates (z°), such that the 1-forms 8* = A%6° are given by 6” = dz’
(p=2,3,...,n). o]

The straightening-out lemma. A 1-dimensional distribution is not quite the
same thing as a vector field, since at each point it determines, not a single vector,
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but a 1-dimensional subspace of the tangent space. However, the result given above
applies equally well to a single vector field provided that the vector field is nowhere
zero. In other words, given a vector field V and a point z such that V; # O there is
a neighbourhood of z (on which V remains non-zero) and a coordinate system for
this neighbourhood with respect to which V = 8,.

It follows that two vector fields, on affine spaces of the same dimension, are
locally equivalent, near points at which they are non-zero, in the following sense:
if A and 8 are affine spaces of the same dimension, if V and W are vector fields
on A and B respectively, and if z and y are points at which V and W are non-zero
respectively, then there are neighbourhoods O and P of z and y and a smooth,
bijective map ¥: 0 — P with smooth inverse such that ¢V, = W) at each point
z of O. In fact V and W are each locally equivalent to the generator of translations
parallel to the r'-axis in an affine coordinate system. This result is therefore often
called the “straightening out lemma”.

In passing, we point out that the distinctive local features of a vector field are
therefore to be found in its behaviour near its zeros, in other words the points at
which it vanishes; these are the fixed points of its low. At a zero z of a vector field V
with flow ¢, for each t the induced map ¢,. is a linear transformation of the tangent
space T, A to itself: in fact ¢,. is a one-parameter group of linear transformations.
It is thus the exponential of the linear transformation given by d/dt (¢(.)‘=0. Study
of this map will give information about the behaviour of V near z. Note that, in
terms of any local coordinate system, d/dt(dn.) is represented by the matrix

(BsV?)(z), where V = V24,.

t=0

Exercise 30. Use the straightening out lemma for the vector field V to show that Ly W =
[V, W] at points at which V # 0, and use the remark immediately preceding this exercise
to complete a new proof of this important result. o

Coordinates adapted to an integrable distribution. We next extend the
straightening out lemma to obtain a special coordinate system in a given region
adapted to a number of linearly independent vector fields. By virtue of their linear
independence, none of the vector fields can vanish anywhere in the region. We
seek a curvilinear coordinate system in which these vector fields are coordinate
vector fields. Now any two coordinate vector fields commute (have zero bracket);
we must therefore assume the same holds for the given vector fields. So suppose that
Vi,Va,...,V,n are linearly independent vector fields on an open subset of an affine
space A, such that [V,,Va] = 0 for all @, = 1,2,...,m. It follows that the flows
generated by any pair of these vector fields commute (Section 12 of Chapter 3): if
¢a is the flow generated by V, then ¢, ,0da, = ¢p,:0da,. for all s,t € R for which
both transformations are defined. It also follows that the distribution generated
by the V, is integrable. It is easy to identify its integral submanifolds in terms
of the flows ¢,: the integral submanifold through a point z consists of all points
G100 0242020 Pmem(z) for (t',t2,...,t™) € R™. For the map R™ — A by

(', 6%, . t™) > 1,0 02,020+ 0 Py e ()
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certainly defines a submanifold; and if

i = ¢|"| °¢2,!? [« BUNA o¢,,,'¢m(z)

lies in it then so does

ba,e(f) = b1, 002,420 - 0da,p4ts 0 0 P tm(z)

for any @ = 1,2,...,m, from the commutativity of the flows, and so the vector field
V, is tangent to the submanifold for each a. To construct the required coordinate
system one chooses a point zo and an (n — m)-plane B through z, transverse to the
distribution in the sense that the subspace of T,, A defined by B is complementary
to that defined by the distribution. This complementarity will persist at points of
B in some neighbourhood of zo. Choose affine coordinates (£%) such that zq is the
origin, B is the coordinate (n —m)-plane ! = £2+4... = £™ = 0,and 8,,0;,...,0m
coincide with the given vector fields at zo. Define a map ® of some open subset
of R™ to R™ by setting (®°(¢',£2,...,€")) equal to the affine coordinates of the
point @) ¢1 0 @362 0+ 0 P ¢m (£) where £ is the point with affine coordinates
(0,...,0,6™*!, ..., €"), which is therefore a point of 8. Then the Jacobian matrix
of ® at the origin is the identity, so that ® defines a coordinate transformation to
local curvilinear coordinates (z2). In terms of these coordinates V, = 3, eveywhere
on the coordinate patch, and the integral submanifolds of the distribution spanned
by the V, are given by z™+! = constant, z™+2? = constant,...,z" = constant.

Exercise 31. Let W, ,W;,...,W,, be linearly independent, not necessarily commuting,
vector fields which satisfy the Frobenius integrability conditions. Show that local functions
A% can be found, forming the elements of a nowhere singular matrix, so that (possibly

after renumbering) the vector fields W, = AﬂW,, which span the same distribution, take
the form W, = 3, + ¢¥58,. Show that by virtue of the integrability conditions the W,
commute pairwise. Hence give a new proof of Frobenius's theorem, using vector fields. 0

Exercise 32. Let {6’}, p = m+ 1,m + 2,...,n, be a system of 1-forms satisfying the
Frobenius integrability conditions. Show that there are functions A5, such that on some
neighbourhood (A%) is a non-singular matrix, and coordinates (z°*), such that the 1-forms
A%6°, which generate the same system, are given by A%8° = dz’. Deduce that the
integrable submanifolds of any m-dimensional integrable distribution may be expressed in
the form z™*! = constant, z™*? = constant, ..., z" = constant. o

Coordinates adapted to a smooth map. Let ¢: 4 — B be a smooth map, not
necessarily satisfying the submanifold property: thus ¢, is not necessarily injective
for £ € A. Instead, let the dimension of the kernel of this linear map be the same at
all points z, or at least at all points z in some open subset of A. We show how local
coordinates may be constructed on A and B in terms of which ¢ takes a particularly
simple form.

We set D; = {v € T4 | ¥.zv = 0}. The condition on constancy of dimension
ensures that this defines a distribution. The smoothness of { ensures that it is
smooth. Furthermore, it is integrable, as the following simple argument shows: any
local vector field belonging to D is i-related to the zero vector field on 8, and
therefore the bracket of two such vector fields is also y-related to the zero vector
field on 8, which implies that the bracket belongs to D.
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Exercise 33. Confirm this result by a coordinate argument. o

It follows that there are coordinates (z2) on A such that the coordinate fields
9p,p=m+1,m+2,... ,n, form a basis for D, whose dimension is therefore n - m.

But then .
0-v. () -2 2.
aze dzr Iy

where (y*) are coordinateson 8,1 = 1,2,...,p = dim B. Thus 3y*/3z° = 0, and so
the components of i are functions only of (z®), @ = 1,2,...,m. In terms of these
coordinates we may therefore express ¢ in the form ¢ o Il where Il is the projection
R"™ — R™ onto the first m factors and ¢ is an m-dimensional submanifold map.

We now turn our attention to the image of ¥ in B. We have shown that it is a
submanifold of dimension m. We introduce new coordinates on 8 as follows. Choose
a point zo in the domain of ¥ and make it the origin of the adapted coordinates
in 4. Choose a subspace W of Ty(,,)8 complementary to the tangent space to the
image of ¥, with basis {w,},r =m + 1,m +2,...,p. Define a map ¥:RP — B by
setting ¥(z') = ¢(2°) + z"w,. Thus the first m entries in (z') are used to determine
a point on the image of ¥ and the remaining ones are the components of a vector
which translates that point off the image. The Jacobian matrix of ¥ at the origin
is easily seen to be non-singular because of the fact that {1.(8,),w,} is a basis for
Ty(z,)8. Thus ¥ determines a local coordinate system about y)(zo) for B. With
respect to the new coordinates the map ¢ is given by

wl(:a) — 1:' ¢2(za) - 1:2 '/)m(za) =™
wm+l(:a) = wm-‘r?(zﬂ) = e = '/1"(2") =0.

These are the required coordinates.

6. Applications: Partial Differential Equations

In this section and the two following we continue the development of the ideas
of this chapter by applying them in three specific contexts: the theory of partial
differential equations, Darboux’s theorem, and Hamilton-Jacobi theory.

Integrability conditions for systems of first order partial differential equa-
tions. As a first application of Frobenius’s theorem to the theory of partial dif-
ferential equations we consider systems of first order partial differential equations
of the form a¢r
ha = @5(%,€%)

for the unknown functions £°(z%). The functions ©% are given functions of n
variables, there are m independent variables z*, and n — m dependent variables
£°. As before, we shall use indices a, 8 with the range 1,2,...,m and p,o with the
rangem+ 1,m+ 2,...,n.

There are m(n —~ m) equations in all, and so the number of equations exceeds
the number of unknowns except when m = 1. In the latter case the equations
reduce to a system of ordinary differential equations, and are always soluble as a
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consequence of the existence theorem for solutions of such a system. Otherwise, the
equations form what is known as an overdetermined system, and will not in general
be soluble unless some integrability conditions on the © are satisfied. A necessary
condition is easily found, by differentiating the equations and using the symmetry
of second partial derivatives: there results the condition

909; L 985 ., 995 99,
_— 4 - .
9zf ' 9z0 P~ Bzo 6::" @

It is a consequence of Frobenius’s theorem that these are also sufficient condi-
tions for the system of equations to be soluble. The connection with Frobenius’s
theorem is achieved by consideration of the 1-forms (on an n-dimensional affine
space A with affine coordinates (z%),a = 1,2,...,n)

0° = ©%(z°,2%)dz® ~ dz*.

A solution (£°) of the system of partial differential equations may be regarded as
defining a submanifold of A, in the form of its graph (z°) — (z°,£°(z°)). The
pull-back of 67 by this map is just

and so (£®) is a solution of the system of partial differential equations if and only
if the submanifold is an integral submanifold of the distribution defined by the
1-forms 6 as constraint forms. These 1-forms have (apart from the sign of dz*)
just the same structure as those used in the proof of sufficiency of the Frobenius
integrability condition in Section 3. The integrability condition for these 1-forms is
derived as follows:

P
do° = :9990 dz® A dz? ‘:’99" dz® A dz°
_ 084 8 90’ 018 _ go
= —'é';p—dla A dl - E_d A (9 dz é )
— aeg a o ae a a o a ¢l
= -ax—ad: AG° - 3:" azae dz® Adzx

and therefore d8® = A2 A 87 (with A2 = (962, /9z°)dz°) if

0205, 390 o o s
Ad =
( 8::" e o ) dz £ 0

But this is precisely the same as the condition obtained by cross-differentiation.
That condition is therefore necessary and sufficient for the solubility of the system
of partial differential equations.

Exercise 34. Show that if vector fields W, = 3, + %453, commute pairwise then the

functions ¥4 satisfy the condition that ensures the solubility of the system of partial
differential equations 9¢”/9z° = ¥4 (z”, £°). o
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Characteristics of first order partial differential equations. One is very
often confronted with the problem of finding submanifolds to which a given vector
field is tangent. Thus baldly stated, the problem leads to a partial differential
equation. Let V be a vector field given on an affine space 4, and let f = constant
be the equation of a submanifold (of codimension 1) to which it is tangent. Then
Vf = 0 at each point. This equation has the coordinate presentation V23,f = 0
and may thus be considered to be a partial differential equation for the function f.

Very often, the partial differential equation is the starting point, and the geo-
metrical problem is more-or-less disguised. In the theory of such partial differential
equations the integral curves of V are called the characteristics of the partial dif-
ferential equation. A standard method for solving the partial differential equation
begins with the construction of the characteristics, which is to say, the solution of
the system of ordinary differential equations dv®/dt = V° for the integral curves v
of V.

Importance is often attached to some functions, known or unknown, which are
constant along the integral curves of a given vector field. In the physical context,
these functions would represent conserved quantities, or constants of the motion,
which are independent of the time (if the parameter t is so interpreted). Any
conserved quantity f must satisfy the equation Vf = 0, which is the equation from
which we started. Sometimes it is easier to solve the equations of characteristics
first, sometimes the partial differential equation.

From the geometrical point of view, it is easy to see why such partial differential
equations have “so many” solutions. For example, let A be a 3-dimensional affine
space, V a given vector field in 4, and o any curve transverse to V. Now transport o
along V: as parameter time t elapses, 0 (a wisp of smoke) moves along the integral
curves of V (the wind). This generates a 2-dimensional submanifold to which V is
tangent, made up of a one-parameter family of integral curves of V, each of which
intersects 0. If this 2-submanifold has the equation f = constant then f satisfies
the equation Vf = 0. All this will be true, whatever the initial choice of the curve o.

In an n-dimensional space, o has to be (n - 2)-dimensional, and again V' must
not be tangent to it. Transport of o along V generates a submanifold of dimension
n — 1 whose equation f = constant again determines f such that Vf = 0. Care has
to be taken about smoothness, but the present argument is anyhow only intended
to be heuristic.

The specification of o appears in the physical context as tle specification of
initial data for the physical problem. It might happen, say in the 3-dimensional
case, that the initial data were such that o was an integral curve of V—that V
was everywhere tangent to it. Then o would no longer determine a unique one-
parameter family of integral curves, and any one-parameter family including it
would yield a solution of the equation Vf = 0 consistent with the initial data. In
this case the problem to be solved is called a charactersstic initial value problem.
Evidently intermediate cases are possible, in which V is tangent to o at some points
but not at others. Some more general characteristic initial value problems are of
great physical importance.
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8. Application: Darboux’s Theorem

In this section we describe how coordinates may be chosen so that a closed 2-form
takes a particularly simple form.

The characteristic subspace of a 2-form w on a vector space (Section 12 of
Chapter 4) is the space of vectors v satisfying vJw = 0. (This use of the word
“characteristic” is not to be confused with its use at the end of the immediately
preceding section.) A 2-form on an affine space determines at each point a char-
acteristic subspace of the tangent space at that point. We shall suppose that the
dimension of this subspace does not vary from point to point, for the given 2-form
w. We do not, however, assume that w is decomposable.

We show first that when w is closed the distribution defined by its characteristic
subspaces satisfies the Frobenius integrability conditions. Thus we must show that
if V and W are vector fields such that V Jw = W Jw = 0 then [V,W]Jw = 0 also.
Observe that since w is closed

Lyw =d(V Jw) + V Jdw = 0.
Using a result from Exercise 21 of Chapter 5 we obtain
LyWiw)=0=[V,W]lw+W JLyw = [V,W]Iw

as required. Coordinates (y',y?,...,yP) may therefore be introduced so that the co-
ordinate vectors d,,33,...,9, span the distribution of characteristic vectors (where
p is the dimension of the characteristic subspaces).

Exercise 35. Show that, with respect to these coordinates, w depends only on the remain-
ing coordinates: that is to say, if (z',z2,...,1™) complete the set of coordinates (so that
m + p = n, the dimension of the space) then w = wapdz® A dz?, where o, = 1,2,...,m,
the wap being functions of (z7). Deduce that m must be even, from the fact that there
are no non-zero characteristic vectors of w in the space spanned by the 3/3z°. o

We may as well suppose, then, for the rest of the argument, that we are dealing
with a 2-form, on a space A of even dimension m = 2k, which has no non-zero
characteristic vectors. At each point z € A one may define a linear map T: 4 — T 4,
by means of the 2-form w, by v — v Jw. Since (as we now assume) w has no non-zero
characteristic vectors, this map is injective; and therefore, since T; 4 and T A have
the same dimension, it is an isomorphism. Thus, given any 1-form 6 on A, there is
a vector field V such that V Jw = 6.

Exercise 36. Show that if 6 = df is exact and V Jw = df then Lyw =0and Vf=0. 0O

We now begin the construction of the required coordinate system. Choose
some function f such that df is nowhere zero (or at least such that df # 0 at some
point z; the argument then provides suitable coordinates in a neighbourhood of
z, which is the most that can be expected anyway), and let V be the vector field
determined in this way by df. Then V is nowhere zero, and so coordinates (y*) may
be found, about any point, such that V = 3/8y'. With respect to these coordinates,
df/0y' = 0, and since Lyw = 0, both f and the coefficients of w are independent
of y'. Let W be the vector field defined by W Jw = —dy'. Then Wy! =0,

W/ = (W,df) = (w$al JU) = _(al’w-lw) = (al’dyl) = lv
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and
01, W) Jw = L5,(W Jw) = W 1Ls,w = — L3, (dy') = 0,

so that [6, ,W| = 0 since w has no non-zero characteristic vectors. Thus W contains
no term in 8, and its coefficients are also independent of y!. It is therefore possible
to make a further change of coordinates, without affecting y!, such that W = 3/dy?.
Moreover, by choosing the coordinate hypersurface y?> = 0 to be a level surface of
f, it can be ensured that the coordinate expression for f is just y2.

Consider now the 2-form & = w - dy' A dy?. 1t is closed. The vector fields
8/3y"' and 3/dy? are characteristic for &, and every characterstic vector field is
a linear combination of these two: for if V J& = O then V Jw is a linear combi-
nation of dy' and dy?. Moreover, L3, = L5, = 0. Thus & depends only on
v3,v%,...,y** and has no non-zero characteristic vector fields among the vector
fields spanned by 33,3d4,...,32x. We may therefore repeat the argument to find
coordinates such that w — dy' A dy? — dy® A dy* depends only on y%,¢%,...,y?* and
has no characteristic vector fields, other than zero, among the vector fields spanned
by 9s,9,...,02x. Continuing in this way, we may at each stage make coordinate
transformations which do not affect the coordinates already fixed so as to eliminate
two more coordinates from consideration. Eventually all the coordinates will be
used up, and so coordinates will have been found such that

w=dy' Ady? +dy® Ady* + -+ dy** ! Ady?t.

This result is known as Darboux’s theorem: stated in full, it says that if w is a closed
2-form on an affine space, such that the codimension of the space of characteristic
vectors of w, necessarily even, does not vary from point to point, and takes the
value 2k, then locally coordinates may be found such that w takes the form given
above. The number 2k, the codimension of the space of characteristic vectors, is
the rank of w, introduced (in the vector space context) in Chapter 4, Section 12:
see in particular Exercise 45 there, which is a parallel to the present result. Note
that a 2-form which has no non-zero characteristic vectors must have rank equal to
the dimension of the space on which it resides; and this dimension must therefore
be even. So given a closed 2-form w of maximal rank on a 2n-dimensional space,
coordinates may be found such that

w=dy' Ady? +dyd Adyt + -+ dy?* Tt A dy?™.

It is more convenient to separate the even and odd coordinates: if one uses
P1,P2....,Pn for the odd coordinates, and ¢',¢2,...,q" for the even ones, then

w = dp, A dg°

(the positions of the indices are chosen to make the use of the summation conven-
tion possible; there are also other, more compelling, reasons for the choice which
will become apparent in a later chapter). Notice that in terms of these special coor-
dinates it is simple to give a 1-form # whose exterior derivative is the closed 2-form
w: if § = podq® then df = dp, A dg® = w.

Exercise 87. Using the argument in the text, show that a closed 2-form of rank 2 on a

2-dimensional space may be expressed in the form dp A dg (that is, give the final stage in
the proof of Darboux’s theorem). (o]
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Exercise 38. Show that given any function h, the integral curves of the vector field V)
defined by Vi Jw = —dh, where w has maximal rank, satisfy Hamilton’s equations

L
q ap‘ a aq. )
when expressed in terms of coordinates (¢°,pa) such that w = dps A dg*®. o

Exercise 39. If 6 is a 1-form such that df has rank 2n, on a space of dimension greater
than 2n, then coordinates may be found such that 8 = p,dq®+df for some function f. Show
that df is dependent on, or linearly independent of, dp,,dp,,...,dp,,dq",d¢?,...,dq"
according as 6 AdO A .-+ A d@ (with n factors df) is or is not zero. Show that in the latter
case f may be chosen as one of the coordinates ¢, po with a > n; in the former case the
coordinates (¢“, p.) may be chosen such that 8 = p,dq*®. o

7. Application: Hamilton-Jacobi Theory

In this section we draw together the considerations of the previous two in the
study of a particular kind of partial differential equation, well known in classical
mechanics, known generically as the Hamilton-Jacobi equation. We begin, however,
with a special case of the result of the last section.

Suppose there is given, on a 2n-dimensional affine space A, a 1-form 8 whose
exterior derivative w = df = dp, A dg° is already in the Darboux form with respect
to affine coordinates (¢°,pa). Consider A as an affine product @ x P where (¢°)
are coordinates on Q and (pa) on P, both spaces being n-dimensional. We shall
be concerned with smooth maps ¢: Q — P. As in the discussion of Frobenius’s
theorem, such a map defines a submanifold of A = Q x P, namely its graph,
parametrised by the map ¢: Q — A given by

#(9) = (9.4(q))-

One way of constructing such a map is to take a function f on Q and set
#a = 8f/3¢®. In this case, $°0 = df, and therefore ¢*w = 0. Conversely, if
é°w = 0 then ¢*0 = df for some function J on Q and ¢ is constructed from f in
the manner described.

Suppose further that there is given a smooth function h on 4. The coordinate
expression of this function with respect to (¢%,ps) may be used to define a first
order partial differential equation, in general non-linear, by

(e 32) -

This equation (an equation for the unknown function f) is the Hamilton-Jacobs
equation for h. Note that the function f on Q will be a solution of this differential
equation if the graph map ¢ generated by f maps Q into the level surface h = 0.
Conversely, any graph map ¢ which maps Q into the level surface h = 0 of h and
satisfies ¢*w = O will generate a solution to the differential equation.

We shall assume that dh # 0 where h = 0. The vector field V) defined by
Va dJw = —dh is called the characteristic vector field of the partial differential equa-
tion defined by h. Since Vjyh = O this vector field is tangent to the level surfaces of
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h, and its flow inaps each level surface into itself. Furthermore, it maps the graph
of any solution of the differential equation into itself. For by Exercise 38

_6h 3 ok o
kT 3p. 3¢~ 3¢3 dp.’
and on the solution graph p, = @.(q®) where 3¢,/3¢" = 3¢s/3¢®. Thus

Val _¢)~_(."’_" Oh 04 __(.‘?fi. Oh 3¢y
MPa = el = " \8g" " progt ) T "\ 3¢ " 3py 3g°
__29 b _
= —<'9_¢"(h(q ,#s)) =0

since h(g®, #s) is constant.

Conversely, the characteristic vector fields may be used to generate full solu-
tions of the partial differential equation from partial solutions, as follows. Take an
(n — 1)-dimensional submanifold $ in A which lies in the level surface h = 0 of h, on
which w vanishes, which projects down onto an (n — 1)-dimensional submanifold of
A under projection onto the first factor, and which is transverse to the vector field
Vh. Define an n-dimensional submanifold ¢: $ x I — A, where I C R is an open
interval, by ¢(z,t) = ¥y(z) where ¢ is the low generated by Vx. Then from the
fact that Vyh == 0 it follows that ¢ also lies in the level surface h = 0 of h; and from
the fact that Ly, w = 0 it follows that é'w = 0. It will be true that ¢ is actually
a graph for small enough values of ¢, provided that V) is nowhere tangent to the
P factor on S; but it may not be possible to extend ¢ to a graph all over Q even
though § and V), are perfectly well behaved: this corresponds to the occurrence of
singularities in the solution of the partial differential equation.

In practice, solution of the ordinary differential equations to find the integral
curves of the characteristic vector field may be no easier than solution of the partial
differential equation itself. In Hamiltonian mechanics, in fact, the process may be re-
versed: the Hamilton-Jacobi equation may be used as a means of solving Hamilton's
equations, which are the differential equations for the integral curves of the charac-
teristic vector field. In fact, knowing a so-called complete solution of the Hamilton-
Jacobi equation is equivalent to knowing a coordinate system on A in which the
characteristic vector field is straightened out. The method involves exploiting the
fact that if f is a solution of the Hamilton-Jacobi equation h(¢®,3f/3q%) = O then
Vi is tangent to the submanifold p, = 3f/3¢®. By finding sufficiently many such
submanifolds one is able to tie V) down completely. First, though, the notion of a
Hamilton-Jacobi equation must be generalised slightly. It is clearly not desirable
to have to restrict attention only to the level surface h = 0; nor is it necessary, for
if f is a solution of the equation h(q®,3f/3¢*) = c for any constant ¢, then Vj
is tangent also to the submanifold p, = 3f/3¢* (the argument given earlier still
applies). Every point of A lies on a level surface of h, and V} is tangent to the
level surfaces. We shall therefore deal with all partial differential equations of the
form h(g®,8f/3¢%) = ¢, calling them collectively the Hamilton-Jacobi equations.
We shall now, however, have to make the restriction that dh is never zero.
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A complete solution of the Hamilton-Jacobi equations is a collection of smooth
submanifolds, of dimension n, one through each point of A, non-intersecting, such
that each submanifold is the graph of a map ¢: @ — P, lying in a level surface of A,
and satisfying the “integrability condition” that w vanishes when restricted to it.
Then each such submanifold is generated by a function f on Q which is a solution
of the Hamilton-Jacobi equation h(g?,df/3¢%) = ¢ for the appropriate constant c.
Suppose now that new coordinates are introduced into A, say (¢°,kas), such that
the coordinate n-submanifolds k, = constant are the submanifolds of a complete
solution of the Hamilton-Jacobi equations (the ¢ being, as before, coordinates
on Q). For each fixed (k*) there is a function on Q which is the solution of the
Hamilton-Jacobi equation giving the corresponding submanifold. There is thus a
function on A whose coordinate expression with respect to the new coordinates,
say F, has the property that for each fixed (ks) the function (¢%) — F(q%,k,) is
the solution of the Hamilton-Jacobi equation giving the corresponding submanifold.
This function is called the generating function of the complete solution.

Since V) is tangent to the submanifold corresponding to a solution of a
Hamilton-Jacobi equation the coordinates k, will be constant along any integral
curve of V. We may go further. The 2-form w will not take the Darboux form
when expressed in terms of (¢%) and (k,). It is possible, however, to make a further
change of coordinates, this time leaving the k, unchanged, so that w does take the
Darboux form with respect to the new coordinates; and this new coordinate system
is the one we want. It is defined by

= g{% Pa = ka.

This does not define §® and p, explicitly in terms of ¢ and p,, since we do not
(and cannot) have an explicit expression for k, in terms of the ¢ and p,. However,
the definition of the k, defines them implicitly in terms of the ¢ and p,: the sub-
manifold k, = constant is given, in terms of ¢* and p,, by ps = (3F/8q“)(q°,kp),
and these are the required relations. Now

O?F o, PF
3¢eagt " T 3qadk,

1a

w =dps Ndq® = ( dkb) A dg®

= %k—bdﬁb A dq® = dpy A (d(%) - %dﬁa)
= dpy A dg®
as required. Finally, note that one may choose h as one of the coordinates p, (so
long as dh # 0): suppose we set h = p;, then in terms of (§°,pa),
Vhdw = Vy J(dp, A d§®) = —dh = ~dp,,
from which it follows that V) = 3/9¢".
Summary of Chapter 6

A smooth m-dimensional distribution D on an n-dimensional affine space A is a
choice of subspace D, of T, A at each z € A, of dimension m, which varies smoothly
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from point to point of A. A distribution may be specified in a number of ways: by
giving n — m independent 1-forms {67} which are constraint forms for it; by giving
a nowhere zero decomposable (n — m)-form w which is a characterising form for
it; or by giving m independent vector fields {V,,} which span it. Smoothness of D
corresponds to smoothness of the geometric object used to specify it.

A submanifold § of A is the image of a smooth map ¢ of some open subset O
of an affine space 8 into A4, for which ¢.:TyB — Ty(,)4 is injective for all y € 0.
Such a ¢ is a parametrisation of §; ¢.(Ty8) = T4(y)S is the tangent space to §
at ¢(y); the dimension of S is the dimension of each of the tangent spaces, namely
dim 8.

A submanifold § of dimension m is an integral submanifold of a distribution D
of the same dimension if for each z € §, T, S = D.. A given distribution need not
have integral submanifolds. A necessary and sufficient condition for the existence
of integral submanifolds, one through each point of 4, is the Frobenius integrability
condition, which may be equivalently stated in several different ways: for a basis
for constraint 1-forms, d6? = A2 A 89 for some 1-forms AZ; for a characterising form,
df Aw = 0 for any constraint 1-form; for a vector field basis, [Va,Vp] = f 3V,
for some functions a}. When the integrability condition is satisfied, an integral
submanifold may be constructed through a given point z in the form of a graph,
defined over the affine m-plane through z defined by the distribution at that point.
The construction is based on a method of lifting vectors tangent to the m-plane
into vectors in A tangent to the distribution. The theorem which establishes the
sufficiency of the integrability condition is Frobenius’s theorem.

Given a vector field V there is, in a neighbourhood of any point at which it is
non-zero, a coordinate system (z°) such that V = 3,. Further, given m vector fields
V1,Va,...,V, which are linearly independent and commute pairwise there is locally
a coordinate system in which V, = 3,. Since it may be shown that for a distribution
satisfying the Frobenius integrability condition one may always find a basis for the
distribution consisting of pairwise commuting local vector fields this gives another
proof of Frobenius’s theorem: the integral submanifolds are given by z? = constant.
Furthermore, if constraint 1-forms 6° satisfy the Frobenius integrability conditions,
then there are functions A2 such that the matrix (Af) is everywhere non-singular,
and coordinates (z°), such that A%6° = dz” (so that, in particular, the 1-forms
AL07 are exact).

Coordinates (y*) may be found so that a given closed 2-form w of constant
rank 2r takes the form w = dy' A dy? + dy® Ady* + --- + dy?"~' A dy?". This
result is Darboux’s theorem. The 2-form dp, A dg® on an even dimensional space
A = Q x P, which is closed and has rank 2n, plays a key role in Hamiltonian
mechanics and in the solution of the Hamilton-Jacobi equation for a function kA,
which is the partial differential equation h(g®,8f/8¢%) = 0. The vector field V)
determined by Vj Jw = —dh defines Hamilton's equations of mechanics, and is also
the characteristic vector field of the Hamilton-Jacobi equation.



7. METRICS ON AFFINE SPACES

The ordinary scalar product of vectors which one encounters in elementary mechan-
ics and geometry may be generalised to affine spaces of dimension other than 3. In
elementary Euclidean geometry one is concerned mostly with the use of the scalar
product to measure lengths of, and angles between, displacements; in mechanics one
is also concerned with magnitudes of, and angles between, velocity vectors. In either
case the scalar product comes from an operation in a vector space V, which may
be transferred to an affine space A modelled on it. The realisation of V as tangent
space to A at each point generalises to manifolds, as will be explained in Chapters 9
and, especially, 10, but the realisation as space of displacements does not. We shall
therefore give preference to the tangent space realisation in this chapter.

The structure on A determined in this way by a scalar product on V is usually
called a metric. It is unfortunate, but now irremediable, that the word is used
in a different sense in topology. In the case of Euclidean space the two meanings
are closely related; however, as well as the generalisation to arbitrary dimension, we
shall also consider the generalisation of the concept of a scalar product in a different
direction, which includes the space-time of special relativity, and in this case the
relation between the two meanings of the word metric is not close.

When an affine space is equipped with a metric it becomes possible to establish
a 1: 1 correspondence between vectors and covectors, which we have been at pains
to keep separate until now. As aresult, in Euclidean 3-dimensional space the various
operations of the exterior derivative may be made to assume the familiar forms of
vector calculus in their entirety.

We begin the chapter by discussing the algebraic properties of scalar products.

1. Scalar Products on Vector Spaces

The ordinary scalar product a - b of vectors in Euclidean 3-dimensional space may
be defined in either of two ways: trigonometrically, as the perpendicular projection
of a on b, multiplied by the magnitude of b; or algebraically, as a;b; + a202 + asbs,
where a = (a1,a2,a3), b = (b),b2,b3). It is convenient to start with the algebraic
definition, to identify its main properties as a basis for generalisation, and to derive
the trigonometrical constructions afterwards.

The ordinary scalar product of two vectors a, b is a real number, and has these
properties:

(1) bilinearity:

(k|8| + kzaz) b= k.(a, . b) + kz(az . b)
a- (k]b] + kzbg) = k.(a 'b]) + kz(a ‘bg)

(2) symmetry:
b-a=a-b
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(3) non-degeneracy:
ifa-b=0forallbthena=0

(4) positive-definiteness:
a-a>0,andifa-a=0thena=0.

There is nothing characteristically 3-dimensional about these properties, and so
they may be used to generalise the notion of a scalar product to affine spaces of other
dimensions. Note that the “vectors” appearing in the definition are displacement
vectors or tangent vectors, that is, elements of the underlying vector space, which
we may take in this case to be R3.

In applications to special relativity both the physical interpretation of the scalar
product, and the mathematical formulation which reflects it, make it appropriate to
give up the requirement of positive-definiteness. There are occasions when even the
requirement of non-degeneracy has to be given up. One is led, therefore, to consider
a construction like the scalar product but satisfying the conditions of symmetry and
bilinearity only.

Billnear and quadratic forms. We therefore define a symmetric bilinear form
on a vector space V asamap g:V x V — R such that

g(k.v. + kgvz,W) = k|g(U|,W) + kgg(”z,lﬂ)

(1) -
g(v,kywy + kawz) = kyg(v,wy) + kﬁg(vvwﬁ)
(2) 9(w,v) = g(v,w)

for all v,w,v,,v3,w,, w2 € V and k;,k; € R. Thus g is multilinear in just the
same way as the forms considered in Chapter 4 are, but differs from them in being
symmetric instead of alternating.

The components of g with respect to a basis {¢,} for V are the numbers

gab = g(ea,ep).

Note that the symmetry condition implies that gss = gap, while from the bilinearity
it follows that the g,» determine g: if v = v®eq, and w = w®eq then

g(v,w) = g,bv“w".

In dealing with bilinear forms it is often convenient to employ matrix notation:
this last formula may be written
g(v,w) =vTGw

where on the right G denotes the square matrix, necessarily symmetric, with entries
dab, v and w denote the column vectors with entries v® and w® respectively, and
the superscript T denotes the transpose. Thus GT = G.



166 Chapter 7

Exercise 1. Show that if é, = h'e, are the elements of a new basis then the components
of g with respect to the ¢, are given by §as = hShg.q, or G = HTGH. o

The function v — g(v,v) is called a quadratic form on V. If the quadratic form
is given, then the bilinear form may be recovered with the help of the identity

g(v,w) = ';'(g(v tw,v+ w) - g(vvv) - g(w’w))'

Thus the specification of a symmetric bilinear form and of a quadratic form are
entirely equivalent, and the theory of these objects is often developed in the language
of quadratic forms. It is known from the theory of quadratic forms that if g is given
then there is a basis for V, which we call a standard basis, with respect to which

gv,w) = v'w' + 0w+ FvTw — T eyt

The corresponding matrix G has on the main diagonal first r ones, then s minus
ones, then n — (r + s) zeros, where n = dim V, and it has zeros everywhere else. The
choice of standard basis in which g takes this form is by no means unique; however,
Sylvester’s theorem of inertia asserts that the numbers of diagonal ones, minus ones
and zeros are independent of the choice of standard basis.

A symmetric bilinear form g on V is called non-degenerate if

(3) g(v,w) = 0 for all w implies that v = 0.

If g is non-degenerate then there are no zeros on the diagonal in its expression with
respect to a standard basis, r + s = n, and g is characterised by r, the number of
ones (the dimension n of V having been fixed).

Exercise 2. Show that g is a non-degenerate symmetric bilinear form if and only if G is
non-singular; in such a case, the matrix H relating two bases (as defined in Exercise 1)

satisfies (det H)? = det G/ detG. o

We shall call a non-degenerate symmetric bilinear form a scalar product; some-
times a symmetric bilinear form is called a scalar product even if it is degenerate,
but in this book we maintain the distinction. A scalar product ¢ is given with

respect to a standard basis by
gv,w)=v'w' +viwl +. v - - e,

It is said to have signature (r,n — r), or simply signature r.
2. Euclidean and Pseudo-Euclidean Spaces

Euclidean space. The standard scalar product on R, given by
g(v,w) = v'w! + V2w + - + v W",

has signature n. Any scalar product of signature n is called Euclidean, and a vector
space with Euclidean scalar product is called a Euclidean (vector) space. A scalar
product is called positive-definite if

(4) g(v,v) > 0 for all v, and g(v,v) =0 only if v =0.

It is clear that g is positive-definite if and only if it is Euclidean.
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Exercise 8. Let g be a Euclidean scalar product. Show that for any vectors v, w, and
any real number ¢,

g(tv + w,tv + w) = t’g(v,v) + 2tg(v, w) + g(w,w).
Deduce from the positive-definiteness of g that the discriminant of the right hand side,
considered as a quadratic in t, cannot be positive for v # 0, and deduce the Schwarts

inequality o
lg(v, w)l < Vg(v,v)V/ 9w, w),
with equality if and only if v and w arg_litle.arly dependent. Show that if v and w are both
non-zero then [g(v, w)|/+/ g(v,v)/ g(w,w) is the cosine of exactly one angle ¥ such that
0 < ¢ < = (this angle is then defined to be the angle between v and w). Show further that
V(v + w,v+ w) < V/g(v,0) + Vg(w,w)

(the “triangle inequality”™). la]

Orthonormality. Generalising from the Euclidean case, one says, for any scalar
product g, that vectors v and w are orthogonal if g(v,w) = 0, and a vector v is a unit
vector if |g(v,v)] = 1. Notice that v is called a unit vector whether g(v,v) =1 or
g(v,v) = --1. A basis is called orthogonal if the vectors in it are mutually orthogonal,
and orthonormal if they are also unit vectors. Thus a basis in which g takes the
standard form (appropriate to its signature) is orthonormal, and conversely.

Exercise 4. Infer from Exercises 1 and 2 that the matrix H of a change of orthonormal
basis for a Euclidean space must be orthogonal, which is to say that HTH = I,, and

deduce that det H = +1. o
Exercise 5. Show that for any symmetric bilinear form g, if a vector v is orthogonal to
vectors wy, ws,...,wm, then it is orthogonal to every vector in the subspace spanned by
wy,W3,...,Wnm. o

Vectors vy,v2,...,V,, form an orthogonal set if they are mutually orthogonal
and an orthonormal set if they are, in addition, unit vectors.

Exercise 6. Show that vectors of an orthogonal set are necessarily linearly independent. 0

Exercise 7. Let V be an n-dimensional vector space with Euclidean scalar product g and
let W be a p-dimensional subspace of V. Let W denote the set of vectors orthogonal
to every vector in W. Show that W' is a subspace of V of dimension n — p. Show that
(W*)* = W. Show that V is a direct sum V = We W*. o]

The subspace W1 is called the orthogonal complement to W in V.

Lorentzian scalar products. A scalar product which is non-degenerate, but not
necessarily positive-definite, is said to be pseudo-Fuclidean. The case of greatest
interest is the scalar product in the Minkowski space of special relativity theory,
which is generally rearranged, still with signature (1,3), to

g(v,w) = —v'w' - v2w? - V3w + viuny,

although in a standard basis it should be written v'w! — v?w? — v3w3 - viw*. It

is sometimes reversed to the signature (3,1) form v'w! + v2w? + v3w3 ~ v4w*, and
in older books is found in the form v?w® - v'w' — v2w? — v3w3. In this book we
shall adhere to the first form displayed above.

It is in most respects as easy to discuss the scalar product of signature (1,n—1)
or (n - 1,1) on an n-dimensional vector space as the 4-dimensional example. For any
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n, a scalar product with this signature is said to be hyperbolic normal or Lorentzian.
There is a conventional choice of sign to be made when dealing with Lorentzian
scalar products: we shall choose always the signature (1,n — 1).

In a space with pseudo-Euclidean, but not Euclidean, scalar product one can
find a non-zero vector v for which g(v,v) has any chosen real value, positive, negative
or zero. With our choice of signature a non-zero vector v in a space with Lorentzian
scalar product is called

timelike g(v,v) >0
null or lightlike if g(v,v)=0
spacelike g(v,v) <0

These names arise from the physical interpretation in the 4-dimensional (Lorentzian
or Minkowskian) case of special relativity theory: a timelike vector is a possible 4-
momentum vector for a massive particle; a lightlike vector is a possible 4-momentum
vector for a massless particle such as a photon; a spacelike vector will lie in the
instantaneous rest space of any timelike vector to which it is orthogonal. Although
this physical interpretation cannot be maintained in a space with Lorentzian scalar
product if the dimension of the space is greater than 4, nevertheless the image is
very convenient.

The vectors orthogonal, with respect to a Lorentzian scalar product, to a given
non-zero vector form a subspace of codimension 1, called its orthogonal subspace.
The orthogonal subspace is called

spacelike timelike
null if the given vector is null
timelike spacelike

The Lorentzian scalar product induces a symmetric bilinear form on a sub-
space, by restriction: if a subspace of codimension 1 is spacelike, then the induced
bilinear form, with the sign reversed, is a Euclidean scalar product; if the subspace
is null then the bilinear form is degenerate, while if the subspace is timelike and
of dimension greater than 1 then the induced bilinear form is again a Lorentzian
scalar product.

Exerclse 8. Show that in an n-dimensional vector space with Lorentzian scalar product
the timelike vectors are separated into two disjoint sets by the set of null vectors (the null
cone), while in a vector space with pseudo-Euclidean scalar product of signature (p,n — p)
where 1 < p < n - 1 there is no such separation for vectors v with g(v,v) > 0. o

The disjunction in the Lorentzian case corresponds to the distinction between past
and future.

Exercise 9. Let V be an n-dimensional vector space with Lorentzian scalar product g.
Show that if v and w are timelike vectors both pointing to the future or both pointing to
the past then g(v,w) > 0, whereas if one points to the future and one to the past then
g(v,w) < 0. Show that in no case can two timelike vectors be orthogonal; show that a
non-zero vector orthogonal to a timelike vector must be spacelike. o

Exercise 10. Show that all vectors in a spacelike subspace of codimension 1 of a vector
space with Lorentsian scalar product are spacelike. Show that if a vector is null then it
lies in its own orthogonal subspace, while all vectors in that subspace which are linearly
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independent of it are spacelike. Show that provided its dimension is greater than 1 a
timelike subspace contains vectors of all three types. o

Exercise 11. Let V be an n-dimensional vector space with Lorentzian scalar product and
W a 2-dimensional subspace of V. Show that if W contains two linearly independent null
vectors then it has an orthogonal basis consisting of a timelike and a spacelike vector; if
W contains a non-zero null vector and no other null vector linearly independent of that
one, then it has an orthogonal basis consisting of a null and a spacelike vector; while if W
contains no non-zero null vectors then it has an orthogonal basis consisting of two spacelike
vectors. o

3. Scalar Products and Dual Spaces

We have been careful, in earlier chapters, to draw a sharp distinction between vector
spaces and their duals. The need for this distinction is clear, for example, in the
case of a tangent space and its dual, a cotangent space: elements of the two spaces
play quite different geometric roles. However, specification of a bilinear form on a
vector space allows one to define a linear map from the vector space to its dual, and
if the bilinear form is non-degenecrate, whatever its signature, this linear map is a
bijection and may be used to identify the two spaces in a manner which does not
depend on a particular choice of basis.

Suppose, first of all, that g is a symmetric bilinear form on a vector space V.
For any fixed v € V the map V —~ R by w — g(v,w) is linear, because g is bilinear,
and therefore defines an element of V. This element of V* will be denoted g(v),
so that

(w,g(v)) = g(v,w)

for all w ¢ V. Here g is used in two different senses: on the left, with one argument,
to denote a linear map from V to V°; on the right, with two arguments, to denote
a bilinear form on V. No confusion need arise from this.

If {e.} is a basis for V, and {6} the dual basis for V*, then g(es) = gabb®
where g, are the components of the bilinear form g, and so if v = v®e, then
9(v) = gasv®8®; which is to say that the components of g(v) are gasv®. It is usual,
when a bilinear form g has been fixed once for all, to write vy for g,sv®. The position
of the index is important: except in special cases v, # v°.

Because of the relation between the components, this process of constructing
an element of V* from an clement of V with the help of g is called lowering the
indez. In matrix notation, the map from components of elements of V, expressed
as column vectors, to components of elements of V°, expressed as row vectors, is
given by v+ v7G = (Gv)T.

If the bilinear form g is non-degenerate an inverse map ¢~ ': V* — V may be
defined such that, for any a ¢ V° and anyv € V,

(v,a) = g(g7"(a),v).

In matrix notation, with respect to the same bases as before, if now « is the row
vector of components of an element of V* then the corresponding element of V
has components G~ 'aT = (aG~')T, where G~ is the matrix inverse to the (non-
singular) matrix G. As is customary, we denote by g2 the entries in G~!. The
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components a® of ¢ ~'(a) are given by a® = ayg*®. The ¢g°® and g, are related by
9%°geb = gbeg“® = &

The matrix G~! is symmetric; that is, g** = g° (see Exercise 16).
The map g~ ': V* -+ V is called raising the indez.

Exercise 12. Show that in R®, with standard basis and standard Euclidean scalar prod-
uct, the map v — g(v) is given by
(vl ) V’) VS)T i (Vl ) U’, '-’3)1

but that if the Lorentzian scalar product g(v,w) = —v'w' — v?w? + v3w? is used then the
map v — g(v) is given by

(u',u’,v’)r'—o (—v',—u’.v’). o
Exercise 13. Show that if {e,} is a basis for V with scalar product g and {e®} the set
of elements of V* given by e® = g(es), then {e®} is a basis for V°. Show that the matrix
of the map v ~— g(v) with respect to these bases is the identity matrix. Show that in
contrast the matrix of the same map with respect to {e.} and {6°}, the dual basis for V*,
is (gas). Show that if g is Euclidean then {es} and {e®} are dual if and only if {e.} is
orthonormal. o
Exercise 14. A bilinear form B, which is not symmetric, on a vector space V determines

two linear maps V — V*, since for fixed v € V the two linear forms w — B(v,w) and
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