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Preface

This book is based on lecture courses given by the authors over the past decade
and a half to various student audiences, most of them final year undergraduates or
beginning graduates. It is meant particularly for those who wish to study relativity
theory or classical mechanics from a geometrical viewpoint. In each of these sub-
jects one can go quite far without knowing about differentiable manifolds, and the
arrangement of the book exploits this. The essential ideas are first introduced in the
context of affine space; this is enough for special relativity and vectorial mechanics.
Then manifolds are introduced and the essential ideas are suitably adapted; this
makes it possible to go on to general relativity and canonical mechanics. The book
ends with some chapters on bundles and connections which may be useful in the
study of gauge fields and such matters. The "applicability" of the material appears
in the choice of examples, and sometimes in the stating of conditions which may
not always be the strongest ones and in the omission of some proofs which we feel
add little to an understanding of results.

We have included a great many exercises. They range from straightforward
verifications to substantial practical calculations. The end of an exercise is marked
with the sign o. Exercises are numbered consecutively in each chapter; where we
make reference to an exercise, or indeed a section, in a chapter other than the current
one we do so in the form "Exercise n of Chapter p" or something of that kind. We
conclude each chapter with a brief summary of its most important contents. We
hope that beginners will find these summaries useful for review, while those for
whom the subject is not entirely new will be able to tell from the summary whether
a chapter treats topics they are already familiar with.

We have attempted to make the book as self-contained as is consistent with the
level of knowledge assumed of its readers and with the practical limits on its length.
We have therefore appended notes to several chapters; these notes summarise back-
ground material not covered in the text or give references to fuller treatments of
topics not dealt with in detail. The notes should be the first recourse for a reader
who meets something unfamiliar and unexplained in the main text.

We are grateful to Elsayed Ahmed, Glauco Amerighi, Marcelo Gleiser, Clive
Kilmister, Mikio Nakahara, Tony Solomonides, Brian Sutton and Navin Swami-
narayan, who commented on parts of the manuscript, and to Dr. Swaminarayan for
working many of the exercises. We are grateful also to Eileen Cadman, who drew
the pictures, to Joan Bunn, Carol Lewis and Barbara Robinson, who spent many
hours patiently processing the manuscript, and to Mrs Robinson for her careful
subediting. Finally we have to thank a number of colleagues for TEXnical help un-
stintingly given: Sue Brooks, Bob Coates, Steve Daniels, Glen Fulford, Sid Morris
and Chris Rowley.

The Norman Foundation generously supported the preparation of the text.



0. THE BACKGROUND: VECTOR CALCULUS

The reader of this book is assumed to have a working knowledge of vector calcu-
lus. The book is intended to explain wide generalisations of that subject. In this
chapter we identify some aspects of the subject which are not always treated ade-
quately in elementary accounts. These will be the starting points for several later
developments.

1. Vectors

The word "vector" is used in slightly different ways in pure mathematics, on the
one hand, and in applied mathematics and physics, on the other. The usefulness of
the vector concept in applications is enhanced by the convention that vectors may
be located at different points of space: thus a force may be represented by a vector
located at its point of application. Sometimes a distinction is drawn between "free"
vectors and "bound" vectors. By a free vector is meant one which may be moved
about in space provided that its length and direction are kept unchanged. A bound
vector is one which acts at a definite point.

In the mathematical theory of vector spaces these distinctions are unknown. In
that context all vectors, insofar as they are represented by directed line segments,
must originate from the same point, namely the zero vector, or origin. Only the
parallelogram rule of vector addition makes sense, not the triangle rule.

Closely connected with these distinctions is a difficulty about the representation
of the ordinary space of classical physics and the space-time of special relativity
theory. On the one hand, one finds it more or less explicitly stated that space is
homogeneous: the laws of physics do not prefer any one point of space, or of space-
time, over any other. On the other hand, almost any quantitative treatment of a
physical problem begins with a particular choice of coordinate axes-a choice which
singles out some supposedly unremarkable point for the privileged role of origin. The
underlying difficulty here is that the vector space R3 is not quite appropriate as
a model for ordinary physical space. The kind of space which is homogeneous, in
which the whereabouts of the origin of coordinates is an act of choice not a dictate of
the structure, which retains sufficient vectorial properties to model physical space,
and in which a sensible distinction between free and bound vectors can be made, is
called an affine space; it will be discussed in detail in Chapter 1. (The concept of a
vector space, and the notation R3, are explained in Note 2 at the end of Chapter 1.)

It is unfortunate that distinctions which appear merely pedantic in the straight-
forward context of R3 are sometimes important for generalisations. The scalar prod-
uct, also called the inner or dot product, is so familiar that it is difficult to keep in
mind that R3 may be given many different scalar products, with similar properties,
or no scalar product at all. The scalar product is a secondary structure: if one fails



2 Chapter 0

to recognise this one cannot exploit fully the relationship between a vector space
and its dual space (the dual space is also defined in Note 2 to Chapter I).

In other terms, the matrix product of a row and a column vector, resulting
in a number, may be constructed without the introduction of any secondary struc-
ture, but the scalar product of two column vectors, also resulting in a number,
cannot. The first makes use only of vector space notions, combining an element of
a vector space, represented as a column vector, and an element of its dual space,
represented as a row vector. The product, called a pairing, is represented by matrix
multiplication. In tensor calculus this would be expressed by the contraction of a
contravariant and a covariant vector. The second requires the additional concept
of a scalar product. It is surprising how rich a geometry may be developed with-
out the introduction of a scalar product: after this chapter, we do not introduce
scalar products again until Chapter 7. It is also instructive to see which notions of
vector algebra and calculus really depend on the scalar product, or on the metrical
structure, of Euclidean space.

From the outset we shall distinguish notationally between the underlying n-
dimensional vector space of n-tuples, and the same space with the scalar product
added, by writing R" for the former but en for the latter.

2. Derivatives
Let f be a function on E3; grad! is the column vector of its partial derivatives,
evaluated at any chosen point. Let v be a unit vector at that point, with a chosen
direction. Then the directional derivative of f in the chosen direction is the scalar
product v grad f.

A more general directional derivative may be defined by dropping the require-
ment that v be a unit vector. This directional derivative may be interpreted as the
derivative along any curve which has v as tangent vector at the point in question,
the curve not being necessarily parametrised by its length. If v is regarded as a
velocity vector of a particle then v grad f is the time rate of change of f along the
path of the particle. However, the directional derivative may perfectly well be con-
structed without appealing to the scalar product, by taking the partial derivatives
as components of a row vector. This vector is called the differential of f; in these
terms the directional derivative is simply the pairing of the tangent vector and the
differential. Having no scalar product, one cannot sustain the usual interpretation
of the gradient as the normal to a surface f = constant, but the differential may
still be used to specify the tangent plane to this surface at the point in question.
The main advantage of this point of view is that it is the starting point for a general
theory which encompasses non-metrical versions of grad, curl and div, and much
more besides.

In vector calculus one sees pretty clear hints of close connections between grad,
curl and div, but in the usual treatments they are often not much more than hints.
We have in mind for example the relations curl o grad = 0 and div o curl = 0, and
the assertions that a vector field is a gradient if and only if its curl vanishes and a
curl if and only if its divergence vanishes. These relations all fall into place in the
development of the exterior calculus, which is undertaken in Chapters 4 and S.
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We return to consideration of the directional derivative, but from a different
point of view. The directional derivative operator associated with a vector field
X will for the time being be denoted by X . grad, as before, but now we insist on
regarding the components of gradf as the components of the differential, so that
there is no need to introduce the scalar product to construct directional derivatives.
We list some properties of operators of this type, as applied to functions:

(1) X grad maps functions to functions
(2) X grad is a linear operator, and is linear in X
(3) (f X) grad = f(X grad)
(4) (X . grad)(f1f2) = (X gradf,)f2 + f1(X grad f2) (Leibniz's rule).
The composition of directional derivative operators, and their commutation

properties, are not often discussed in standard treatments of vector calculus. The
composite (X grad) o (Y grad) of two operators is not a directional derivative
operator, because it takes second derivatives of any function on which it acts, while
directional derivative operators take only first derivatives. However, the commuta-
tor

(X grad) o (Y grad) --- (Y grad) o (X grad)

is a directional derivative operator, which is to say that it is of the form Z grad
for some vector field Z. The vector field Z depends on X and Y (and on their
derivatives). It is usual to denote the commutator by the use of square brackets,
and to extend this notation to the vector fields, writing

IX grad, Y grad = JX, YI grad.

It is not difficult to compute the components of JX,Yj in terms of the components
of X and Y; this, and the significance and properties of the brackets of vector fields,
is discussed at length in Chapter 3.

The directional derivative operator may be applied to a vector field as well as
to a function. The Cartesian components of a vector field are functions, and the
operator is applied to them one by one: if E1i E2, and E3 are the usual coordinate
vector fields and

Y = Y1E1 + Y2E2 + Y3E3

then

(X grad)Y = (X grad Y1) E1 + (X grad Y2) E2 + (X grad Y3) E3.

This operation has properties similar to those of the directional derivative as applied
to functions:

(1) X grad maps vector fields to vector fields
(2) X grad is a linear operator and is linear in X
(3) (fX) .grad = f(X.grad)
(4) X grad(f Y) = (X grad f )Y + f (X grad Y).

However, the conventional use of the same symbol X grad for what are really two
different operators-the directional derivatives of functions and of vector fields-
makes the last of these appear more like Leibniz's rule than it really is: on the right
hand side each of the two usages of X grad occurs.
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The properties of the directional derivative of vector fields listed above are typi-
cal of the properties of a covariant derivative; this subject is developed in Chapters 2,
5 and 7, and generalised in Chapters 9, 11, 13 and 15. The application of X.grad to
vector fields in R3 is the simplest example of a covariant derivative. The interaction
of the covariant derivative with scalar products is exemplified by the formula (in
£3)

(X - grad)(Y Z) = (X grad Y) Z + Y (X - grad Z).

Note that in this formula the two different meanings of X grad again occur: on
the left it acts on a function, on the right, on vector fields. The commutator of
two such operators, acting on vector fields, is given by the same formula as for the
action on functions:

IX grad, Y grad) = JX, Y J grad.

This formula, which is not typical of covariant differentiation formulae, expresses
the fact that ordinary Euclidean space is flat, not curved.

We have adopted the usual convention of vector calculus that vectors and vector
fields are printed in boldface type. We shall continue to follow this convention, but
only for the vectors and vector fields in F3 with which vector calculus deals: in
more general situations vectors and vector fields will be printed in ordinary italic
type.

3. Coordinates

One of the byproducts of the approach to be developed here is that the expression in
curvilinear coordinates of such constructions as grad, curl and div, which can appear
puzzling, becomes relatively straightforward. Coordinate transformations, and the
way in which quantities transform in consequence, have an important part to play
in the developing argument. However, we do not generally define objects in terms
of their transformation properties under change of coordinates, as would be the
practice in tensor calculus. We develop the idea that since no one coordinate system
is preferable to another, objects of interest should be defined geometrically, without
reference to a coordinate system, and their transformation properties deduced from
the definitions. In tensor calculus, on the other hand, the transformation law is the
primary focus, and generally the basis for the definition of objects.

The arena for most of the geometry described below is (finally) the differentiable
manifold, in which coordinates exist locally, but no assumption is made that a single
coordinate system may be extended to cover the whole space. The homogeneity of
affine space is thus taken many steps further in the definition of a differentiable
manifold.

We shall also attempt to give some indications of global matters, which tensor
calculus rarely does, it being ill adapted for that purpose. On the other hand, the
results we obtain often have tensor calculus equivalents, which will frequently be
revealed in the exercises; but our approach is, in a word, geometrical. Our exposition
is intended to illustrate Felix Klein's remark that "The geometric properties of any
figure must be expressible in formulas which are not changed when one changes the
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coordinate system ... conversely, any formula which in this sense is invariant under
a group of coordinate transformations must represent a geometric property".

4. The Range and Summation Conventions
Throughout this work we shall use certain conventions regarding indices which
simplify the representation of sums, and result in considerable savings of space and
effort. These are the range and summation conventions, often associated with the
name Einstein. The reader who is already familiar with tensor calculus will need
no instruction in their use. For other readers, not so prepared, we describe their
operation here.

It is simplest to begin with an example. Consider the matrix equation

v = A(u).

Here u is supposed to be a column vector, of size n say (or n x 1 matrix); A is
an m x n matrix; and v, therefore, is a column vector of size m (m x 1 matrix).
This equation may be interpreted as expressing how each individual component of
v is determined from the components of u via A. To write down that expression
explicitly one introduces notation for the components of u and v and the elements
of A: say ue to stand for the ath component of u (a = 1, 2, ... , n); v° to stand for
the ath component of v (a = 1, 2, ... , m); and Aa to stand for the (a, a) element of
A, that is, the element in the ath row and ath column. The matrix equation above
is then equivalent to the m equations

n

va = 1: Aaua.a
a=1

The range convention arises from the realisation that it is not necessary to
state, at each occurrence of a set of equations like this, that there are m equations
involved and that the truth of each is being asserted. This much could be guessed
from the appearance of the index a on each side of the equation: for a is a free
index, unlike a which is subject to the summation sign. On the other hand, the
summation convention follows from the observation that whenever a summation
occurs in an expression of this kind it is a summation over an index (here a) which
occurs precisely twice in the expression to be summed. Thus summation occurs
only where there is a repeated index; and when an index is repeated summation is
almost always required. Under these circumstances the summation symbol F-a=1
serves no useful function, since summation may be recognised by the repetition of
an index; it may therefore be omitted.

Thus the component equation above is written, when range and summation
conventions are in force, in the simple form

v° = Aaua.a

The presence of the repeated index a on the right hand side implies summation over
its permitted range of values 1, 2, ... , n by virtue of the summation convention; while
the presence of the free index a on both sides of the equation implies equality for
each value 1, 2, ... , m that it can take, by virtue of the range convention.
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In general, the range and summation conventions work as follows. If, in an
equation involving indexed quantities, there are free (unrepeated) indices, then the
equation holds for all values in the ranges of all free indices, these ranges having
been declared previously: this is the range convention. Where, in an expression
involving indexed quantities, any index is repeated, summation over all possible
values in the range of that index is implied, the range again having been declared
previously: this is the summation convention.

The ranges of indices governed by the range and summation conventions will
always be finite: thus only finite sums are involved, and there is no problem of
convergence.

Operation of the range and summation conventions in practice is relatively
straightforward. One or two rules--often best employed as running checks on the
correctness of a calculation-should be mentioned. The number of free indices on
the two sides of an equation must be the same; and of course each different free
index in an expression must be represented by a different letter. Repeated indices
in an expression may occur only in pairs. Replacement of a letter representing an
index by another letter is allowed, provided that all occurrences of the letter are
changed at the same time and in the same way, and provided that it is understood
that the new letter has the same range of values as the one it replaces. The most
convenient practice to adopt, where indices with different ranges are involved in a
single calculation, is to reserve a small section of a particular alphabet to represent
indices with a given range. Thus in the case discussed above one could take a, 6,
c to range and sum from I to n, and a, f3, ry to range and sum from I to m; then
up = A3 u` would mean exactly the same as v° = AQ ua.

From a given expression containing two free indices with the same ranges, a
new expression may be formed by making them the same, that is, by taking a sum:
this process is known as contraction. For example, from the components µb of a
square matrix one may form the number uc, its trace.

Three points should be made about the way the summation convention is em-
ployed in this book. In the first place, we have so arranged matters that the pair of
repeated indices implying a summation will (almost always) occur with one index
in the upper position and one in the lower. This will already be apparent from
the way we have chosen to write the matrix equation above, when some such thing
as va = Aaaua might have been expected. The point is related to the importance
of distinguishing between a vector space and its dual (column versus row vectors)
mentioned several times earlier in this chapter. This distinction is introduced into
the notation for components by using an index in the upper position (ua, Va) for
components of a column vector. For the components of a row vector we shall place
the index in the lower position, thus: ca. Then the multiplication of the matrix A
by a row vector c (of length m), on the left, gives a row vector (of length n) whose
components are c0AQ. Notice that the type of the resulting vector (row rather than
column) is correctly indicated by the position of the free index a.

The pairing of a row and a column vector (in other words, a 1 x m and an
m x 1 matrix) by matrix multiplication, mentioned in Section 1, is represented by
an expression cave, which conforms to our rule. On the other hand, the scalar
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product of two column vectors, v^w°, cannot be correctly so represented
without the introduction of further quantities. What is required is a two-index
object, say 6pp, with

but6pp=0if
with the aid of this the expression can be correctly formed. This has the
same value as v°w' ; but the point of the remark is to show again, this time
through the application of the summation convention, how the pairing of vectors
and duals differs from a scalar product. The extra piece of machinery required in
the case of the scalar product, represented by 6Qp above, is the Euclidean metric.

The second point we should mention about our use of the range and summation
conventions is that, whereas in tensor calculus they are used almost exclusively with
indexed quantities which are collections of numbers (or functions), we shall use them
with other types of object. For example, basis vectors for an n-dimensional vector
space may be written {ea}, where a ranges and sums from 1 to n; then any vector
u in the space may be written u = uaea, where the ua, its components with respect
to the basis, are numbers, but the ea are vectors.

The third point to watch out for is that an expression such as (x°) is frequently
used to stand for (x' , x2, ... , x"). Furthermore, the value of a function of n vari-
ables, say j, at (x`) will be denoted f (x`). In this situation the index c is subject
neither to the summation nor to the range convention. In such a context (XI) is
usually to be thought of as the set of coordinates of a point in some space. Where
elements of R" are being used as coordinates rather than as the components of
velocity vectors or differentials, for example, the distinctions made earlier between
vector spaces and their duals, or between column and row vectors, no longer have
the same importance.

Note to Chapter 0
Klein's remark is in his splendid Elementary mathematics from an advanced stand-
point, part 11, Geometry (Klein 1939]) p 25.



1. AFFINE SPACES

When one first begins to learn mechanics one is confronted with a space-the "or-
dinary" space in which mechanical processes take place-which in many ways re-
sembles a vector space, but which lacks a point playing the distinctive role of zero
vector. The resemblance lies in the vector addition properties of displacements and
of quantities derived from them such as velocities, accelerations and forces. The
difference lies in the fact that the mechanical properties of a system are quite inde-
pendent of its position and orientation in space, so that its behaviour is unaffected
by choice of origin. Of course the Sun, or the mass centre of the Solar System, plays
a role in the formulation of the Kepler problem of planetary motion, but the relative
motion of the planets does not depend on whether displacements are measured from
the Sun or from some other point. Nor does it depend on the choice of origin for
time measurements.

The same is true in special relativity theory. Here also the behaviour of a
physical system is unaffected by the choice of space-time origin.

In neither case can there be ascribed to any point the distinctive position and
properties ascribed to the zero vector in a vector space; nor can any meaning be
given to the addition of points as if they were vectors. Nevertheless, one learns
to manipulate vectors in ordinary Euclidean space or in Minkowski space-time and
to give physical significance to these manipulations, without perhaps paying too
much attention to the precise nature of the underlying space or space-time. When
one wants to be more systematic, however, it is necessary to establish the precise
relation between the vectors and the space. A satisfactory construction must allow
for vector addition of displacements but may not single out any point with special
properties. The result is called an affine space.

It is true that the limitations imposed by formation in an affine mould are
too severe for some applications. This became apparent during the course of the
nineteenth century, when various generalisations were developed. One line of de-
velopment culminated in the work of Ricci and Levi-Civita on the tensor calculus,
which was exploited by Einstein in the invention of general relativity theory; an-
other line led to the work of Lie in group theory, another to the work of E. Cartan
in differential geometry, yet another to the work of Poincare and Birkhoff in ce-
lestial mechanics. The generalisations which were developed include much of the
subject matter of the later part of this book (and much else). To a great extent
these generalisations may be attained by modifying one or another property of an
affine space, so we start with that. Most of the techniques needed in the later work
may be explained quite easily in the afl'ine case and extended without much effort.
The more general spaces introduced later are called "manifolds". They are defined
in Chapter 10. In the first nine chapters we shall develop the differential geometry
of affine spaces in a form suitable for applications and adaptable to generalisation.
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To start with, the concepts to be explained do not require assumptions of a metrical
character-no scalar product or measure of length is required-and so they will be
applicable later on in both the Euclidean and the Minkowskian contexts.

1. Affine Spaces

In this section we define affine spaces and introduce coordinates natural to them
called affine coordinates.

Affine space defined. We are to define a space A in which displacements may
be represented by vectors. As a model for displacements we shall take a real vector
space V of finite dimension n. We shall not choose any particular basis in the
vector space V, so it is not merely a fixed copy of the real number space R". From
experience in mechanics, one might hope that displacements in A would enjoy these
properties:

(1) a succession of displacements is achieved by the addition of vectors (the
triangle law for displacements)

(2) displacement by the zero vector leaves a point where it is
(3) if any two points are chosen, there is a unique displacement from one to

the other.
A formal definition which embodies these properties may be given in terms

of the effect on any point x E A of displacement by the vector v E V. We shall
write x + v to denote the point to which x is displaced, and regard the operation of
displacement as a map A x V -+ A by (x, v) .-- x + v. The definition runs as follows:
a set A is called an affine space modelled on the real vector space V if there is a
map, called an affine structure, A x V -" A, denoted additively: (x, v) - x + v,
with the properties

(1) (x + v) + w = x + (v + w) forallxEAandallv,wEV
(2) x + 0 = x for all x E A, where 0 E V is the zero vector
(3) for any pair of points x, x' E A there is a unique element of V, denoted

x' - x, such that x + (x' - x) = x'.

Fig. I Points and displacements in an affine space.
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Note that the plus sign is given two distinct meanings in this definition: in the
expression x + v it denotes the displacement of a point of A by an element of V,
while in the expression v+w it denotes the addition of two elements of V. Moreover,
although the displacement from x to r' is denoted x' - x, there is no sense in which
points of A may be added together. It is essential to keep these distinctions clearly
in mind when working with an affine space.

An affine space A modelled on a vector space V of dimension n is also said to
be of dimension n. One writes dim A = n (and dim V = n).

Exercise 1. Let A be an affine space modelled on a vector space V. Show that if, for
some x E A and some v E V, x + v = x, then v = 0. Thus displacement by any vector
other than the zero vector leaves no point where it is. 0
Exercise 2. Let ro be any chosen point of A. Show that the map A - V by x z - xo
is bijective (onto and I : 1). 0

Affine coordinates. In order to deal with specific problems one is likely, sooner
or later, to want to introduce coordinates into affine spaces. It is true that one can
sometimes go a long way in solving mechanics problems without using coordinates,
but even so an adept choice of coordinates may much simplify a problem. The
same is true in special relativity theory. What is desirable, on the other hand, is to
formulate the problem in the first place without using coordinates, so as to be able
to recognise whatever symmetry or invariance properties it may have.

Among all the coordinates which may be introduced into an affine space there
are those, called affine coordinates, which are especially well-adapted to its struc-
ture. These coordinates will be explained here.

A choice of affine coordinates requires only a choice of origin and a choice of
axes. The choice of axes is merely a choice of basis for the underlying vector space.
If xo is any chosen point of A and (eh e2, ... , e" } is any chosen basis for V then any
point x in A may be written x = xo + (x - xo), and since x - xo belongs to V it may
in turn be written x - xo = xaea, where the Xe are its components with respect to
the chosen basis {ea}. Here for the first time we employ the summation convention
explained in Section 4 of Chapter 0: because the index a is repeated, summation
from 1 to n (= dim A) is understood. Thus xaea is short for Ea=1 xaea.

The components (xI,xs,...,x") are called the affine coordinates of x. The
point xo, whose coordinates are evidently (0,0'... , 0), is called the origin of affine
coordinates. An assignment of coordinates associates a set of n real numbers
(x t, xs, ... , x") to each point of A, and so may be described by a bijective map
A R" (compare Exercise 2). Thus the dimension of an affine space, like the
dimension of the vector space on which it is modelled, is equal to the number of
coordinates needed to specify a point of the space.

The notion of dimension and the possibility of using coordinates carry over to
manifolds; however, one distinctive property of affine coordinates-that they are
valid everywhere in the space at once-will not generalise.

We shall for the time being use (xl, xs, ... , x"), often abbreviated to (xa), to
denote the affine coordinates of a general point of A relative to some system of
affine coordinates. Each choice of origin of A and of basis of V determines a choice
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of affine coordinates. If {e,} is another basis for V, related to the basis {ea} by
ey = hbea, where the hb are the elements of a matrix, necessarily non-singular, and
if xo is chosen as origin instead of x0, then the two corresponding sets of affine
coordinates (ia), (za) of any point z of A are related by

xa = hbib+Ca
where x0 - xo = c"ea, or equivalently by

is = (h-1)baxb + da

where the (h-' )b are the entries in the matrix inverse to the matrix It with en-
tries hb, and d' = --(h-')ticb. Here we use the range convention as well as the
summation convention: the unrepeated index a takes in turn the values 1, 2, ... , n.
The transformation from (xa) to (i"), or vice versa, is called an affine coordinate
transformation.

It should be apparent that the introduction of affine coordinates allows one to
identify an affine space A of dimension n with R". The question therefore arises
why one should want to consider the more abstract object at all. One reason
is that, in a coordinate-based discussion, geometric objects must be defined by
giving their transformation properties under change of coordinates. With the more
abstract approach one may define geometric objects intrinsically, and deduce the
transformation properties from the definition. These alternatives-definition with
and without coordinates-represent the points of view of classical tensor calculus
and modern differential geometry respectively. We shall repeatedly have occasion to
mention the common features of and contrasts between these two points of view. In
order to be able to understand the literature of contemporary mathematical physics
it is essential to be familiar with both of them.
Exercise 3. Verify that the time of Newtonian mechanics is an affine space of dimension 1.
Explain how the process of setting up an affine coordinate system could be distinguished
physically. o
Exercise 4. The real number space R" may be identified as an affine space modelled
on itself as vector space. If the point (0,0,... ,0) of R" is chosen a- origin and the vec-
tors (1,0,...,0), (0,1,...,0),... (0,0,...,1) as basis then the point (6E2....,{") of
R" has affine coordinates in this affine coordinate system. Show that
if the point (q', re, ... , q") is chosen as origin and the vectors el _ (e 1, e'1, ... , e1),

_ ' , .. . ., . a (e' ,n e2,. .., a") as basis then the point (f'e el e":), ...,(eT r n = n n

has coordinates (z', x=, ... , x") in the new affine coordinate system which are determined
uniquely by the equations cpaxb = fa - qa. p
Exercise 6. Show that the plane in R' through the points (1,0,0), (0, 1,0) and (0,0,1)
(the set of points ) E R3 such that e' + e + CS = 1) is an affine space A.
Take the point (0, 0, 1) as origin of affine coordinates in A and the vectors e1 = (1,0, -1)
and e, = (0, 1, -1) as basis vectors for the vector space on which A is modelled, and
show that the point of A with affine coordinates (x', x') is the point (x',x2, 1 - x' - x2)
of R3; next take the point 3, 1) of A as origin of affine coordinates and the vectors
e, _ (s -') and ez 1, a , -1) as basis vectors, and show that the point of A with
affine coordinates (±',2?.) is the point (i f' - ;f2+ ,Sf1 + bf + 1, 1:f1 - of + 1)
of R'. o
Exercise 6. Show that the transformation of affine coordinates given in Exercise 5 above
is t' = 2z' + x2 - 1, f2 - x' 4 2r2 - 1. 0
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Exercise T. In an affine space, (x°) are affine coordinates of a point in one chosen coordi-
nate system and (1°) are given by k' = ks x" + d°, where (kb) is any non-singular matrix
and the d° are any numbers. Show that there is another coordinate system in which (1°)
are affine coordinates of the same point. o
Exercise S. Show that composition (successive application) of two affine coordinate trans-
formations yields another affine coordinate transformation. o

2. Lines and Planes

Let vo be a fixed non-zero vector in V and xo a fixed point of A. The map R - A
by t - zo + tvo is called a line: it is the line through xo determined by vo. Note
that according to this definition a line is a map, not a subset of A. We adopt this
approach because in most circumstances in which we have to deal with lines or
other curves the parametrisation will be important: we shall want to distinguish
between the line through zo determined by vo and the one through the same point
determined by kvo, k -/ 0; these are indistinguishable if one is concerned only with
the corresponding subsets of A, but are distinguished by their parametrisations.
Using the map to define the line is a convenient way of focussing attention on the
parametrisation.

The special nature of lines, by comparison with other kinds of curve one could
imagine, may be described as follows. The affine structure map A x V -* A intro-
duced in Section 1 may be looked at in a slightly different way. Let xo be a chosen
point of A. Fixing the point xo (on the left) in the affine structure map, one obtains
a map a=0: V -' A, by v . zo + v, which takes each vector in V into the point in A
reached by a displacement from zo by that vector. The map a= may be thought of
as attaching the vector space V to A at xo, as space of displacements. The point of
this procedure is that it allows one to transfer any figure from a vector space to an
affine space modelled on it. Thus, as a subset of A, the image of a line is obtained
by attaching a 1-dimensional subspace of V to A at xo.

Any subspace of the vector space V, not only a 1-dimensional one, may in this
way be attached to an affine space A modelled on V. If 1V is any subspace of V
then the subspace map, or inclusion, i:3V V takes each vector w, considered
as a vector in W, into the same vector w, considered as a vector in V. Following
the subspace map by the attachment of V at xo one obtains the map a=; o i which
attaches 1V to A at xo. Attachment of 1V at points xo and xt such that xl - xo E 1V
will result in the same subset of A. Its attachment at points xo and x2 for which
zz - xo 1V, on the other hand, produces two distinct subsets of A which are
parallel.

The set { zo + w I w E 1V } is called an akne subspace of A, or an affine p-plane
in A, where p = dim V.

Exercise 9. Let A be an affine space modelled on a vector space V, and let B be an affine
subspace of A constructed by attaching the subspace 1V of V to A. Show that B is in its
own right an affine space modelled on V. a

An affine p-plane may be parametrised by p coordinates, say (y°) (where
a = 1,2,... , p), as follows. Let If,,) be a basis for V. Then if the p-plane is
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attached at xo, each of its points may be uniqely expressed in the form xo + y° f°.
The coordinates of this point with respect to the given basis of 3V and origin xo
are (yl,y2,...,yp), or (y°). Thus according to our initial definition a line is a
parametrised 1-plane.

Exercise 10. Verify that in an affine coordinate system for A with origin xo based on
vectors {ea}, the affine subspace obtained by attaching a subspace W at x, may be repre-
sented by the equations xa = ca +y°f., where (c°) are the coordinates of zj, and fa the
components of an element of a basis (f.) of 1U with respect to the given basis for V. O

In an affine coordinate system with origin xo based on vectors {ea}, the coordi-
nate axes are the 1-planes obtained by attaching at xo the 1-dimensional subspaces
generated by each of the ea in turn. Coordinate p-planes and hyperplanes are
defined analogously.

Hyperplanes and linear forms. Let W be a subspace of a vector space V. Then
dim V - dim W is called the codimension of W in V. Similarly if B is an affine sub-
space of an affine space A then dim A - dim B is called the codimension of 8 in A. In
particular, an affine subspace of codimension 1 is called a hyperplane. Ilyperplanes
are often described, as point sets, by equations, instead of parametrically, with the
help of linear forms. Let a be a linear form on V, that is, a linear function V - R.
Then provided a # 0 the set of vectors v E V such that a(v) = 0 is a subspace of V
of codimension 1; consequently the set of points x in A such that a(x - xo) = 0 is the
hyperplane constructed by attaching this subspace at xo. Different representations
of the same hyperplane are obtained by choosing different points in it at which to
attach it to A, and by replacing a by any non-zero multiple of itself. Any one of
the possible as is called a constraint form for the hyperplane.

In the usual notation for a pairing (v, a) of a vector v E V and a linear form
or covector a E V', the function f : A R defined by x '--e (z - xo, a) determines
a hyperplane in A as the set of points at which this function takes the value zero.
(Linear forms and pairings are explained in Note 2 at the end of this chapter.)

A linearly independent set of forms { a & , a2, ... , a ' } of V' determines a sub-
space W of V, of codimension k, comprising those vectors w for which

(w co) _. (w a2) = ... = (w,ak) = 0,
and any subspace of codimension k may be specified in this way. Relative to a basis
for V, this amounts to a set of k linear equations for the components of w. The
affine subspace of A constructed by attaching IV at x,) comprises the set of points
x for which

(x -- X(), Of') - (x - xo,a2) .... = (x - zo,ak) - 0.
Any affine subspace of codimension k may be specified in this way. Different rep-
resentations of the same subspace (as point set) are obtained by choosing different
points in it at which to attach it to A, and by replacing {a1, a2'. .. , ak} by any
linearly independent set of k linear combinations of them.

If a is a (non-zero) linear form on V then the equation (z - xo, a) = c (with
c not necessarily zero) also determines a hyperplane in A, because one may always
find a vector v such that (v, a) _= c, and then (z -- (xo + v), a) = 0. Thus a linear
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form determines a family of parallel hyperplanes, obtained by giving different values
to the constant c. It also determines a spacing between them: if t is a non-zero
number, then the linear forms a and to determine the same family of hyperplanes;
but if, for example, t > 1 then for any constant c the hyperplane (x - xo,ta) = c
lies between the hyperplanes (x - xo, a) = c and (x - xo, a) = 0.
Exercise 11. Given an affine coordinate system for A with origin ro and basis {e,} for V,
and with dual basis (e°) for V', show that the equation (z - zi, a) = 0 may be written in
coordinates a,r° = c, where (z°) are the coordinates of z, or = a,0", and c = (xi - zo, a).
Show, conversely, that any such linear coordinate equation determines a hyperplane. o

3. Affine Spaces Modelled on Quotients and Direct Sums

The attachment of a subspace is only one of a number of constructions in an affine
space which may be derived from the corresponding constructions in a vector space.
We now describe two other examples: the fibration of an affine space, which is
derived from the quotient of vector spaces; and the construction of a product of
affine spaces, from the direct sum of vector spaces. We begin with some essential
information about the vector space constructions.

If V is a vector space and 1V a subspace of V, then the quotient space V/1V
has as its elements the cosets v + 1V = { v + w I w E 1V }. Sums and scalar products
of cosets are defined by

(v1 + 1V) + (v2 + 1V) = (VI + v2) + 1V vI,v2 E V
k(v+1V) =kv+1V kER,vEV;

and with the vector space structure on V/1V so defined the projection 7r: V - V/w,
which maps each element of V to its coset, is a linear map. The dimension of V/w
is given by

dim(V/1V) = dimV - dim 1V,

the codimension of 1V in V.
Secondly, if V and 1V are vector spaces then their (external) direct sum V ®1V

is the set of all ordered pairs (v, w) of elements v E V, w E 1V, with addition and
scalar multiplication defined by

(V1, WI) + (v3, wy) _ (Vt + V2, W1 + w2)

v1,v3EV,WI,W2E1V
k(v, w) _ (kv, kw) k E R, v E V, w E V.

Moreover,
dim(V (D 1V) = dim V + dim V.

Projections onto the first and second factors are defined by

TI :V®w-+Vby (v,w)r-4v 112:V®W-.1Vby

and inclusions by

i , : V -. v®w byv-(v,0) i2:w -+V ®1V byw-+(0,w).
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All these are linear maps, and

III oil = idv 112o1'2 = idw

the identities of V and W. The maps i 1 and i2 are called sections of the projections
H i and 112. In general, if x: S - T is a surjective map of some space S onto another
space T, any map o: T -. S such that n o or = id-r is called a section of rr.
Exercise 12. Show that the "diagonal" map V -. V ® V by v- (v, v) is a section of the
projections on both first and second factors. t]

On the other hand, if V and 1V are both subspaces of a vector space U, then
their sum V + 1V, given by

V+1V={v+wIvEV,wEW},
is the smallest subspace of U containing both V and 1V, while their intersection
V n 1V, given by

Vn1V={uEUI uEVanduEIV},
is the largest subspace contained in both V and V. The dimensions of these various
spaces are related as follows:

dim(V + 1V) + dim(V n 1V) = dim V + dim V.

These constructions are connected with that of the external direct sum as
follows. It is easy to see that if U = V EO 1V then ii(V) + i2(W) = U and il(V) n
i2(1V) = {0} (where 0 represents the zero element of U). On the other hand, if V
and W are subspaces of U such that V + 1V = U and V n 1V = { 0 } then there is a
canonical isomorphism of U with V ®1V by v 4 w '. (v, w). In this case U is said to
be the (internal) direct sum of its subspaces V and V. The brackets are intended
to indicate that the terms "internal" and "external" are used only for emphasis,
the type of direct sum under consideration usually being clear from the context.
Two subspaces V and 1V of a vector space U, which are such that V + 1V = U
and V n 1V = { 0 }, are said to be complementary; they are then direct summands
of U. Any subspace of U is a direct summand: in fact, if V is a subspace, it has
complementary subspaces 1V, which may be chosen in many different ways, and
each complementary subspace is isomorphic to U/V.

All this may be transferred to an affine space by attaching appropriate sub-
spaces of the space on which it is modelled.

For example, let A be an affine space modelled on V and let B be an affine
subspace of A, obtained by attaching a subspace W of V to A at a point x0. Then the
set of all the parallel afiine subspaces obtained by attaching 1U to A at every point
of it has the structure of an affine space modelled on V/1V, as follows. Consider the
set of elements of V by which one given affine subspace parallel to B is translated
into another. If v belongs to this set then so do all vectors of the form v + w where
w E W, and only these; in short, this set is just the coset v + W. Thus the elements
of V/W act on the set of parallel affine subspaces; they clearly do so in accordance
with the first axiom for an affine space; and given any two of the parallel affine
subspaces there is a unique element of V/1V which maps one to the other, namely
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the coset of any vector by which some point of the first affine subspace is translated
into the second. The set of affine subspaces parallel to B with this affine structure
is called the quotient affine space A/B. The map A -+ A/B which associates to
each point of A the subspace parallel to 8 in which it lies is called the projection.
This decomposition of A into non-intersecting affine subspaces, together with the
projection, is an example of a fibration, the subspaces being the fibres.

Exercise 13. Show that if V is considered as an affine apace modelled on itself, and if 1V
is considered as an affine subspace of V attached at the zero vector, then the elements of
V/lV (as an affine space) are just the cosets of 1V in V, which may therefore be thought
of as the parallels to 3V. O

Exercise 14. Show that if A and B are affine spaces modelled on vector spaces V and 3V
then their Cartesian product A x B may be made into an affine apace modelled on V (D 3V
in such a way that displacements in the product space are those of its component parts,
carried out simultaneously. o

Thus the external direct sum construction for vector spaces may also be ex-
tended to any pair of affine spaces to define their affine product space.

Now let A be an affine space modelled on a vector space U and let B and C be
affine subspaces of it modelled on vector subspaces V and 3V of U. Provided it is
not empty, B n C is an affine subspace of A modelled on V n 3V; it may consist of
a single point, in which case V n 3V = { 0 ), if B n C does consist of a single point,
say zo, and if V and 3V are complementary subspaces of U, then for every point
z E A the vector x - zo may be uniquely expressed as a sum v + to with v E V
and w E 3V, and the bijective map x (xo + v, zo + w) identifies A with the affine
product space B x C. In this case B and C are complementary affine subspaces of A.
If B is a given affine subspace of A then each affine subspace C complementary to
8 intersects each subspace parallel to 8 just once. The projection map A -+ A/B is
thus bijective when restricted to a complementary subspace C, and C provides, in
a sense, a concrete realisation of A/B. The map which sends each element of A/B
to its intersection with C is a section of the projection A A/B. The two figures
opposite are intended to illustrate these constructions.

An affine space A is shown. A 1-dimensional subspace V of the vector space
U on which A is modelled is attached to A as a 1-plane B through xo. Parallel
1-planes are shown: A is to be thought of as filled with 1-planes parallel to B, each
one of which constitutes a single element of the quotient space A/B. The 2-plane C
transverse to the 1-planes, each of which it intersects in just one point, is a subspace
complementary to B. Of course the choice of complement is not unique, and there
is no reason to prefer one over another: different choices of complement to V in U,
or of the point at which to attach it, may give different complements to B in A.
Figure 3 shows two different 2-planes, each of which is complementary to B.

Space-time as an affine space. These constructions (affine quotient and prod-
uct) may be exemplified, and the differences between them thereby related to phys-
ical considerations, by the different assumptions about space-time underlying dif-
ferent theories of kinematics. We distinguish three views of space-time, as follows.
The Aristotelian view, which lasted until the implications of Newton's first law
were understood, assumes that there is a state of absolute rest and that all ob-
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A

Fig. 2 Complementary subspaces in an acne space.

A

Fig. 3 Two subspaces complementary to a given one.

servers whether at rest or in motion agree whether or not events are simultaneous.
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In the Newtonian view there is no state of absolute rest, all inertial observers being
regarded as equivalent even though one may be in uniform motion with respect to
another; they continue to agree about simultaneity. In the Einsteinian (special rela-
tivistic) view, even simultaneity is relative. In each case space-time is considered to
be a 4-dimensional of ine space, in which the world-lines of unaccelerated observers
are affine lines, observers at rest relative to one another having parallel world-lines.

In the Einsteinian case space and time are integrated and nothing further can be
said without the introduction of the Minkowskian metric. In Newtonian space-time
N, through any point (event) there is a uniquely defined affine 3-plane S consisting
of events simultaneous with that point. The 3-planes parallel to S define simul-
taneous events, at different times. The 1-dimensional affine space N/S represents
Newtonian absolute time. Any line transverse to the 3-planes of simultaneity is the
world-line of an inertial observer, but no one such is to be preferred to any other.
Thus N is to be regarded as fibred by the 3-planes of simultaneity, the quotient
space representing absolute time. In Aristotelian space-time A, on the other hand,
through each event there passes not only the 3-plane S of simultaneity but also the
line T which is the world-line of an observer at absolute rest; the parallels to T are
the world-lines of all such observers. Thus A is an affine product S x T.

4. Affine Maps
Just as in Newtonian mechanics the translations and rotations of Euclidean space
leave its geometrical properties unaltered, and in special relativity translations and
Lorentz transformations leave unaltered the geometrical properties of space-time,
so in an affine space there are transformations which leave unaffected the defining
structure. As one might expect, these transformations are closely related to linear
transformations of the underlying vector space on which the affine space is modelled.
In this section we shall describe such transformations, and also the more general
type of map which maps an affine space to another, possibly different, one in a way
which respects the affine structure of the two spaces. Such maps are analogous to
linear maps between vector spaces.

Translations. To begin with, we suggest yet another point of view from which
to consider the affine structure map A x V -+ A introduced earlier. Instead of
considering the effect on a single point x of displacement by the vector v, one may
consider the effect on the space A as a whole, fixing v and displacing every point
of A by it. This action of v on A is called translation by v and will be denoted rv.
Thus r,,: A -+ A by x -+ x+v (for all z E A). Of course, there is no new construction
here, but the new point of view suggests further developments. The definition of
an affine space may be restated as follows:

(1) composition of translations is a translation: r,, or = for all v,w E V
(2) ro = idA
(3) for any pair of points x,x' E A there is a unique translation rz._1 taking x

to x'.
Notice that translation respects the underlying relation between A and V, in

the sense that
rW(x + v) = r,,,(x) + v
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for all x c- A and all v, w E? V.

Affine snaps. Besides translations of a single affine space there are other maps of
affine spaces which respect the relation of an affine space to the underlying vector
space: they are the extensions to affine spaces of linear maps of vector spaces.

Suppose that A and B are affine spaces, modelled on vector spaces V and W
respectively. Let A: V - W be a linear map; it has the property that A(cv + c'v') =
cA(v) + c'A(v') for any v, v' E A and any numbers c and c'. Now choose two points,
xo E A and yo C B. If x is any point in A then x - xo is a vector in V and A(x -- xo)
is a vector in W. Displacing ye by this vector, one obtains a map A: A --+ B by
x .-. yo + A(x - This map depends, of course, on the choice of xo and yo as
well as on the choice of the linear map A. It satisfies

A(x f v) = yo + A(z + v x(l) = yo + A(z -- xo) + A(v) = A(x) + A(v)

for all x E A and all v F V; in other words, A(x + v) - A(x) depends linearly on v.
The property of maps of affine spaces

A(z + v) A(x) + A(v),

where A is linear, generalises the property of translations described at the end of the
preceding subsection (where A was the identity on V). A map of affine spaces with
this property is called an chine map. Any affine map A: A -+ B may be written in
the form A(x) = yn + A(x - xo) by choosing zo in A and then fixing yo = A(xo).
A little more generally, if A: A -. 8 is an affine map and xo and yo are any chosen
points in A and 8 respectively, then A(x) - yo i- (A(xo) - yo) + A(x - xo) so that A
is composed of an affine map taking xo to yo and a translation of B by A(xo) - Yo.
The linear map A which enters the definition of an affine map A is called the linear
part of A. If (x°) are affine coordinates for A with origin xo and (y°) are affine
coordinates for B with origin yo then A will be represented in these coordinates by

y° = An x° + c°

where the An are the entrias in the matrix of A with respect to the bases for V and lU
used to define the coordinates and c° are the components of the vector A(xo) - yo.
The choice of coordinates thus allows A to be represented as a map R' - R,
where m = dire A, n = dire B.

Exercise 16. Show that if x, and y, are chosen as origins in place of zo and yo then
A(z) _= y, 4- (A(xi) - y,) + A(z -- x,), with the same linear part but a different translation.
Show also that the difference between the translations is A(z, - xo) + (y, - yo). O

Exercise 16. A is the plane a:', (S) E R' I C' + e2 + fs = 1) and B is the plane
{ (t;', f =, 3) E R3 I i;' -+ f = - f' 1 }; A: A - 8 is the map defined by "projection parallel
to the

3
3 axis", that is, A ( f ' , _, es) is the point(q', t 2 , F 7 in B such that rf' = e and

ry' = C . Show that A is an affine map. An affine cordinate system is chosen for A with
(0, 0, 1) as origin and such that the points (1,0,0) and (0, 1,0) have coordinates (1,0) and
(0, 1) respectively, and an affine coordinate system is chosen for B with (1, 1, 1) as origin
and such that the points (1,0,0) and (0, 1,0) have cordinates (1,0) and (0, 1) respectively.
Find the coordinate representation of A. 0
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Exercise 17. Let 8 be the hyperplane ( x E A I (x - zo, a) = 0) (where a is a non-zero
covector) and let x1 be a point of A not in 8. Show that the map

(x - zo, a)X .- z - (z 1 - zo )(rl - xo, a)
is an affine map of A onto B. O

An affine map which is bijective is called an affine isomorphism; two isomorphic
affine spaces are, in many circumstances, essentially identical.

Exercise 18. Show that two affine spaces are isomorphic if and only if they have the
same dimension. Show that an affine coordinate system is an affine isomorphism with R"
considered as an affine space modelled on itself. O

Exercise 19. Show that, if A: A -. B is an affine map, the image A(A) is an affine subspace
of B, while for any point yo E A(A) the set of points of A which are mapped to yo, A- I (yo),
is an affine subspace of A. Show that the dimension of A-1(yo) is the same for all yo, and
that dim A(A) + dim A' (yo) = dim A. o

Suppose now that A: A -+ B and M: B -+ C are affine maps with linear parts A
and p respectively. Then the composition M o A is an affine map, for if x, z + v E A
then

M (A (z + v)) = M (A (z) + A(v)) = M (A (x)) + 1A(A(v))

and u o A is a linear map; thus the linear part of the composition of affine maps is
the composition of linear parts.

Affine transformations. We come now to an important special case: invertible
affine maps of an affine space to itself, which are called affine transformation. An
affine map A: A -+ A is invertible if and only if its linear part A is invertible; if A
has inverse A-1 then the linear part of A-1 is A-1.

Since the identity transformation is affine, the composition of invertible maps
is invertible, and composition is associative, the affine transformations of an affine
space form a group, called the affine group. We shall now describe the relation
between this group and the group GL(V) of non-singular linear transformations of
the underlying vector space V.

We have just shown that the map

an affine transformation its linear part

preserves multiplication, which is to say that it is a homomorphism from the affine
group of A to GL(V). An affine transformation whose linear part is the identity
must be a translation: fix xo E A and set vo = A(xo) - xo; then

A(z) = A(xo) + (z - xo) = z + vo.

The identity affine transformation is obtained by setting vo = 0. The translations
constitute a subgroup of the affine group.

Since linear parts compose, any composition of the form A o r o A-', where A
is any affine transformation and r,, is translation by v, must again be a translation.
In fact, for any x E A,

A o r o A-1 (x) = A(A-1 (z) + v) = x + A(v)
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so that
A o rv o A-' = ra(v).

Thus the conjugate of r by A is Consequently the translations are invariant
under conjugation, and therefore constitute a normal subgroup of the affine group.
Moreover, the act of conjugation reproduces the action of the general linear group on
V: the conjugated translation vector A(v) is obtained from the original translation
vector v by acting with the linear part A of the conjugating transformation. (The
concepts from group theory employed in this subsection are explained in Note 3 at
the end of this chapter).

The conclusion that the translations constitute a normal subgroup of the affine
group may be reached by another argument: the kernel of the homomorphism in
which an affine transformation maps to its linear part consists of those transforma-
tions whose linear part is the identity; these are just the translations, whence again
it follows that the latter constitute a normal subgroup.
Exercise 20. Show that the only translation which leaves any point fixed is the identity
affine transformation. Show that the affine transformations which leave a chosen point
fixed constitute a subgroup of the affine group of A isomorphic to the general linear group
GL(V). o
Exercise 21. Show that any affine map A: A -. A may be written in the form A(z) =
to + A(z - to) + vo, where vo = A(to) - to; to is a chosen point of A (and vo is fixed once
to is chosen). Let M: A A be another affine map, with M(t) = to + p(z - to) + wo
Show that their composition is given by M o A(z) = to + p o A(z - to) + (p(vo) + wo);
thus the linear parts compose, but the translation part of the composition depends on p
as well as on vo and wo. Show also that (when it is invertible) the inverse of A is given by
A-'(z)=to+a-'(z-zo)-A `(vo) o
Exercise 22. Let p., denote the affine transformation of A by t " to - (x - to). Show
that ids and that the set of two transformations (id,4,p.0) is a normal subgroup
of the group of affine transformations leaving to fixed. Show that rv o p=, o r_ =
for anyvEV. O

The transformation defined in this exercise is called reflection in the point to.
The group of affine transformations of A contains two subgroups of importance:

one, the translation subgroup, which is normal, and is isomorphic to V; the other,
the subgroup of transformations leaving a chosen point to fixed, which is isomorphic
to GL(V) (Exercise 20). The first result of Exercise 21 may be interpreted as
saying that every affine transformation may be written as the composition of a
transformation leaving to fixed and a translation (the translation being performed
second); it is clear that these components of an affine transformation are uniquely
determined by it. A group G which has a normal subgroup N and another subgroup
H such that every element g of G may be written uniquely in the form nh where n E
N and h E H is called a serni-direct product of N and H. Thus the group of affine
transformations is a semi-direct product of the translations and the transformations
leaving a given point fixed.

This structure of the group of affine transformations may be described in an-
other way. Starting with V and GL(V ), one may construct a new group whose
elements are pairs (v, A) (with v E V and A E GL(V )), and whose multiplication
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rule is
(w,µ) - (v, A) = (w + µ(v),µ o A).

This, too, is called a semi-direct product: the alternative definitions differ in much
the same way as do those of the internal and external direct sum of vector spaces.
From the expression for the composition of two affine transformations in Exercise 21
it is easy to see that the group of affine transformations is isomorphic to this semi-
direct product of V and GL(V). This makes clear the relation between the group
of affine transformations of A, the group of linear transformations of the underlying
vector space GL(V), and the vector group V itself.

Although the formula for the coordinate representation of an affine transfor-
mation is indistinguishable, out of context, from the formula for an affine change of
coordinates, the two concepts must be kept distinct. A transformation which moves
the space around, but leaves the coordinates where they are, is called active, or an
alibi transformation ("being somewhere else at the time"): a transformation which
leaves the space where it is, but changes the coordinates of the points, is called
passive, or an alias transformation ("going under a different name").

Exercise 23. Show that affine coordinate transformations form a group. Show that affine
coordinate transformations of the form f° = x° + c° constitute a normal subgroup of this
group. 0

5. Afl`Ine Maps of Lines and Hyperplanes

An affine map in general has the property that it maps lines into lines: once again
let A: A - B by x - yo + .\(x - xo) be an affine map, and let a: R -+ A by
t - x, + tvo be a line in A through x,. We shall examine the effect of A on the
line. Now A o a: R - B is given by

A o or (t) = A(x, + tvo) = A(x1) + t.A(vo);

thus, provided A(vo) # 0, A o a is the line through A(x,) determined by A(vo). If it
happens that A(vo) = 0 then the transformed line will degenerate to a single point,
but if A is injective every line is mapped to a line which is not a point.

An affine map in general also maps hyperplanes to hyperplanes, but in the
opposite sense to what one might naively expect. If A: A -. B is the affine map given
above, and g: B --* R by y ' -+ (y - yo, a) is a function determining a hyperplane
through yo, then g o A is a function on A which will determine a hyperplane unless
(A(x - zo), a) =0 for all x E A. For

g o A(x) = (A(x) - yo, a) _ (A(x - xo),a) = (x - xo,A'(a))

where A* (a) is the linear form on V defined by (v, A' (a)) = (A (v), a) for all v E V.
Thus goA determines the hyperplane in A through xo which has .1'(a) as constraint
form, provided A' (a) j4 0. If, however, a' (a) = 0 then goA = 0 identically, and the
image of A is contained in the hyperplane through yo. But if A is surjective then
A' (a) 0 for a 0 0 and every hyperplane in B through yo determines a hyperplane
in A through xo.
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Exercise 24. Examine the mapping by A of hyperplanes in 8 not through yo. O

This reversal of sense of a map is a paradigm of a constantly recurring situation:.
lines map in the same direction as A, or cogrediently, whereas hyperplanes map in
the opposite direction, or contragrediently. It arises because a curve in A is defined
by a map a: R --+ A while a hyperplane in B is defined by a map g: B - R; one
may compose a with a map A: A -+ B on the left to obtain a map A o o: R -+ B, but
one is forced to compose g with A on the right, which gives the map g o A: A -+ R.
This is much like the situation which arises for a linear map of vector spaces, whose
adjoint acts contragrediently on the duals.

Summary of Chapter 1
A set A is an affine space modelled on a real vector space V if there is a map
(displacement, translation) A x V -+ A by (x, v) x + v such that: (x + v) + w =
x+(v+w); x+0 = x; there is a unique element x'-x of V such that x+(x'-x) = x'.

Affine coordinates (x°) of x are defined by x - xo = x°e°i xo being a fixed
point of A (the origin of coordinates) and {e°} a basis for V. The dimension of A
is the number of coordinates, that is, dim V. A change of origin and basis results
in a coordinate transformation P = kb xb + c°, with (ks) a nonsingular matrix.

The map V A by v -+ xo + v, with xo a fixed point of A, is regarded
as attaching V to A at xo. By combining this with the inclusion map one can
attach any subspace of V to A. Attachment of a p-dimensional subspace V of V
yields a p-plane in A. By choosing a basis for w one may parametrise the p-plane;
in particular, a parametrised 1-plane is a line. Attachment of the 1-dimensional
subspaces containing the basis vectors at the origin of affine coordinates produces
the coordinate axes. Attachment of the same p-dimensional subspace at all the
points of A gives a family of parallel p-planes. A subspace of V is attached as a
hyperplane in A. A hyperplane may also be defined in terms of a non-zero linear
form a on V by the equation (x - xo, a) = c, where c is a constant; a is called a
constraint form for the hyperplane. As c varies a family of parallel hyperplanes is
obtained.

If 8 is an affine subspace of A (the result of attaching a subspace w of V) then
the set of all affine subspaces parallel to 8 is an affine space modelled on V/'W,
called the quotient affine space A/8.

If A and B are affine spaces modelled on V and w then their Cartesian product
is an affine space modelled on V e W.

An affine map A: A -+ B satisfies A(x + v) = A(x) + A(v) where A: V -+ 'is
linear. Any affine map may be expressed in the form A(x) = yo + A(x - xo)

with yo = A(xo). An affine map A: A A is invertible when its linear part A is;
such affine transformations form a group, with the translations as a normal

The group ofaffinetransformationsisthesemi-direct
product of GL(V) (the group of nonsingular linear transformations of V) and the
vector group V.

Affine maps in general map lines to lines, and do so cogrediently; and in general
they map hyperplanes to hyperplanes, and do so contragrediently.
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Notes to Chapter 1

1. Sets and maps. Throughout this book we make use of the notation, and
some of the simpler ideas, of the theory of sets.

Any collection of objects, finite or infinite, likely to be encountered here may
be called a set. The objects are called members, elements, or points of the set. If S
is a set, then z E S means that the object x belongs to the set S, and z V S means
that x does not belong to S. The elements may be given by enumerating them,
usually between braces, separated by commas-thus {el, e2i ... , en} for the basis
vectors of an n-dimensional vector space, or {e,} if it is understood that a takes the
values 1, 2, ..., n (the range convention; see Chapter 0, Section 4). The elements
may be restricted by a condition; thus { (et, e2, t3 )E R3 I tI + t2 + f3 = 1 } (the
set which appears in Exercise 5) means the set of triples of real numbers whose sum
is 1.

If S and T are sets then S C T or T J S means that every element of S is
also an element of T; one says that S is contained in T, or that S is a subset of
T. If T is known to contain other elements besides those in S, one says that $ is
properly contained in T. If S C 7 and T C S then they have the same elements,
and one writes S = T.

The intersection S n 7 consists of those elements which belong both to S and
to T. The union S U T consists of those elements which belong either to S or to
T or to both. The empty set, which contains no elements, is denoted 0; thus if S
and T have no elements in common, S n 7 = 0, in which case S and T are said to
be disjoint.

A map, or mapping, or function m: S T associates a unique element of T to
each element of S. The set S is called the domain of 0 and the set T the codomain.
If x E S the element of T associated to x by 0 is called the image of x by 0 and
written 4,(x) or ¢z. If 4,(x) = y one writes 0: x '-. y to show what happens to this
particular element. The set of images is im 0 = { 4,(x) E T I x E S }.

If im QS = T then 0 is called an onto map, or a surjective map, or a surjection.
If P C S, the map P - T which associates to each element p of P the element

m(p) E T is called the restriction of 0 to P and denoted 4, p.
If P C S, the inclusion is P - S assigns to each element of P the same element,

considered as an element of S. Inclusion is often denoted P ' S.
If 0: S -- T and 4': T -. U are maps then their composition d' o 0 is the map

which results when 0 and 4' are executed in succession: 0 o 4'(x) = 4(4'(2)). If
X: U - V is another map then x o (0 o 0) = (X o 0) o 0, so one leaves out the
brackets and writes x o 0 o 0. By these conventions, maps act on elements written
to the right of them, and the right-hand-most map is executed first.

If 0: S - . T and y E 7 then the set { z E S I.4'(x) = y } of elements in S
whose image is y is called the pre-image or inverse image of y and denoted 0-1(y).
If, for each y E imm, 4'-1(y) consists of a single element, then 0 is called a 1 . 1
("one-to-one") map, or an injective map, or an injection.

A map which is both injective and surjective is called bijective, or a bijeetion.
A bijection 4': S -- T has an inverse 0-1: T - S, such that 0-1 o 0 = ids and
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0 o 0-1 = id1-, where ids: S - S is the identity map, which takes each element to
itself.

The Cartesian product of two sets, S x T, is the set of ordered pairs (x, y)
where x E S and y E T. The Cartesian product of n sets S1, S2, ... , S" is the set
S, x Sz x x S" of n-tuples { (x i , x2 i ... , x") I xk E Sk, k = 1, 2,... , n }. The
projection Ilk: S1 X S2 x . . . X S" -+ Sk takes each n-tuple onto its kth entry.

A partition of a set S is a collection of non-empty disjoint subsets of S such that
every element of S belongs to exactly one of the subsets. It is often convenient to
call two elements x and x' equivalent and to write x - x' if they belong to the same
subset; the subsets are then called equivalence classes. The equivalence classes
may themselves be regarded as the elements of a set, and the map which takes
each element into the equivalence class containing it is then called the canonical
projection.

More complete introductions may be found in the books by Kirillov 119761,
Chapter 1, Loomis and Sternberg 119681, Chapter 1, or Porteous 119691, Chapter 1,
for example. A very entertaining and readable book is Halmos's Naive Set Theory
119601. A standard text is that by Fraenkel, Bar-Hillel and Levy 119731.

2. Vector spaces. We list the axioms for a vector space, and give some of the
basic properties of vector spaces and linear maps between them.

Let K denote the real numbers R or the complex numbers C. A vector space
V over K is a set with two composition laws

+- : V x V V (addition)
K x V V (multiplication by a scalar)

such that, for all u, v, w E V and all a, b E K,
(1) v+w=w+v
(2) u } (v + w) = (u 4 v) + w
(3) V contains an element 0 such that v + 0 = v
(4) V contains, for each v, an element -v such that v + (-v) = 0
(5)

(7) a-
(8)

The elements of V are called vectors. If K = R, V is called a real vector space; if
K = C, V is a complex vector space.

Axioms (1) to (4) make V into an additive Abelian group.
If K" denotes the set of ordered n-tuples (a1, as, ... , a") of elements of K and +

and are defined by (a1 a2 a")-1 (b1,b2 b") = (a1 +b1 a2+bl a"+b")
and c (a1,a2,...,a") - (cal,ca...... can) then K" is a vector space. The real
number spaces R", in particular, occur frequently in this book.

A subset V of V is called a subspace if it is itself a vector space with the laws
of addition and scalar multiplication it inherits from V.

A finite set of vectors { v 1 , v2, ... , v" } is said to be linearly dependent if there are
numbers a1, as, ... , an E K, not all zero, such that a1 0. An
infinite set of vectors is called linearly dependent if it contains a linearly dependent
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finite subset. A set which is not linearly dependent is called linearly independent. If,
for every positive integer k, V contains a linearly independent set of k vectors then V
is called infinite-dimensional, but if it contains, for some n, a linearly independent
set of n vectors but no linearly independent set of (n + 1) vectors then it is called
finite-dimensional and said to be of dimension n: one writes dim V = n.

A subset S of a finite-dimensional vector space V is a basis for V if it is a
linearly independent set and if, for every v not in S, S U (v) is a linearly dependent
set. The number of elements in a basis is equal to the dimension of the space. If
S = {e 1, e2, ... , e.) is a basis for V then every v E V may be expressed as a linear
combination of elements of S, v = v° e4, in a way which is unique except for the
order of the terms.

Let V and 1V be vector spaces. A map A: V 1V is called a linear map if
A(c v + c' v') = c A(v) + c' A(v') for all c, c' E K and all v, v' E V. A linear
map is determined completely by its action on a basis. If {ea} is a basis for V and
{/a} a basis for 1V, where a - 1, 2,... , m = dim 1V, we may write A(e,) = Ac' /Q.
The AQ are the entries of the matrix representing A with respect to the given bases.
The action of A on an arbitrary vector in V is given by A(v) = AQ va f0, where
(v°) is the n-tuple of components of v with respect to the basis of V. This amounts
to the left multiplication of the column vector of components of v by the n x m
matrix (An).

If A: V - 1V is a linear map then its image im A is a subspace of 1V and its
kernel kerA, the set of elements of V mapped to zero by A, is a subspace of V;
dim im A + dim ker A = dim V. If im A = 1V then A is surjective, if kerA = {0} then
A is injective; if both, then A is bijective, its inverse is also linear, and it is called
an isomorphism. Two vector spaces which are isomorphic (images of each other by
an isomorphism and its inverse) must have the same dimension. An isomorphism
whose construction or definition does not depend on a choice of basis in either the
domain or codomain is said to be natural or canonical. Naturally isomorphic spaces
may be considered identical for many purposes.

A linear map of a vector space to itself, or linear transformation of the vector
space, is said to be non-singular if it is invertible, that is, if it is an isomorphism:
it is enough for it to be injective to ensure this, by the dimension result above. The
set of non-singular linear transformations of V is a group called the general linear
group on V, denoted GL(V).

The set of linear maps from V to 1V may itself be made into a vector space by
defining

+ : (AI + A2)(v) = A1(v) + A2(v)

(c' A) (v) = c (,\ (v)).
An important special case is the vector space V' of linear maps from V to

the (1-dimensional) vector space K. Such maps are usually called linear forms on
V. The space V' is called the space dual to V. It is of the same dimension as
V. Furthermore, (V')' is canonically isomorphic to V. It is customary to use a
notation for Lite evaluation of linear forms which reflects the symmetry between V
and V', namely to write, for a E V' and v E V, (v, a) instead of a(v). The map
V x V' -- K by (v, a) -. (v, a) is often called the pairing of elements of V and V'.
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The symmetry between V and V' is also reflected in the use of the term covariant
vector, or rovector, instead of linear form, for an element of V.

If {ea} is a basis for V, the dual basis for V' is the set {Oa} of covectors such
that

h 6_ 1 ifa=b,(e0,B)=bQ
0 ifa#b;

bb
Q

is called the Kronecker delta. If the components of a vector v E V are written as
a column-- that is, an n x 1 matrix----and the components of a covector a E V' are
written, in the dual basis, as a row --that is, a 1 x n matrix-then the evaluation
of (v, a) is carried out by (row into column) matrix multiplication.

If A: V -* W is a linear map and 0 is a linear form on W then v '-+ (A(v),,6)
is a linear form on V denoted A'(,6), so that (v,A'(/3)) = (A(v),p) for all v E V
and any Q E V ' . The map A : V -- V' by 0 '--+ A'(/3) is a linear map called the
adjoint of A. If A: U V and µ: V - W are linear maps, then (µ o A)' = A. o

The dot denoting scalar multiplication has been used here for emphasis; it is
generally omitted.

More extensive discussions may be found in Loomis and Sternberg (19681, Chap-
ter 1, or Bishop and Goldberg 119681, Chapter 2, for example. There is a lovely
book by Halnmos 119581.

3. Groups. In this note we collect some standard definitions and results from
the theory of groups.

A group G is a set together with a binary operation G x G -+ C called the
group multiplication, written (g1,g2) --+ 9192, such that

(1) multiplication is associative: (gIg2)93 = 91(9293) for all 91,92,93 E C
(2) there is an identity element e in C such that ge = eg = g for all g E G
(3) each g e C has an inverse, denoted g-1, such that gg'' = g-Ig = e.

Where more than one group is involved, ambiguity may be avoided by writing eG
for e.

A map of groups (k: C -, H is called a homomorphism if it preserves multipli-
cation: 0(g1g2) = 0(9i)0(92) for all 91,92 E G. A bijective homomorphism is an
isomorphism; an isomorphism of a group with itself is an automorphism.

A subgroup F of G is a subset which is itself a group with the multiplication
restricted from G. Equivalently, a group F is a subgroup of G if it is a subset of G
and if the inclusion F , C is a homomorphism.

For any g E C the map g .-- ggg 1 is an automorphism of C called conjugation
by g; it is also called an inner automorphism. If F is a subgroup of G then for each
g E C, the set { y jy-' I I E F } is also a subgroup of C; it is called the subgroup
conjugate to F by y. A subgroup F is said to be normal or invariant if it is identical
to each of its conjugates, that is, if it is invariant, as a whole, under conjugation.

Let 0: G -+ H be any homomorphism of groups. Its image im 0 { O(g) 1 g E
G } is a subgroup of 11, and its kernel ker0 - { g E G I O(g) = e,, } is a normal
subgroup of C. Moreover, 0 is surjective if and only if im 0 -= fl; injective if and
only if kerO = {ec;}; and therefore bijective if and only if both these conditions
hold.
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Suitable treatments are to be found in many books, for example MacLane
and Birkhoff 119671, Chapter 3, or Kirillov (19761. Further standard material is
introduced in Chapter 11.



2. CURVES, FUNCjIONS AND DERIVATIVES

The ideas introduced in Chapter 1 were all essentially linear-the lines were straight,
the subsets were plane, and the maps were affine. In this chapter we drop the
restriction to linearity and introduce curves, of which lines are affine special cases,
and functions, of which the functions defining affine hyperplanes by constraint are
affine special cases. We do not allow curves and functions to be too wild, but
impose restrictions which are sufficiently weak to encompass the usual applications
but sufficiently strong to allow the usual processes of calculus. These restrictions are
embodied in the concept of "smoothness", which is explained in Section 1. We go
on to construct tangent vectors to curves, and introduce the idea of the directional
derivative, which underlies the idea of a vector field, introduced in Chapter 3, and
is central to what follows in the rest of this book. With this additional apparatus
to hand, we show how to introduce curvilinear coordinates into an affine space.

1. Curves and Functions
In this section we define curves and functions in an affine space.

Curves. In Section 2 of Chapter I a line is defined as a map a: R -+ A by t -
xo + tvo where A is an affine space m elled on a vector space V and vo is a non-zero
element of V. What distinguishes a line, among other maps R -+ A, is that or is
affine: a(t + s) = a(t) + A(s) where : R -. V is the linear map s '--+ svo.

The generalisation which suggests itself, and which one mates use of in appli-
cations without giving it any speciallattention, is to consider any map R -+ A-in
other words, to give up the properties of straightness and linearity which distinguish
lines. We define a curve in A to be 41 map R A, or a map I -' A where 1 is an
open interval of R.

Without further restrictions one could construct some very counter-intuitive
examples of curves (for example, spare-filling curves). Before making these restric-
tions, we give the definition of a function, and then impose restrictions on both
together.

Functions. In Section 2 of Chapter 1 a hyperplane is defined as the pre-image of
0 by a map f : A -, R; the construction is then extended to the pre-image of any
constant. What distinguishes the hyperplane map, among other maps, is that f is
affine: f (x) = (x - xo, a), so that f (a + v) = f (x) + (v, a).

We now drop the restriction that the map be affine. A map f : A -+ R is called
a (real) function on A.

We shall deal straight away with an awkward problem of notation for functions,
which arises repeatedly, and is compounded partly by the cumbersome nature of the
usual solutions to this problem, partly by the historical circumstance that mathe-
maticians and physicists usually solve it in different ways. Consider for example a
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2-dimensional affine space, with two affine coordinate systems (Xe) and (f°) related
by

tl = x1 + x2 t2 _ xt - x2.

and let f be the function whose value at the point with coordinates (x1, z2) (relative
to the first coordinate system) is given by (x')2 - (x2)2. Then a physicist would
without hesitation write

f(x',x2) = (x1)2 - (x2)2;

and many physicists would write
f(tl t2) = tlt2

to mean that the value of this function at the same point is t1t2 when its coordinates
are given in terms of the second coordinate system. On the other hand, most
mathematicians would insist that

f(t',t2) = (t')2 - (12)2,

that is to say, that the symbol f represents the form of the function, not its value,
and would introduce another symbol for t1 t2, say

g(t',t2) = t't2,
so that

f(x',x2) = 9(t',t2),

the arguments on the right hand side being obtained from those on the left by use
of the relations between the two affine systems. Other mathematicians prefer to
solve the problem by attaching to f an index which specifies the coordinate system
in use.

A related issue concerns the coordinates themselves. An affine coordinate sys-
tem (x°) for an n-dimensional affine space A fixes a set of n functions on A, the
ath of which assigns to a point of A the value of its ath coordinate. These are the
coordinate functions for the coordinate system. It is natural to denote the ath of
these functions by Xe also. But this apparently creates a problem because the same
symbol is being used to denote both a function and its value at a particular point.
However, in this instance the ambiguity is actually helpful. We shall therefore use
(x1'X3 , ... , z") to denote either a point of R", the coordinates of a point in A, or
the map A - R" which fixes the affine coordinate system, and the context will
make it clear which is meant.

No problems arise in either case if one confines oneself to working in one fixed
coordinate system, and even if a transformation of coordinates is involved it is usu-
ally clear what should be done in any particular instance; but much of what follows
is concerned with the effects of changing coordinates-in general situations, and then
a precise notation is often needed. We shall distinguish between a function, which
is a map A -+ R, as in the definition above, and its coordinate ezpression or coor-
dinate presentation, which is a map R" - R obtained by composing the function
with the inverse of the map A -+ R" which specifies the coordinate system. The
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coordinate presentation of a function will be distinguished by an index identifying
the coordinate system which is being used. When, as in the above instance, there
are given two different presentations of the same function f, these will be denoted
f 2 and f f for example. If z° and .t° denote the coordinate functions, then

f=(z°) = ft(p) = f

where composition of a map A -. R" and a map R" -. R is implied in the
expressions f=(x°) and ft(±°); the range convention does not apply here since the
free index appears in the argument of a function of n variables (recall the comment
in Chapter 0, Section 4). If $: R" R" is the affine coordinate transformation
which gives (1°) in terms of (z°) (so that i° = 0°(zb) = k"zb + d° say), then

f==f}o0 and f4 =f=o4t-1.
Thus, in the above example, if x E A with x'(x) = 3, z2(z) = 2, then ±'(x) = 5,
J2(x) = 1, and f (x) = f z (3, 2) = f(5, 1) = 5. According to this scheme one should
not write f (3, 2), since this expects evaluation of a function in a coordinate system
which has not been specified. Nor should one write f(x',z2) = (z')2 - (x2)2,
but rather f=(z',z2) = (x')2 - (x2)2. However, it is permissible to write f =
(x')2 - (x2)2, where the symbols x1 and x2 are now to be interpreted as coordinate
functions; and in fact

f = (x')2 - (x2)2 = t1 2.

Exercise 1. Using the coordinate transformation given above, find (.*1)2 - (:t 2)2 in terms
of (x°), and x1x2 in terms of (t°). 0
Exercise 2. Let A be the affine space ( (Cl, C2, C3) E R3 I e' + c2 + fs = I) and f
the function on A obtained by restricting the function ( 1 , 2 , 3 )

, E3) .-. 2t' + f 2 - 35 + 1.
Find the coordinate expressions for f in terms of the two coordinate systems defined in
Exercise 5 of Chapter 1, and check the coordinate transformation rule, using the coordinate
transformation given in Exercise 8 of that chapter. 0

Smoothness. All that has been said so far applies to any curve or function,
however counter-intuitive. To preserve the intuition and exploit the calculus one
needs to impose some restrictions.

We shall deal only with functions whose coordinate expressions in any (and
therefore in every) affine coordinate system have continuous partial derivatives of
all orders. This property is unaffected by repeated partial differentiation. Such
functions are called smooth, or COO, which is to say, continuously differentiable
"infinitely often". Conditions of differentiability of this kind will occur regularly in
this book; they form part of the analytical substratum on which the geometry is
built. We'shall try to avoid placing more emphasis on analytic technicalities than
is absolutely necessary. It would be possible to impose less stringent conditions of
differentiability, requiring, for example, only that functions have continuous partial
derivatives of all orders up to and including the kth. Such a function is said to be
Ck. However, this introduces complications since the derivative of a Ck function is
not necessarily Ck, though it will be Ci-'. In any case, the functions met with in
applications are almost always analytic, when they are differentiable at all, so there
would be little practical advantage in relaxing the conditions.
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It should be realised, however, that a smooth function is not necessarily ana-
lytic: one may certainly construct its Taylor series about any point in its domain
of definition, but there is no guarantee that the series will converge to the value
of the function at any other point. Again, the only function which is analytic on
R and has the value zero on some open interval is the zero function, while it is
possible for a merely smooth function to be identically zero on an open interval
but different from zero elsewhere. It is an advantage to be dealing, not just with
analytic functions, but with the larger class of smooth functions, precisely because
one then has at one's disposal the so-called bump functions: a bump junction is a
smooth function which is positive within a finite interval and zero outside it.

Exercise S. Show that, for given positive integer k, the function xkIxl on R is Ck but
not Ck+'. O

Exercise 4. The function f on R defined by

fi(x) = f e-'/` if x > 0
0 ifx<0

is smooth. Show that for any a, b E R with a < 6, the function g(.,e) defined by g(.,&) (x) _
f (x - a) f (b - z) is smooth, and that gl.,,l (x) > 0 for a < x < b, while g(.,,) (x) = 0 for
x < a and for x > b. Show that for any a, b, c, d E R with a < b < c < d there is a smooth
function h on R such that h(z) = 0 for x < a and for z > d, and h(x) = 1 for b < x < c. C3

We now define smoothness for curves. We have defined a curve in an affine
space A as a map from the real line (or some open subinterval of it) to A. If affine
coordinates are chosen then a curve or will be represented by n real valued functions
a° = x° o a, its coordinate functions. A curve or will be called a smooth curve if its
coordinate functions are smooth for one, and therefore for every, affine coordinate
system. If the domain of definition of the curve is a finite closed interval, as would
be appropriate in discussing a curve joining two fixed points of A, then it will be
assumed that the curve is the restriction to that interval of a smooth curve defined
on a larger, open, interval containing it. Then questions of differentiability at the
endpoints of the interval will cause no difficulty, since the curve may be extended
beyond them.

Paths, orientations and reparametrisations. As in the case of lines, two
curves are counted as different if they are given by different maps, even if their
image sets are the same. It is sometimes useful to have a word for the image set of
a curve: we call it a path.

Curves with the same path may often be distinguished by the sense in which the
path is traversed. Two curves which traverse the same path in the same sense are
said to have the same orientation. An injective curve always fixes an orientation,
but it is also possible that a curve will not traverse its path in a unique sense.
We shall generally avoid the use of curves which are not injective. It is however
convenient to allow constant curves, whose paths are single points of the affine
space.

If h: R - R is a smooth function and a: R -+ A is a smooth curve, then so also
is a o h: it is a reparametrisation of a. One may also consider functions and curves
defined on intervals of It. Most reparametrisations of interest are reparametrisations
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by injective functions of the parameter. A smooth injective function R - R must
be either increasing or decreasing; if the curve a defines an orientation of its path,
its reparametrisation by an increasing function defines the same orientation, while
its reparametrisation by a decreasing function reverses the orientation.

Exercise 5. Show that the curves in a 3-dimensional affine space with affine coordinate
expressions

t (acost,asint,bt)
t -(a cost, --a sin t, -bt)
t -+(asint,acost,b(ir/2 -- t))
t -(a cos 2t, a sin 2(,2bt)

t (acos(t3 - t), asin(ts - t),b(ts - t))
are all smooth, and all have the same path. Show that all but the last are injective, and
distinguish those which have the same orientations. Find the reparametrisations of the
first curve which give the others. o

2. Tangent Vectors

The tangent vector to a smooth curve a at the point a(to) is the vector

o(to) - him

b

(o(to + b) - o(to)).

This limit exists, because of the assumed smoothness: if in any affine coordinate
system the presentation of a is t b-+ o°(t) then the components of o(to) are o°(to)
do" Idt (to).

Note that the possibility of describing the tangent vector as "the tangent vector
at a(to)" (a point of A) depends on our general assumption that the curves we deal
with are injective. Otherwise we should have to say "the tangent vector at t = for
to avoid ambiguity.

The possibility of making such a definition depends on the fact that the differ-
ence a(to + 6) - a(to) is a displacement in A and hence a vector in V. It is a chord
of the curve. The tangent vector is thus an element of V. On the other hand, if z
is any point of A and v is any vector in V, then t '-+ x + tv is a smooth curve, and
its tangent vector at x is v. Thus every vector in V may occur as tangent vector,
and at each point x of A: the set of tangent vectors at a point of A is a copy of
V. The correspondence between vectors in V and tangent vectors at z is a natural
one; in other words, it does not depend on a choice of affine coordinates. Since the
spaces of tangent vectors at the different points of A are all naturally identified with
V, they are all naturally identified with each other, and so it makes sense to say
whether or not tangent vectors at different points of A are "equal", or parallel.

This construction of a copy of V, as space of tangent vectors, at each point of A
is to be distinguished from the attachment of V to A as space of displacement vectors
introduced in Chapter 1. The results are similar, but nothing like the displacement
vector construction can be achieved in the manifolds to be discussed later, while a
development of the tangent vector construction, the directional derivative, can be
generalised quite easily. The directional derivative is explained in the next section.
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Even though tangent vectors to A are to be distinguished in concept from
elements of V we shall not make any notational distinction between the two; thus
v will denote an element of V or a tangent vector, it being clear from the context
which is intended, and in the latter case, at which point of A it is tangent.
Exercise 6. Show that if :V = ks xb + d° and if (a-) and (a'-) are the coordinate presen-
tations of a curve a with respect to the two affine coordinate systems (x-) and (f-) then
o'-(t) = kso"(t). 0
Exercise T. Show that the tangent vector to a constant curve is the zero vector. D

Exercise 8. Show that if p = a o h is a reparametrisation then p(t) = h(t)u(h(t)). o

One very simple reparametrisation which is often useful is a change of origin.
Let a: R - A be a smooth curve and let r,: R R be the function i '-+ t + c. A
change of origin on or is a reparametrisation aor, of a. We denote the reparametrised
curve ac. A change of origin is the only reparametrisation which does not alter
tangent vectors: ac(t) = a(t + c) and oc(t) = o(t + c). Of course all the curves o,
yield the same path, but they should be regarded as different curves, for different
values of c, because of the convention that different maps count as different curves.
It is evidently possible to choose c so that the point ac(0) coincides with any given
point of the path of a. We shall call a set of curves which differ only by change
of origin a congruent set. The second and third curves in Exercise 5 belong to the
same congruent set.

More generally, a reparametrisation induced by an affine map t '- at+6, a 76 0
of R is called an affine change of parameter. It has the effect of multiplying tangent
vectors by the constant a.

3. Directional Derivatives

In this section we show how a directional derivative may be defined along any
tangent vector; this is a generalisation of the operator v grad in elementary vector
calculus discussed in Chapter 0 and may be used as an alternative definition of a
tangent vector.

Directional derivatives. If f is a smooth function on an affine space A, and
a is a smooth curve in A, then f o a is a smooth function on R. The derivative
d/dt(f o a) measures the rate of change of the function along the curve. In affine
coordinates

d

dt (f ° a)(( n) =
d

(f=(a-)) (to) = 8zb
ab(to),

the partial derivatives in the last expression being evaluated at (o-(to)). The
derivative along a curve at a point thus depends only on the point and on the tangent
vector to the curve there; it does not depend on the curve in any more complicated
way. To put it otherwise: if curves a and p meet at a point zo = a(0) = p(0) (we
may change origins, if necessary, to achieve this agreement of parameters), and if
they have the same tangent vectors there, then

Wt

(f o a) (0)
=

Wt (fop) (0)
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for any function f. Thus the derivative of any function along each of two curves at
a point is the same whenever the two curves have the same tangent vector at that
point.

One may therefore define a directional derivative along tangent vectors, as
follows: given a tangent vector v at a point xo, and a function f, the directional
derivative of f along v, written v(f) or simply of, is the number

(!t
`f o a) (0),

where or is any curve such that a(0) xn and b(0) = v. One possible choice for a
is t - x0 4 tv. In terms of an afline coordinate system,

of=ij ()f
ax"

where the va are the components of v in this coordinate system, and the partial
derivatives are evaluated at (x°(x0)).
Exercise 9. Show that two curves through a point xo which yield the same directional
derivative for all functions at xv have the same tangent vector there. D

In many ways it is more satisfactory to equate a tangent vector with the direc-
tional derivative operator it defines than to regard it as the limit of a chord. One
reason for this is that the operator interpretation offers the prospect of generalisa-
tion to manifolds, on which no affine structure is available and no chords can be
constructed. It is therefore desirable to characterise directional derivative operators
by their properties, which are

(1) v(af + bg) - avf -1 bvg
(2) v(fg) (vf)g(xo) + f(xo)(vg)

for all a,b E R and all smooth functions f and g. The first of these says that,
as an operator, v is linear, and the second that it obeys the appropriate version
of Leibniz's rule. That v, as a directional derivative, does have these properties
follows from its definition in terms of ordinary differentiation of a real function. It
is also true that, conversely, any operator which maps smooth functions to numbers
and satisfies these conditions is a directional derivative operator: we shall show
this in detail in Chapter 10. In fact, it can be shown that such an operator may be
represented as the derivative along a smooth curve as described above. We formalise
these changes of emphasis in a new definition of a tangent vector: a tangent vector
at a point in an affine space A is an operator on smooth functions which maps
functions to numbers and is linear and satisfies Leibniz's rule as set out above.

We shall denote by T,, A the set of tangent vectors at xo E A. As we have
remarked above, association of a tangent vector with an element of V gives a natural
identification of with V. As a consequence of this identification we may endow
T,, A with the structure of a vector space, by defining av+bw, where v, w E T= A and
a, b E R, to be the tangent vector at x0 corresponding to the element av + bw of V.
Alternatively, av+bw is the tangent vector at t = 0 to the curve t '--' xo+t(av+bw).
Exercise 10. Show that, as an operator, (av + bw) f = avf + bwf for any smooth func-
tion f. 0
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Not only is TTjA naturally identified with V, it is isomorphic to it as a vector
space. Nevertheless, the two spaces are conceptually distinct, and each tangent
space is distinct from every other. In generalisations to manifolds the naturalness
of the isomorphism (its independence of coordinates) gets lost, and it then becomes
imperative to regard tangent spaces at different points as distinct.

Given a basis {e,,} of V, the tangent vector at a point xo E A corresponding
to the basis vector e° is the tangent at t = 0 to the coordinate line t xo + tea of
any affine coordinate system based on {ea}. This tangent vector has a particularly
simple representation as an operator: its action on a function f is given by f -
af=/ax°, the partial derivative being evaluated at (xa(xo)). In accordance with our
change of emphasis towards tangent vectors as operators, we shall use a notation for
the tangent vectors to coordinate lines which is suggested by this observation: we
shall write a1, 82i... , an for these tangent vectors (the point xo being understood);
where it is necessary to distinguish the coordinate system we shall use

a a a
5 X ' 8x2'... , ar^

These coordinate tangent vectors form, at any point xo, a basis for T=0A. Any
v E T , A may be uniquely written v = v°aa, where the v° are the components of v
(considered as an element of V) with respect to the basis {ea}; and

of = v°aa f = v°
ax°

the partial derivatives being evaluated at (x°(xo)), as before. Thus the operation of
v on a function expressed explicitly in terms of coordinate functions amounts simply
to carrying out the indicated partial differentiations, evaluating at the coordinates
of xo, and taking the appropriate linear combination of the results.
Exercise 11. Show that v° = v(r°), where x° is thought of as a (coordinate) function. 0
Exercise 12. The point zo in a 3-dimensional affine space A has coordinates (3, 1, -2)
with respect to an affine coordinate system (x°); also v = 81 + 282 + 383 and / _
xlx2 + x2x3 + x3x1. Show that of = 13. o
Exercise 13. Show that if / is the affine function x - (z - ro,o) determining a hyper-
plane and v is a tangent vector then of = (v,a). 0

4. Cotangent Vectors

The set of points in an affine space at which a given smooth function takes a
particular fixed value is called, if it is not empty, a level surface of the function.
In general a level surface has, at each point on it, a tangent hyperplane, which
contains all the tangent vectors at that point to all the curves lying in the surface
and passing through the point. If the function in question is f, and the point is
xo, then for any curve a in the surface f o a is constant and so d/dt (f o a) (0) = 0,
where xo = 0(0). Thus the tangent vectors at xo to curves in the level surface are
those which satisfy of = 0.

Now for a fixed function f the map T, A -. R by v' of is linear and therefore
defines a linear form on T,, A, that is, an element of the space dual to T= A. This
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space is denoted T=. A and called the cotangent space to A at xo. The linear forms
in the cotangent space are often called cotangent vectors, or covectors for short.
The covector determined by f in this way is denoted df and called the differential
of f at xo. Thus

(v,df) = vf.

Provided that df at xo is not identically zero, the tangent hyperplane at xo to
the level surface of f is given by (v, df) = 0. This defines the tangent hyperplane
as a subspace of T., A. If the tangent space is identified with V then df fixes an
element of V', and thereby a hyperplane in A attached at xo. This hyperplane
consists of the tangent lines at xo to curves in the level surface. If, at xo, df is zero
then it is not possible to define a tangent hyperplane by these means, and in fact
there may not even be one.

Thus with each function f and each point xo E A there is associated an element
df of T., A, a linear form or covector at xo. (It is important to remember the role of
the point in this construction, since it is not evident from the notation df.) From the
formula for the coordinate representation of vf, namely of = vaa,f = Oaf 'lax*,
it will be seen that df is determined by the partial derivatives of fZ evaluated at
(xa(xO)). (In future, when the arguments of a particular derivative are evident
from the context, we shall not mention them explicitly.) The coordinate functions
x° define linear forms dxa, the coordinate differentials, which constitute the basis
of T=. A dual to the basis (a.1 of T,, A. Thus any element of T=o A may be written
uniquely in the form c,dxa, and in particular

Z

df = (aa, df)dxa = (aaf )dxa =
axa

dxa.

An arbitrary element of T., A may be obtained from many different functions
on A, and in particular from just one function of the form x '.-+ (x - xo, a), where
a E V'; this constitutes a natural identification of T=0A with V'. The level surface
of the function defined by a is a hyperplane in A.

The linear form df determines, when it is not zero, the tangent hyperplane
to the level surface of f through xo. However, any nonzero multiple of df would
determine the same hyperplane; thus df contains a little more information about
the level surfaces of f : it affords the possibility of comparing the rates at which
level surfaces are crossed by any curve transverse to them. The function cf, for
constant c, has the same level surfaces as f, though if c # 1 they are differently
labelled; this difference of labelling shows up in the fact that d(c f) = cdf.

The reader will no doubt have noticed that the components of df are the same
as those of grad f: in ordinary vector calculus. However, it makes no sense at this
stage to say that df is orthogonal to the level surfaces of f, since no measure of
angle or concept of orthogonality has been introduced into the space. If f is a
smooth function on an affine space of dimension 4, for example, df will be defined
and have the same value regardless of whether that space is Newtonian space-time
or Minkowskian space-time or something altogether different. The definition of a
gradient involves a metric structure, which will be introduced in Chapter 7.
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The reader may also have been reminded, by the notation, of infinitesimals.
Infinitesimals in the sense of l'Hopital-"infinitely small but nonzero quantities"-
have long been banished from standard mathematics. However, this particular
piece of mathematics does provide a sensible parallel to such a statement as "in a
displacement from (x°) to (x° + dxc) the change in f is given by (of/(9x°)dxe, and
if dx" = v"dt then df = v"(Of/8x")dt"; and the notation reflects this.
Exercise 14. Show from the linearity and Leibniz rules that d(af + bg) = ad/ + bdg and
d(/ g) = g(xo)df + f (ro)dg. Show that if h: R - R is a smooth function then, at zo,
d(h o f) = h(f (xo))df. . 0
Exercise 16. Compute df, at ro, in terms of dx°, for the function / = x'x'+z2x3+zszl,
where (z°(xo)) = (3, 1, -2). Show that the tangent hyperplane through zo to the level
surface of this function is given by -xl + x2 + 4x5 + 10 = 0. Show that df = 0 at
the origin of coordinates, that the three coordinate axes all lie in the level surface of the
function through the origin, but that (for example) no other line through the origin in the
z'z'-plane does so, and that therefore the level surface through the origin has no tangent
hyperplane there though the function is certainly smooth there. 0

This level surface is a cone, with the origin as its vertex.

5. Induced Maps
The defining property of an affine map is that it acts as a linear map of displacement
vectors: if A: A -. 8 by x'-+ yo + A(x - xo) then A(x + v) = A(x) + A(v). An affine
map takes lines into lines; it also takes curves into curves, for if a: R - A is a curve,
then A o a: R --. 8 is also a curve, which is easily seen to be smooth if a is. Since
tangent vectors (as distinct from displacement vectors) arise in the first place from
curves, it should not be surprising that an affine map also takes tangent vectors
into tangent vectors, in a way consistent with their definition in terms of curves,
and in agreement with the linear map of displacement vectors. In fact the tangent
vector to A o or is given, as a limit of chords, by

li o b
(A(a(t + 6)) - A(a(t))) =

iL .o
A(a(i + b) - a(t)) = (6 (t)).

Thus the linear part A gives the transformation of tangent vectors, just as it gives
the transformation of displacement vectors. The vector A(o(t)) at A(a(t)) is called
the image of o(t) by A.

As a directional derivative operator, the image of a tangent vector v at x E A
may be defined as the operator g .-. d/dt (g o A o a) (0) for any function g on B,
where or is any curve such that a(0) = x and 6(0) = v. But g o A o a may be
constructed by first composing g with A, and then composing the result, g o A, with
or. Read in this way, d/dt(g o A o a)(0) = v(g o A). It may be verified easily that
the operator g - v(g o A) satisfies the linearity condition and Leibniz's rule, and
it is therefore a tangent vector at A(x) E B. Moreover, the map TTA -. Tat=l8 so
defined is evidently a linear one, which we denote A.. Thus A.(v) is the element of
TA(=)B given by

(A. (v))g = v(g o A).

When T=A is identified with V and TA(=)B with 1U, A.(v) is identified with A(v)
and A. therefore with A.
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The adjoint of the linear map A.: TEA -+ Tn(E) 8 is a linear map of cotangent
spaces A': TTIEIB -- T= A. It is defined as follows: for Q E TJ(=) 8,

(v, A' (p)) = (A. (v), Q) for all v E T.A.

In particular, for any function g on B,

(v,A'(dg)) = (A.(v))g = v(g o A) _ (v,d(g o A)).

Thus
A' (dg) = d(g o A).

With respect to affine coordinates (x°), (y°), with A represented by y° o A =
A x° + CO,

a
ax°(y°oA)=A

Using this, one reads off the coordinate expressions for the maps A.: TEA --+ TA(E)B
and A': TT(E) B -+ T= A as follows:

A. ( ' ) dy-) = \-, C
so that A.

a a
ax° A6 ay°

and

(/.AidY°')) so that A(dy°) = dx°.
°

The maps A. of tangent spaces and A' of cotangent spaces are said to be induced
by the affine map A. Note that A. is cogredient with A while A' is contragredient
to it.
Exercise 16. Show that for any affine map A

A.(v°(a/a:°)) = A v(a/ay°) and A'(c°dy°) = c°a°°dt°. o

Exercise 17. Show that if A: A -+ B and M: B -+ C are affine maps then
(MoA).=M.oA. and (MoA)'=A'oM'. O

8. Curvilinear Coordinates
We have so far found it unnecessary to use any but affine coordinates. The reader
will be aware of the possibility, indeed the advantage under certain circumstances, of
using other kinds of coordinates: polar, spherical polar, cylindrical or whatever. In
the sequel we shall often use curvilinear coordinates-not any specific kind, but in a
rather general way. We shall devote this section to defining curvilinear coordinates
and describing the modifications required to the matters so far discussed as a result
of introducing them.

Before attempting a definition we must point out one possible difficulty with
curvilinear coordinates, which arises even in such a simple case as that of polar
coordinates for the plane. An affine coordinate system has the desirable property
that each point of the affine space has unique coordinates. In polar coordinates
this is not so, the origin being the exceptional point. Moreover, points which have
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nearby affine coordinates need not necessarily also have nearby polar coordinates,
since their angular coordinates may differ by almost 2r. Of course, in the particular
case of polar coordinates one adopts various ad hoc methods for dealing with the
consequences of these defects: but this will not be possible in general. Another way
of getting over the difficulty with polar coordinates is to restrict their domain so
that single-valuedness and continuity are restored, by deleting the non-positive x-
axis. This is the lead which we shall follow in the general case. We shall allow for a
curvilinear coordinate system to be local, that is to say, defined, single-valued, and
smooth with respect to affine coordinates only on some open subset of the space,
not necessarily on the whole of it.

We noted in Section 1 of Chapter 1 that an affine coordinate system on an
n-dimensional affine space may be described as a bijective map from the space to
R", namely the map which assigns to each point the n-tuple of its coordinates.
Two different affine coordinate systems are related by a coordinate transformation,
which is a map from R" to itself. These are also essential features of our definition
of curvilinear coordinates, which follows.

A local curvilinear coordinate system, or local coordinate chart, for an n-
dimensional affine space A is a bijective map 0 from an open subset P of A, called
the coordinate patch, to an open subset of R"; this map is to be smooth with re-
spect to affine coordinates in the following sense: if 0: A -+ R" is the bijective map
defining an affine coordinate system on A then the map 0 o 4'', which takes affine
coordinates into curvilinear coordinates, and which is a bijective map between two
open subsets of R", is to be smooth and have a smooth inverse. The map 0 o 0-t,
which is called the coordinate transformation from the affine to the curvilinear co-
ordinates, may be thought of as a vector-valued function of n variables; it will be
smooth if all its component functions have continuous partial derivatives of all or-
ders. Since affine coordinate transformations are clearly smooth, a local coordinate
chart which is smooth with respect to one affine coordinate system is smooth with
respect to all.

For any differentiable map it of an open subset of R" into R" we shall denote
by 4' the matrix of partial derivatives, or Jacobian matrix, of 4'. It is a smooth
n x n matrix-valued function on the domain of 4f. If one writes

4,(i°) = ,...,.b" (E°))

then
a+" a,b a4fb

is the bth row of V. There are important connections between the invertibility of
the map 4' and the invertibility of the matrix V. In the first place, if 4f is invertible
then " is non-singular and (4f-')' = (40' o 4f-')-'. Furthermore, the inverse
function theorem states that if 4f is smooth on an open set containing a point t; and
'(t;) is non-singular then there is an open set 0 containing t; and an open set 0
containing t(t) such that 4': 0 -. 0 has a smooth inverse 0-': 0 --+ 0. It is also
known that if 0: 0 -+ R" is injective and 0' is non-singular at all points of the open
set 0 then 4f(0) is open and 9s-':4f(0) - 0 is smooth. These results sometimes
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allow one to infer the existence of a local coordinate chart from the invertibility of
a Jacobian matrix. In practice, a specific curvilinear coordinate system is usually
given by coordinate transformations from some affine coordinate system; to check
the validity of the curvilinear coordinates it is therefore necessary merely to find
where the Jacobian of the coordinate transformation 0 = >G o (k-1 is non-singular
and confirm that the transformation is injective there. Alternatively, it may be
more convenient to work with the inverse of the coordinate transformation.

Exercise 18. Let 0 he the open subset of R2 consisting of all points other than those on
the non-positive e'-axis. The function d: 0 - (- A, r) is defined by

if E' > 0
x + arctan(f if f' < 0, ' > 0
-r + if E' < 0,e < 0
a/2 if e' = 0,e" > 0
- x/2 if ' = 0, {_ < 0.

Show that the map 0 R' by (f',f') ( (fl)y f defines a co-
ordinate transformation from any affine coordinates on a 2-dimensional affine space to
curvilinear coordinates ("polar coordinates"). o
Exercise 19. Let x be an affine coordinate on a 1-dimensional affine space A. Show that,
although the function A -* R by x - r' is bijective, it does not define a local coordinate
chart on A. o

If *': P -* R" and X: s2 -. R" are two local coordinate charts such that P fl Q
is non-empty, then r/i o X - I and X o *L' -1, which are the coordinate transformations
between the charts, are smooth maps of open subsets of R".

The coordinate functions for a local coordinate chart are defined in the same
way as for affine coordinates: the ath coordinate function assigns to each point in
the coordinate patch the value of its ath coordinate. In other words, x° = 11* 0 0,
where ,j, is the chart and II°: R" R is projection onto the ath component. The
coordinate functions are local functions, that is, not necessarily defined on the whole
of the space; they must however be smooth on their domain.

Exercise 20. Let (f°) be the coordinate functions for a local coordinate chart and (x°)
those for an affine coordinate system. Show that a,fb, the function obtained by applying
the coordinate tangent vector a, = a/ax° to the function f°, has for its coordinate
expression with respect to the affine coordinates the (b, a) element of the Jacobian matrix
of the coordinate transformation from affine coordinates to curvilinear ones. o

The differentials of the curvilinear coordinate functions (i°) are given in terms
of those of the affine coordinate functions (x°) by

dib = (da±t)dx°.

The coefficient matrix is non-singular, by Exercise 20; the linear forms {di°} there-
fore constitute a basis for the cotangent space, at each point of the coordinate
patch. They will be called the coordinate differentials for the curvilinear coordinate
system.

The ath coordinate curve is the curve given in terms of the curvilinear coordi-
nates by t --+ (:it, 12... , is }- t, ... J I). The tangent vector to the ath coordinate
curve is denoted by a or (9/8i°, just as in the case of affine coordinates, and for the
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same reason. These coordinate tangent vectors form a basis for the tangent space,
at each point of the coordinate patch, which is dual to the basis of the cotangent
space at the same point given by the coordinate differentials:

dib) = aaib = a(o ib = 6n

The components of a, are given in terms of the coordinate vectors for the affine
coordinate system by

aazb, so that J. = (aazb) ab.

We define the coordinate expressions for curves and functions in terms of curvilinear
coordinates just as we did for affine coordinates, making allowance if necessary for
the local nature of the curvilinear coordinates.
Exercise 21. Show that the matrices (a,zb) and (a°t?) are inverses of each other. a
Exercise 22. Show that the coordinate differentials and vector fields of any two coordi-
nate systems are related in the same way as those of a curvilinear and an affine coordinate
system. Let v° be the components of a tangent vector v in one coordinate system (z°)
(curvilinear or affine) and let 0 ° be the components of the same tangent vector in any
other coordinate system (t°). Show that 0 ° _ (aet°)v'. Show that the components c.
and t, of a linear form are related by ca = p
Exercise 23. Show that the differential of a function f takes the form df = (8°f) dz°
with respect to any coordinate system. 0
Exercise 24. Let (x1,x2,zs) be affine coordinates in a 3-dimensional affine space A and
let (r,t9,p) be the curvilinear coordinates ("spherical polars") given by

x1 = rsin0cos p z2 = rsint sin p zs = rcosfl.
Show that the open subset of A obtained by deleting the half-plane on which z2 = 0, x1 < 0
is a suitable domain for (r,>9,'p), and that no larger open subset of A will do. Verify that
these functions do define a coordinate chart; identify the corresponding coordinate patch
(in terms of the affine coordinates). Compute the components of the affine coordinate
differentials and vectors in terms of the curvilinear coordinates, and vice-versa. 0

The great majority of coordinate formulae carry over to the case of curvilinear
coordinates without change of appearance, but it must be remembered that in
general they hold only locally, that is on the coordinate patch. Where in the sequel
we have occasion to derive a result that is true only for affine coordinates, or some
other special coordinates, we shall draw the reader's attention to this; otherwise it
may be safely assumed that any coordinate expression is valid in any coordinate
system.

7. Smooth Maps

So far in this chapter we have shown how various affine objects-lines, hyperplanes,
affine coordinate systems-may be generalised by relinquishing the conditions of
global linearity. By retaining the requirement of smoothness, however, one ensures
that a measure of linearity is preserved, albeit only on an infinitesimal scale. We
now make a similar generalisation, from affine maps to smooth maps. The process of
inducing linear maps of vectors and covectors from an affine map will be generalised
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at the same time, to give a way of constructing, from a smooth map, linear maps
of tangent and cotangent spaces.

An affine map is represented, in terms of affine coordinates, by inhomogeneous
linear functions; but the functions representing the same affine map in terms of
curvilinear coordinates will not be linear, though they will be smooth. The map's
affine property, in other words, will not be very apparent from its representation in
curvilinear coordinates. Nevertheless, the construction of the corresponding induced
map of vectors (for example) must still be possible, since its definition does not
depend on any particular choice of coordinates. The representation of this induced
map, with respect to the coordinate vectors of the curvilinear coordinate system,
will be a matrix; but, again in contrast to the case of affine coordinates, this matrix
will vary from point to point. These observations give a clear guide as to how to
proceed in general, and what to expect.

Smooth maps defined. Let 0: A 8 be a map of affine spaces. Such a map
may he represented with respect to any coordinates (x°) on A and (y°) on 8 by
n = dim B functions 0° of m - dim A variables, as follows: for each x E A,

°(x°(x)) = y°(qS(x)).

Here x' and y' are to be interpreted as coordinate functions. The functions 0°
may be considered as the components of a map

(i:i,£2,...,t;m) - (o
from R"' (or some open subset of it) to R": thus if (xa) are the coc,rJ;nates of
a point x C. A then (m°(xa)) are the coordinates of the image point O(x) E B.
We may also write the defining relation in the form 4,°(x°) = y° o 0, or describe
y° _ 0°(x°) as the coordinate presentation of 0. It will frequently be convenient
to define a map 0 between affine spaces by giving its coordinate presentation, that
is, by specifying the functions (k° which represent it with respect to some given
coordinate systems on A and B. Of course, in order for the map to be globally
defined (that is, defined all over A) it is necessary that the coordinates used for A
should cover A; and correspondingly, use of a coordinate system for B which does
not cover B restricts the possible range of the image set. These difficulties can arise
only when the coordinates chosen for A or B are non-affine (and not necessarily
even then): for affine coordinates no such problems arise.

Exercise 25. Explain how the coordinate presentation of a map A - B is affected by a
change of coordinates in A and B. o

A map 0: A - B is smooth if the functions ¢° which represent it with respect
to affine coordinate systems on A and B are smooth.

Exercise 26. Show that if m: A 8 is smooth then the functions which represent it
with respect to any coordinate systems on A and B, affine or not, are smooth (on their
domain). o

If 0 is an affine map of affine spaces then the functions 0° which represent it
with respect to affine coordinates are inhomogeneous linear: q°(xa) = \axa +c°;
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and so (k is certainly smooth. The definition of a smooth map is clearly also con-
sistent in concept with the definitions of a smooth curve and a smooth function
(though a smooth curve in B is not quite the same thing as a smooth map from a
1-dimensional affine space to B, nor is a smooth function on A quite the same thing
as a smooth map from A to a 1-dimensional affine space).

Sometimes we shall have to deal with the case of a map between affine spaces
A and B whose domain is not the whole of A; but provided that the domain is an
open subset of A the definition of smoothness carries over without essential change
(this is analogous to the situation that occurs when a curve is defined only on an
open interval in R).

Induced maps of vectors and covectors. We have already described maps
of tangent vectors and covectors induced by affine maps (Section 5). We have
implicitly introduced them again in defining the coordinate tangent vectors and
differentials for curvilinear coordinates (Section 6). We now repeat the argument
in a more general context, where the map is no longer assumed to be affine, nor
between spaces of the same dimension.

Let A and B be affine spaces, and 0 an open subset of A (which may be the
whole of A). Let ': 0 --i B be a smooth map. We shall first construct the map of
tangent vectors induced by (k. This construction depends on little more than that
46 takes curves into curves.

Fig. 1 Induced map of a curve and a tangent vector.

Let v be any tangent vector at a point x in 0, and let a be any curve which
has v as tangent vector at x. The map 0 takes a to a curve am = 0 o o through
O(x), and am has a tangent vector vm there, which may be constructed either as a
limit of chords or, better for this purpose, through its directional derivative. Let f
be any function on A. Then

but

so that

Vmf
= di

d
(foam) (0)

foam= fo(moa)=(foO)oa

vmf = 41 l(f o ) o a) (0)
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or

vmf v(f o 0).

This expression reveals that the tangent vector to 0 at O(x) depends only on the
tangent vector to a at r, as the notation has anticipated. The construction works
in essentially the same way as in the affne case. The fact that 0 may be non-
affine, and not necessarily defined all over A, makes no significant difference to the
construction. Note that v'' is a tangent vector at m(x) E B.
Exercise 27. Show that the alternative approach, defining the tangent vector as a limit
of chords, leads to the expression

v* = lim (mea(t)) - OIz))e-.o
0

The map m.: T=A by v -' vm with vm f = v(f o4') is called the induced
map of tangent spaces.
Exercise 28. Verify that 0.:7'.A - T#(,) 8 is a linear map. 0

The important difference between the affine case and the general one is that
in the affine case the induced map is a fixed map of the underlying vector spaces
V W whereas here the map 0. depends on x. If it is necessary to specify where
0. acts we shall write m.,, but we avoid this as far as possible. We write 4'.v or
m.Zv for the image of v r T=A.

The computation of m.=v is often most conveniently carried out by choosing a
curve through x which has v as its tangent vector there, finding the image of the
curve under 0, and computing the tangent vector to the image curve. The line
t - x 4- tv is an obvious choice of curve for this computation.

The adjoint map is defined essentially as in the affine case. It is the linear map
0':T40't=1B T *A defined by

(t" (P '!l)

for any fl in Tm(=)B and all v in T,A. Note that for any function f on B

(v,0'(df)) _ v I f = v(f o (k) = (v,d(f o m))
from which follows the important formula

4-df -- d(f o 4').

As in the affine case, one may read off the coordinate expressions of 0. and 0'.
Recalling that the components of a vector are given by its action on the coordinate
functions, and introducing local, possibly curvilinear, coordinates (x") around x
and (y°) around O(x), one obtains at once

(v')' = My") - V (h t' (k

so that

giving the components of the induced vector in terms of the components v°
of the original vector, the Jacobian matrix (matrix of partial derivatives) (a4°/axa)
being evaluated at (xb(x)), and m°(x") -= y° o m being the coordinate presentation
of 0.
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Exercise 29. Obtain the same expression for (0.)° from the result of Exercise 27. D

Exercise 30. Show that

0.(a,) = 0 and that '(dy°) = m dz'. D
ax, az"

Exercise 31. Let 0: A -. B and let v E V, the space on which A is modelled. Show that
4(z + tv) _ 4(x) + t4-s(v) + 02,

where 02 represents a vector of order 2 in t. Thus 0. determines the best affine approxi-
mation to ¢ near z, in the sense of Taylor's series. O

Exercise 32. Show that if 0: A -. B and 0: 8 C are smooth maps then
(404). = 4. o m. and (i o 4)' =0* o o*. D

Exercise 33. Let ¢: A -. A be bijective and have a smooth inverse. Show that ¢. and 4'
are isomorphisms and that (4.)-' = (4-'). and (4')-' paying due attention
to the domains and codomains of these linear maps. D

Exercise 34. Let 0 be a map of a 2-dimensional affine space to itself given in terms
of some coordinates by (z',x2) .-. ((z')2 - (z')',2z'x2). Compute ¢.(a1) and 4'.(612),
4'(dz') and 4'(dz'). 0

8. Parallelism

In this section we exploit the natural identification of tangent spaces at different
points of an affine space, described in Section 2, to establish the idea of parallelism
of vectors at different points. We go on to introduce a more restricted idea, of
parallelism of vectors along a curve, which is easily generalised to other spaces.

Complete parallelism and parallelism along a curve. As we explained ear-
lier, the tangent spaces at different points of an affine space may be naturally
identified with the vector space on which it is modelled, and therefore with each
other. Thus given a tangent vector at a point of the affine space, one may draw a
vector equal to it, in the sense of this identification, at any other point. The two
vectors are said to be parallel, and this property of affine spaces, that they admit
a criterion of equality of vectors at different points, is called complete, or absolute,
parallelism. This property could have been inferred, from the definition of an affine
space, for displacement vectors, but we prefer to point it out for tangent vectors,
which will continue to be important throughout the book.

Except in special cases, manifolds are not endowed with complete parallelism,
and a restricted idea of parallelism-parallelism along a curve-has turned out to
be more appropriate to them. We introduce this idea next.

A vector field V along a curve a in an affine space A is an assignment of an
element V(t) of the tangent space To(,)A at each point o(t) (we use uppercase
italic letters V, W and so on to denote vector fields, here and subsequently; they
should be easily distinguished from the script letters V, V and so on used to denote
vector spaces). The components of V (t), with respect to an affine or a curvilinear
coordinate system, will be functions of t, which will be assumed to be smooth
functions.
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If a vector v is given at a point o(to) on the curve then by the natural identifi-
cation mentioned above one may construct the parallel vector at every other point
of the curve. By this construction v is said to be parallelly transported along a,
and the resulting vector field V along a is called a parallel vector field (on a). The
construction depends only on the affine structure of A, and does not rely on the
existence of a metric; nor does it depend on the parametrisation of o.

Exercise 35. Show that V is a parallel vector field along a if and only if its components
in an affine coordinate system are constants. O

Exercise 36. Show that if a is an affine line t -, xo + tv then the field of tangent vectors
to a is a parallel vector field along a. 0

Equations of parallel transport. The components of a parallel vector field will
not, in general, be constants in a curvilinear coordinate system. However, it is easy
to *calculate the condition which they must satisfy. Let a be a curve in A, V a
parallel vector field along a, (.f a) curvilinear coordinates in a patch which a crosses,
and (xa) any afiine coordinates. Let Va(t) and Va(t) be the curvilinear and affine
components of V (t) respectively so that (Exercise 22)

=
axb
aiV `(t)V b(t) _ °

(the derivatives being evaluated at a(t)). Then the Vb are constants. Differentiating
with respect to t, and writing (6a) for the (curvilinear) coordinate presentation of
a, one obtains

axd dVc a2xd bd6`
0 ai° azbaZc

V
dt

where d6°/dt are the (curvilinear) components of the tangent vector to a. On
multiplying by (a±a/axd) one obtains the equations of parallel transport

-Va
+ 1b

Vbdt`
= 0-at

a.fa a2xd
"I° - - : -asd asbaT

are the connection coefficients (for the given system of curvilinear coordinates).
The equations of parallel transport hold in any system of coordinates if we define
the connection coefficients for afl'ine coordinates to be zero.

Exercise 37. Show that the I'd are unchanged if the chosen system of affine coordinates
is replaced by another one. o
Exercise 38. Show that re'r = I've. 0
Exercise 39. Compute the equations of parallel transport for the spherical polar coordi-
nates given in Exercise 24, and show that they are satisfied by the afine coordinate vector
fields (expressed in spherical polar coordinates) along any curve. a
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9. Covariant Derivatives

Covariant derivative of a vector field. The idea of parallelism along a curve
may be exploited to define a derivative, along a curve, of any vector field given
along the curve. This derivative is called the absolute, or covariant, derivative. The
covariant derivative of a vector field V along or is the vector field DV/Dt along a
defined by

Dt (t) a-o li
(V (t + 6)II - V (t))

where V(t + 6)11 is the vector at a(t) parallel to V(t + 6) (which is a vector at
o(t + 6)). The limit process is carried out in T,(,)A and so the result is again an
element of the same space.

Exercise 40. Let U, V and W be vector fields along a and f a function on A. Show that

D(U+V)=DU+DV and D(fW)=fDW+dfWDt Dt Dt Dt Dt Wt

(equality at each point of a being implied). O

Exercise 41. Show that if V is parallel along a then DV/Dt = 0. t]

Exercise 42. Show that the components DV °/Dt of DV/Dt in any affine coordinate
system are simply

DV ° dV °

U t- '

while the components DlV °/Dt of DV/Dt in a curvilinear coordinate system are given by

DV° _ dV° ° ,d6`
Dt dt

+ C, `V dt . a

Exercise 43. Let a o h be a reparametrisation of a and let V = V o h be the vector
field along b obtained by reparametrising V. Show that

Dt - hDt'
Covariant derivative of a covector field. The natural identification with V'
of cotangent spaces at different points of A allows one to define parallel covectors
in exactly the same way as parallel vectors were defined: two covectors at different
points of A are said to be parallel covectors if they are identified with the same
element of Y. Further, a covector field a along a curve or is an assignment of an.
element a(t) of To(t)A at each point a(t), and if the covectors assigned at different
points are parallel the covector field is called parallel along a. The components of
a covector field along a will be assumed to be smooth functions of t in any (affine
or curvilinear) coordinate system.

Exercise 44. Show that a is a parallel covector field along a if and only if its compo-
nents in an affine coordinate system are constants. Show that in an arbitrary curvilinear
coordinate system the components 6°(t) of a parallel covector field or satisfy the equations

d6l
dd ° r `d ° dt

= 0.

These are the equations of parallel transport for a covector field.
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The covariant derivative Da/Dt of a covector field is

Do I

Ut (t) aim 6
(a(t + 6)11 - a(t))

where a(t + 6)11 is the covector at o(t) parallel to a(t + 6) (which is a covector at
o(t + 6)).

Exercise 45. Let a, 6 and ry be covector fields along a and f a function on A. Show that

DD-t (a +,0) = Dt +
DO and

Dt f Dt + dt 7.

Show that if a is parallel along a then Da/Dt = 0. t]
Exercise 46. Show that the components D6a/Dt of Da/Dt in any coordinate system
are given by

D6a d6a d6`
Dt dt '

where the connection coefficients are zero if the coordinates are affine.
Exercise 47. Let V be a vector field and a a covector field along a. Show that

O

dt(V'a)- Dt/. o

Summary of Chapter 2
A coordinate expression for a function f : A - R is the function f Z on R" such that
f:(x°) = f; f= = fZ o $-1, where 0 is the coordinate transformation from (x")
to (i°). A function is smooth if its coordinate expression is smooth, that is, has
continuous partial derivatives of all orders, with respect to any affine coordinates.

A curve a in A is a map R A (or a map I -- A, where I is an open interval
of R); it is smooth if its coordinate functions v° = xa o a are.

The tangent space TZA is the vector space of directional derivative operators
at x, that is, maps v of functions to numbers satisfying: v(af + bg) = avf + bvg
(linearity); v(fg) = (vf)g(x) + f (x) (vg) (Leibniz). Each curve a defines a directional
derivative 6(t), its tangent vector at a(t) = x, by &(t) f = d/dt(f o o)((). Tangent
spaces are naturally isomorphic to V and to each other. For any affine coordinates
the operators {8a} are a basis for the tangent space at any point.

Each smooth function f defines a covector df, an element of Tz A, the cotangent
space at x, by (v,df) = vf. The cotangent space is the vector space dual to T.A.
The cotangent spaces are naturally isomorphic to V.

An affine map A: A -. 8 induces linear maps A.:TTA Taf=IB by (A.v) f =
v(f o A). The dual map A': TT(Z) B -+ T, A satisfies A'df = d(f o A). The linear map
A. is essentially the linear part of A. Tangent spaces map in the same direction as
A, cotangent spaces oppositely.

Curvilinear (non-affine) coordinates are in general defined only locally, on a
coordinate patch. A local curvilinear coordinate system, or coordinate chart, for
an affine space A is a bijective map v) from the coordinate patch (an open subset of
A) to an open subset of R" which is smooth with respect to any affine coordinate
system. Coordinate functions, differentials and vectors are defined just as for affine
coordinate systems, and have much the same properties. The basic transformation
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rules are: 6a = (abdCa)Vb for the components of a vector; ca = (d,xb)cb for the

components of a covector.
Elements of T=A and T2A which correspond to the same element of V are

parallel. The absolute derivative of a vector field V along a curve a is the vector
field defined by DV/Vt = limb-O (V (t + 6) 11 - V (t))16, where V (t + 6)11 is the vector
at a(t) parallel to the vector V (t+6) at o(t+b). The components of DV/Dt in affine
coordinates (x°) are obtained by differentiating the components of V with respect
to t. In terms of curvilinear coordinates (_°), DV°/Dt = dV°/dt + rbcVbdb°ldt,
where Id, = (8di°)(abi Cxd) are the connection coefficients.

Notes to Chapter 2

1. Topology. From everyday perception of ordinary space one acquires an intu-
itive idea of nearness. In elementary calculus, and again in vector calculus, this idea
is made more precise. It is then exploited in definitions of continuity and differen-
tiability. In the more general context of this book a more general formulation of the
same ideas is needed. This formulation makes it easy to exclude from consideration
various awkward cases of little interest.

We begin the formulation by recalling from elementary calculus some ideas
about subsets of the set R of real numbers. An open interval of R is a set { x I a <
x < b } where a and 6 are real numbers (and a < b). This interval will be denoted
(a,b). In other words, an open interval is an unbroken segment of the real line,
deprived of its endpoints.

An open set of R is a union of any number (not necessarily a finite number) of
open intervals. For example the half-infinite intervals { x I a < x }, denoted (a, oo),
and { x I x < b), denoted (-oo, b), are open sets. The whole of R is also an open
set, and it is convenient to count the empty set 0 as open.

It is not difficult to see that the intersection of a finite number of open sets
is an open set. On the other hand, the intersection of (--1, 1), (- 1, 1), (- ),2 2 3'3

(- n, n .... comprises only the single point 0, which is not an open set.
The complement of an open set is called a closed set. For example, the closed

interval { x I a < x < b}, which is the complement of (-oo,a) U (b,oo), is a closed
set, denoted by I a, b J. In other words, a closed interval is an unbroken segment of
the real line, including its end points. It is very often the case that open sets are
defined by inequalities, closed sets by equalities. In particular, a single point is a
closed set.

Abstraction from these ideas about subsets of R leads to the definition of a
topological space and a topology, as follows. A set S is called a topological space
if there is given a collection T of subsets of S, called a topology for S, with the
properties

(1) S is in T and the empty set 0 is in T
(2) the union of any number of elements of T is also in T
(3) the intersection of any finite number of elements of T is also in T.
It follows at once from the preceding discussion that, with the collection of

open sets for T, the real line R is a topological space. This choice of T is called
the usual topology for R. In the general case the sets in the collection T are also
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called open sets of S. Other topologies for R are possible besides the usual one.
For example, if every subset of R is included in T, the conditions for a topology
are satisfied, and in particular, each point is an open set. This is called the discrete
topology. At the other extreme, if there are no open sets but the empty set 0 and
the whole of R, the conditions are again satisfied. This is called the trivial topology.
These constructions may evidently be applied to any set S.

In general, an arbitrary subset of a topological space need be neither open nor
closed. For example, in the case of R with the usual topology, the union of an
open interval with a point outside it is neither open nor closed. An instance is the
half-open interval (a, b = { x I a < z < b }, with one end-point included but not
the other.

A subcollection To of T is called a basis for the topology if every open set is
a union of members of To. In the case of R with the usual topology, the original
construction shows that the collection of open intervals constitutes a basis.

The power of the idea of a topological space begins to become apparent when
one considers maps between such spaces. Continuous maps, which generalise the
idea of a continuous function, are usually the only maps of interest. Let S and T
be topological spaces and let a be a point of S. A map f: S - T is continuous
at a if for every neighbourhood Q of 1(a) there is a neighbourhood P of a such
that f(P) C Q. A map is called continuous if it is continuous at every point of its
domain. In order for a map to be continuous it must have the property that the
pre-image of each open subset of its codomain is an open subset of its domain.

Two topological spaces are indistinguishable, as far as their topological proper-
ties are concerned, if there is a bijective continuous map from one to the other, with
a continuous inverse. Such a map is called a homeomorphism, and spaces connected
by a homeomorphism are said to be homeomorphic.

There are certain topologies which are generally appropriate to subsets and
product sets. If S is a topological space and T is a subset of S, the induced topology
on T is the collection of sets Q n T, where Q is any open set of S. For example,
if R has the usual topology and Ia,61 is a closed interval, the induced topology on
( a, b I has a basis consisting of

(1) open subintervals of I a, b I
(2) half-open intervals I a,x), with x < b
(3) half-open intervals (x,bl, with a < X.
If Si and S2 are topological spaces with topologies Ti and T2 respectively, the

product topology on their Cartesian product S1 X S2 is the topology with basis
{ Q1 x Q2 I Qi (- Ti, Q2 f_ T2 }. This definition generalises to a product with any
number of factors.

The product topology on R' - R Y R. x x R (rn factors) is called the usual
topology for R'". It has a basis consisting of hypercubes without their boundaries

{(1 I " E 1. a - 1,2,...,m},

where the 1 are open intervals of R. Each open ball
/ C < r }{ ( I 2 ,..., EM) ((SI - fo)2 } ( 2 - `2)2 + ... 4. Il.m - SO )2 2



52 Chapter 2

is an open set in R'". The (m - 1)-sphere

l 2, ... , l:'") I

W2
+

W - 0)2 + ... + 1Em - 0 ) = r2 }
is an example of a closed set. If f: R' - R is continuous then for any c E R the
set (({',e2'...,Cm) I f(e',i;2,...,Cm) < c} is open in R'; open sets are often
defined as the solution sets of strict inequalities involving continuous functions. The
definition of a closed set, on the other hand, usually involves weak inequalities or
equalities. Another example of a closed set in R' is the hyperplane

{ ( S ' , C 2 , . . . , ' " ) I a 1 E ' + a 2 2 +...+a,,,E" = 1}.
No lower-dimensional subset of R' can be open: thus an interval (a,b) of the ('-
axis, with e' = f 2 = f = 0, is open in the induced topology of the C'-axis,
but is neither open nor closed in the usual topology of R'.

A standard reference is Kelley 11955.

2. The inverse function theorem. Let 0 be a map from R" to R" which
is smooth in an open neighbourhood of a point of its domain at which the Ja-
cobian matrix '(F) is non-singular. The inverse function theorem asserts that 0
is invertible in some neighbourhood of C, with a smooth inverse. The size of the
neighbourhood depends on the detailed form of $. Proofs will be found in many
books on advanced calculus. There is one near to the point of view of this book in
Spivak I1965I.



3. VECTOR FIELDS AND FLOWS

The steady flow of a fluid in a Euclidean space is an appropriate model for the ideas
developed in this chapter. The essential ideas are

(1) that the fluid is supposed to fill the space, so that there is a streamline
through each point

(2) that the velocity of the fluid at each point specifies a vector field in the
space

(3) that the movement of the fluid along the streamlines for a fixed interval of
time specifies a transformation of the space.into itself.

The fluid flow is thus considered both passively, as a collection of streamlines,
and actively, as a collection of transformations of the space. Besides these integral
appearances it also appears differentially, through its velocity field.

Let 45t denote the transformation of the space into itself by movement along
the streamlines during a time interval of length t. To be specific, given any point x
of the space, tbt(x) is the point reached by a particle of the fluid, initially at z and
flowing along the streamline of the fluid through x, after the lapse of a time t. The
set of such transformations has the almost self-evident properties

(1) 00 is the identity transformation
(2) 0A oOt = 014t-

A set of transformations with these two properties (for all s and t) is called a one-
parameter group of transformations. The study of such transformations, and of the
streamlines and vector fields associated with them, forms the subject matter of this
chapter.

We begin in Section 1 with a special case, in which the transformations 45t are
all affine transformations. The general case is developed in Sections 2 to 4. In
Sections 5 to 7 we introduce a new and powerful construction, the Lie derivative,
which measures the deformation of a moving object relative to one which is moved
along the streamlines. In Section 8 we develop the idea of vector fields as differential
operators, and exhibit some of their properties from this point of view.

1. One-parameter Afflne Groups
In this section we develop the ideas introduced above for the case in which all
the transformations involved are affine transformations. We begin with a simple
example. Let A denote an affine space of dimension n modelled on a vector space
V and, as in Section 4 of Chapter 1, let r,,: x x + v denote the translation of
A by v, where v is any vector in V. Then q5e = re is a one-parameter group of
transformations; it is easily seen that qS(j is the identity transformation, and that
(ksoOt = 0a+t, as the definition requires. Moreover, the transformations are smooth,
in the following sense: in any affine coordinate system the coordinates of 0e(z) are
(x° + tv°), where (xe) are the affine coordinates of x and v° the components of v; so
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the coordinates of Oj(x) are certainly smooth functions of the x° and i jointly. This
joint smoothness is the smoothness condition which will be imposed later on one-
parameter groups in general, although a transformation of a general one-parameter
group will not have as simple a coordinate representation as a translation does, of
course.

Let x be any point of A. The set of points into which x is transformed by the
translations Of, as t varies, is described by a curve (actually a line) denoted os and
called the orbit of x under Of. Thus

o=(t) = Of (X) = x + Vt.

Note that we write a= for the orbit, which is a map R A, with x fixed, and Of
for the transformation, which is a map A - A, with t fixed.

Every point of A lies on (the image set of) an orbit; moreover if y lies on the
orbit of x then a= and o. are congruent (Chapter 2, Section 2), because y = x+vs =
o=(a), for some a; and then for all t, oy(t) = y + tv = z + Is + t)v = os(a + t). The
orbits may be partitioned into disjoint sets, any two orbits in the same set being
congruent; every point lies on the orbits of a congruent set, and no two orbits from
distinct congruent sets intersect.

The definition of an orbit extends in an obvious manner to any one-parameter
group of transformations, and the property of orbits just described continues to
hold. A collection of curves on A, such that each point of A lies on the curves of
a congruent set, and no two curves from distinct congruent sets intersect, is called
a congruence of curves. With any congruence one may associate a unique tangent
vector at each point of A, namely the tangent at that point to any one of the set of
congruent curves through it; in particular this is true for the congruence of orbits
of a one-parameter group.

The congruence is the geometrical abstraction of the collection of streamlines
introduced in the context of fluid flow at the beginning of this chapter. Notice that,
in this context, the congruence property of streamlines is a consequence (indeed,
more or less a definition) of the steadiness of the flow: in effect, a particle initially
at x, and one which arrives there a time t later, follow the same streamline, but
separated always by a length of time t. Equally, the one-parameter group property
is a consequence of the assumed steadiness of the flow.

The abstraction of the velocity field of the fluid is a vector field. A choice of
tangent vector at each point of A is called a vector field on A. Associated with
any one-parameter group there is, as we have seen, a vector field, namely the field
of tangent vectors to its orbits. This is often called the generator, infinitesimal
generator, or generating vector field of the one-parameter group.

Suppose now that an affine coordinate system has been chosen for A, and con-
sider the generator of the one-parameter group of translations of A by te. where eQ
is one of the basis vectors of the underlying vector space from which the coordinates
are built. This generator is obtained by choosing, at each point of A, the coordinate
vector 99a; so, naturally, we denote it by the same symbol: in future, 8Q (or (9/8x°)
may denote either a coordinate vector at a point, or a coordinate vector field; which
of the two is meant will generally be clear from the context.
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An arbitrary vector field V may be expressed in terms of the coordinate vector
fields of an affine coordinate system in the form V = Ve32, where the V° are
functions on A. For any x E A, Va(x) are the components of V, the tangent vector
at x determined by V. The functions Va are therefore called the components of V
with respect to the (shine) coordinate system.

Exercise 1. Show that if t° = ks r + c° is a new affine coordinate system then 'd, _
and if V = Vai3a = VQaa then Va = kgV'. o

We shall have to deal only with vector fields whose components with respect
to one (and thus, by the exercise, to any) affine coordinate system are smooth
functions. Indeed, for our immediate concerns we shall need vector fields whose
affine components are very simple functions.

A vector field with constant affine components is a field of parallel vectors. If
such a field is given, one can reconstruct the congruence to which it is tangent-a
congruence of parallel lines-and the one-parameter group which it generates-a
one-parameter group of translations. It is taken for granted in fluid dynamics that
this reconstruction is possible in general, not only for a parallel field-that if one
knows the velocity field then one can determine the path of each fluid particle and
the motion of the fluid, at least in principle. This presumption is in fact justified,
as we shall explain later.

Before going on to describe one-parameter groups of affine transformations in
general, we give two more examples.

(1) A family of affine transformations of a 2-dimensional affine space A is given
in affine coordinates by

0 '(x',x2) = x' cost - x2sint 02(x',x1) = x'sint + x2cost.

If A has a Euclidean structure these are just rotations about the origin, t is the
angle of rotation, and the orbits are circles. It is not necessary to invoke a Eu-
clidean structure in order to define these transformations, however. Observe that
0q(x',x2) (= xa, a = 1,2, and that

.0:(O!(x',x2),0t(x',x2))

= (x' cost -x2sint)coss - (xIsint+x2cost)sins
= x1 cos(s + t) -- x2 sin(s + t) = ¢;+t(x1,x2),

and similarly

0s2 (.Oti
(x

t ,xs )+.02
(x

i
,x

2))
t

= (x'cost -x2 sint)sins+(x'sint+x2cost)cos8
= x' sin(s + t) + Z2 cos(s + t) = 02+t(x', x?.);

moreover, 40) and 0 are smooth functions of t, x' and x2. The given family
of transformations is therefore a one-parameter group of affine transformations.
To find its generating vector field V, observe that the orbit of the point whose
coordinates are (x', x2) is given in coordinates by t F-+ (x' cost - x2 sin t, x1 sin t +
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x2 Cost), and its tangent vector at t = 0 has components

dt(x'cost-x2sint)t_o= -x2 and dt(z'sint+z2Cost) e_o=x'.

Thus V is the vector field whose value at a point with coordinates (x', x2) is given
by -x281 + z182. In fact, this expression defines the vector field, if one interprets
x' and x2 as coordinate functions.

(2) A family of affine transformations of A is given in affine coordinates by

01 (x', x2) = x' + tx2 o2 (-,I, x2) = z2.

Observe that 0$(x',x2) = x°, and that

oe (46i (x1, x2), (x', x2)) = (x' + tx2) + 8x2 = x' + (s + t)x2 = .0:+t(xl,x2)

and
0.l,0t(x1'x2),0t(xl,x2))

= x2 = 0.+e(xl+x2);

moreover m) and 0 are smooth functions of t, x1 and x2. Therefore this fam-
ily is also a one-parameter group of affine transformations. To find its generator
V, observe that the orbit of the point whose coordinates are (x',x2) is given by
t . (x' + tx2,x2) and its tangent vector at t = 0 is therefore x281i again, this is
the required expression for the vector field V if one interprets x2 as a coordinate
function, rather than just a coordinate.

One-parameter affine groups defined. A set { Ot I t E R } of affine transfor-
mations, such that 00 is the identity and 0, o 01 = ¢,+t for every s, t E R, is called
a one-parameter group of affine transformations, or one-parameter affine group for
short. We require that the functions (t, x°) i-. 06 (x°) representing the transfor-
mations of a one-parameter affine group with respect to affine coordinates (zo) be
smooth functions of all the variables (t,x°). Clearly if this condition is satisfied for
one of ine coordinate system it is satisfied for all. In fact, all that is required in
practice is that if ob(z°) = Al(t)x` + db(t) then each Ab and db should be a smooth
real function; we give the smoothness condition in its more general form to make it
obviously consistent with what comes later.

We have already furnished several examples of one-parameter affine groups.
We shall frequently use'jt, or some similar expression, to denote a one-parameter
affine group, though strictly speaking it should represent one specific transformation
drawn from the group.
Exercise 2. Show that the transformations given in affine coordinates by m}(z',x') _
eketz', -0i(z',z') = ek2ex2 form a one-parameter affine group. Show that the transfor-
mations (z',x2) -. (kttz', k2tx2), on the other hand, do not form a one-parameter affine
group. O

Exercise 3. Suppose that Ot: z - zo + Ae(z - zo) + ve defines a one-parameter group
of affine transformations of A. Deduce that At must be a one-parameter group of linear
transformations of the underlying vector space V, and that v.+e = A.(vt)+v, = A1(v,)+ve.
Observe that if 0e leaves zo fixed for all t then ve = 0 for all t. O

Exercise 4. Show that any transformation of a one-parameter group has an inverse, which
is obtained by changing the sign of the parameter: (0e)-1 = 0-t. O



Section 1 57

Exercise 5. Let 01 be a one-parameter group of affine transformations of A. Define 0: R x
A A by O(t, z) = ¢t (x). Show that 0(0, x) = x and that O(s, ¢(t, z)) = ¢(t, O(s, z)) =
¢(s + t, z). 0
Exercise 6. Show that the following constitutes an alternative definition of a one-
parameter affine group: a family { 4t I t E R } of affine transformations is a one-parameter
affine group if the map t -. mt is a homomorphism of R (the additive group of real
numbers) into the group of affine transformations. o
Exercise T. Let v be a given vector in V, or a given covector in V', and xo a given point of
A. Show that the one-parameter family of transformations given by z - z + t(z - zo, a) v
is a one-parameter group if and only if (v, a) - 0. o

The transformations defined in this exercise, when they form a one-parameter affine
group, are called shears along the hyperplanes (x - xo, a) = constant in the v
direction. The one-parameter group described in Example (2) is a special case.

Exercise S. Let Ot be a one-parameter group of affine transformations of A, and let
V = V `i9. be its generating vector field. Show that in affine coordinates V °(z) _
d/dt(Ot (x))t_o and that V°(4,,(x)) = d/dt(mj'(z))t_,. o

What vector fields can be the generators of one-parameter affine groups? We
have shown that one-parameter groups of translations are generated by paral-
lel vector fields. Translations move all points equally: a transformation which
leaves a point fixed might be considered the opposite extreme. Consider there-
fore a one-parameter group of affine transformations Ot which leaves fixed the
point xo: 4it(xo) = xo for all t. Each such transformation is determined by its
linear part At (Exercise 3): Ot(x) = xo 4 At(x - xo), with A, o At = A,+t. In
affine coordinates, with xo as origin, each At is represented by a matrix Lt with
L,L, = L,+e. To find the generator, one has only to find the tangent vector to an
orbit: V°(x)8, = d/dt((Lt)bxb)t_o, so that in affine coordinates the generator has
the form

V = A6xbaa,

where the matrix A, which is constant, is given by A = d/dt(Lt)(0). Although
the matrices Lt must be non-singular, A may be singular. Therefore the generator
V must be a linear homogenous vector field, which means to say that in affine
coordinates, with the fixed point as origin, its components are linear homogeneous
functions of the coordinates. Note that the orbit of the fixed point is a constant
curve, and that the generator vanishes at the fixed point.

Exercise 9. The set of vectors lei, e2) is a basis for V, {91,92} the dual basis for V A
set of transformations of A is given by tht(z) = xo + e"' (z - xo,91)el + ek2t(z - xo, 0')e2,
where k1 and k, are real constants and xo is a chosen point of A. Show that mt is a one-
parameter affine group, and that, in affine coordinates with xo as origin and lei, ez) as
coordinate basis, mt is represented by the matrix diag(ektt,ek3t). Show also that the
generator of 01 is k1z181 + k2z'83.

This is an example of a one-parameter group of dilations. The same group is given
in coordinate form in Exercise 2.

Exercise 10. Verify that, under a transformation from one affine coordinate system to
another with the same origin, the vector field V = Aszb3, remains linear homogeneous,
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but that if the origin is changed then the components of V, though still linear, are no
longer homogeneous. a
Exercise 11. A one-parameter group of affine transformations of a 1-dimensional affine
space, which leaves a point fixed, is given in affine coordinates with the fixed point as
origin by zt '-. A(t)zt, where A is a real function with A(0) = 1, A(s)A(t) = A(s+t). Show
that its generator is Ax'8e, where A = A(O). From the one-parameter group property,
infer that i(t) = AA(t), and deduce that A(t) = eAt, so that the one-parameter group
must have the form xe .-. eAtzI . a

The result of the preceding exercise generalises to any number n of dimensions,
in terms of the matrix exponential. Let Ot be a one-parameter affine group of A
which leaves fixed the point zo. Let the matrix LE represent mt in affine coordinates
with zo as origin. Then the generator of mt is Abxbe3a where the matrix A is given
by A = d/dt(Lt)(0). By the one-parameter group property, d/dt(Lt) = ALE. It is
known that this matrix differential equation has a unique solution such that Lo = I.
(the n x n identity matrix); it is called the matrix exponential of A, written etA or
exp(tA).

Exercise 12. Show that for each t, the matrix exp(t A) is non-singular, that for each s and
t, exp(sA) exp(tA) = exp((s+t)A), and that the matrix exponential has Taylor expansion

112A2+isAs+ O

Exercise 13. Show, by means of the Taylor expansion described in Exercise 12, that the
exponentials of the matrices

l 0 0, ' _0
1 p, and (0 k' 0

k3
are

1 t cost sin t ( clo t 0 l

0 1 -sint cost and
l 0 ek2t

)

respectively. 0
Exercise 14. Let #t(z) = zo+Ae(z-xo)+vt be a one-parameter group of affine transfor-
mations which do not necessarily leave any point fixed. Show that in affine coordinates with
zo as origin the generator of me has the form V = (Ajz' + B')8., where A = d/dt(Le)(0)
and B- = d/dt(u)(0). Show also that if V vanishes at some point zt, then in affine
coordinates with zl as origin each component V is linear homogeneous, but that if V
does not vanish anywhere then no choice of affne coordinates will make its components
homogeneous. Verify that the translations correspond to the can At = idv, A = 0. p

Exercise 14 answers the question raised above: the generator of a one-parameter
affine group is a linear vector field (when expressed in terms of affine coordinates),
and in general an inhomogeneous one. It may be shown that, conversely, every
linear vector field generates a one-parameter affine group.

2. One-parameter Groups: the General Case

In this section we discu:is one-parameter groups of transformations which are not
necessarily affine.

We begin with a simple example of a non-affine one-parameter group of trans-
formations of a 2-dimensional affine space. Let 4t be the transformation given in
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afiine coordinates (XI, X2) by

0t (x1, x2) = x' + t 0t (x', x2) = x2 - sin z' + sin(x' + t).
It is easily checked that mo is the identity map and that m, o Ot = 0.+t for all
a and t. Moreover, the functions Of are smooth (in fact analytic) functions of t,
x1 and x2. Thus Ot is a one-parameter group of transformations. Though Of is
not a one-parameter afi'ine group one may still define its orbits and its generating
vector field. The orbit oZ of a point x is the curve given by oz(t) = qt(z) as
before; and the generating vector field V is the field of tangents to the orbits.
To compute V, observe that the orbit of a point z is given in coordinates by t -
(x1+t,x2-sin x'+sin(x'+t)),acurve whose tangent vector at t = 0is 81+cosz182i
so that

V = a, +cos x'a2.

Exercise 15. Show that the set of transformations given in coordinates by

m!
(21

, 22, 2s) _ (r1 +- t sin rs) cost + (x5 - sin za + t coo x3) sin t
0i(x',x2,xs) _ (x' -- cosx3+tainr3)sint+(x2+tcosxa)cost
0i(zR,x2,ss)=rs+t

is a one-parameter group of transformations whose generator is
x2a, (x' - 2 cos x3 )a2 + as- a

Generating a one-parameter group from a vector field. We have shown by
examples how to derive from a one-parameter group, affine or not, a vector field,
its generator. As the name implies, the vector field may be used, on the other
hand, to generate the one-parameter group. Suppose that one is given a smooth
vector field V (one whose components with respect to any affine coordinates are
smooth functions): then by turning the calculation of the generator on its head one
obtains a one-parameter group of which V is the generating vector field. (Actually
this process may not be completely successful for technical reasons which will be
explained below, but to begin with we wish to describe the general principles.) The
first step is to find the congruence of curves to which V is tangent; these will be
the orbits of points under the action of the one-parameter group. These curves are
called, in this context, integral curves of V: a curve or is an integral curve of a vector
field V if, for each t in its domain, o(t) = V,(t). One can find the integral curves in
terms of the coordinate presentation: in order for a to be an integral curve of V its
components o° must satisfy the differential equation

day
V°(ob) where V = V°aa.

dt
To find the integral curves of V, therefore, one solves this system of first order
differential equations.

We shall illustrate the process of generating a one-parameter group from a vec-
tor field by taking as vector field 8t -f cos x'a2 and reconstructing its one-parameter
group, given at the beginning of this section. The conditions that a be an integral
curve of this vector field are

1 d2
4iiddt = 1 -- - = cos a 1

.
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Integrating the first equation one obtains a' (t) = t + c', and, substituting in the
second equation and integrating again, os(t) = sin(t + e') + c2. The constants
of integration c' and c2 are constant on a particular integral curve, but serve to
distinguish different integral curves. Note that a' (0) = c', a2(0) = sine' + C2.
To obtain the integral curve which passes through the point (x',x2) when t = 0,
one evidently has to take c' = x1, c2 = x2 - sinx'. The curve is then t -.
(t + x',sin(t + x') + x2 - sinx'), which is indeed an orbit of the one-parameter
group we started with.

Exercise 16. A vector field on a 2-dimensional affine space is given in affine coordi-
nates (x',r2) by V = sech'z=81 +82. Find its integral curves, verify that they form a
congruence, and construct the one-parameter group whose orbits are the curves of this
congruence. Describe the orbits. O

Exercise IT. Let (x', x') be affine coordinates. Find the curves with tangent vector field
cost z181 and determine whether they are the orbits of a one-parameter group. If so,
determine the transformations in the group. a
Exercise 18. Let (z',x') be affine coordinates on a 2-dimensional affine space. Define
(global) non-affine coordinates (fl, t') by t' = z1, t2 = z' +sinx'. Show that the set of
transformations given by

_ ±1 + t, ¢, (f' , t') = ±_ - sine' + ein(±1 + t)
is a one-parameter affine group, and identify these transformations. D

3. Flows

In the above example, we showed first how one may pass from a one-parameter
group to the associated congruence of orbits and tangent vector field, and then how
one may go back from the vector field to the congruence and to the one-parameter
group. But, as we mentioned there, this last process is not always possible, even
for smooth vector fields; the following exercise illustrates the difficulty that may
occur. In order to deal with this difficulty we shall have to widen the definition of
one-parameter group: the resulting object is called a flow.
Exercise 19. Let V = (x' )28t (a vector field on a 1-dimensional affine space, with affine
coordinate x'). Show that the integral curve of V which passes through the point with
coordinate xa when t = 0 is given by of(t) = zo(1 - txo)-', where

if 0, t lies in the interval (-oo,1/za)
if z? = 0, t may take any value, and
if zo < 0, t lies in the interval (l/xo,oo).

For each z', and for each t for which it makes sense, set 0)(x') = x1(1 - tz')-'. Show
that these "transformations" #1 have the properties that 'o is the identity transformation
and that 0. o Ot = 0,+1 whenever both sides make sense; and show that V is tangent to
the "orbits" t ' -. fe(z). a

In this exercise, 4, (x) is well-defined for all t only if x'(x) = 0. But there
is nothing pathological about the vector field or the orbits. The vector field is
smooth and, where they are defined, the transformations mt are smooth in t and
x'. But the orbits "get to infinity in a finite time". As a consequence, 4t is
not a one-parameter group of transformations. However, this situation arises so
easily and so frequently that it cannot be excluded from consideration. We must
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therefore introduce modifications of the idea of one-parameter group which will
make it possible to deal with it.
Exercise 20. A vector field on a 2-dimensional affine space has in affine coordinates the
expression V = (x1)281 + (z')28=. Find coordinate expressions for its integral curves, and
find their domains. o

Flows and their congruences. Examples like the ones in Exercises 19 and 20
are incompatible with the idea of a one-parameter group of transformations unless
the requirement that the transformations be defined for all values of the parameter
is given up. The set of transformations then ceases to be a group in the usual
sense; it is called a "local group" or "flow". The idea of the modified definition
is that each orbit should be specified for some range of values of the parameter,
but not necessarily for all values. It is natural to specify values around 0, since
this corresponds to the always possible identity transformation. The definition is
framed along lines suggested by the construction in Exercise 5, which makes it easy
to impose a condition of smoothness in the coordinates and the parameter jointly.
A flow, or local one-parameter group of local transformations, on an affine space A
is a smooth map 0: D -' A, where D is an open set in R x A which contains {0} x A
and is such that for each x E A the set { t E R I (t,x) E 0 } is an open interval
(possibly infinite) in R, and 0 satisfies the conditions

(1) 0 (0, x) = x for each x E A
(2) .0 (s, 4,(t, x)) = qS(s + t, x) whenever both sides are meaningful.

For each x E A a smooth curve o=, with domain an open interval containing 0, may
be defined, by a=(t) _ 0(t, x). For each t a smooth map 4,t of an open subset of A
into A may be defined, by mt(x) = 4,(t, x). However, there need be no x for which
a.(t) is specified for all t, and no t except 0 for which 4t(x) is specified for all z.
In the special case that D = R x A, 4t(x) is specified for all t and x, and then 4't
is a one-parameter group of transformations of A, the provisions about smoothness
being added to the definition originally given at the beginning of'the chapter. Thus
the idea of a flow includes the idea of a one-parameter group as a special case. We
shall denote a flow 0 or something similar.
Exercise 21. Show that the set of transformations constructed in Exercise 19 constitutes
a flow. O

The curve oz is called the orbit of x under the flow 0. Thus a=(t) = 4,t(x), as
in the case of a one-parameter group, but now it may be that os is specified only on
an open interval, not on the whole of R. The idea of change of origin (Chapter 2,
Section 2) has to be modified to take account of this. Let r, denote the translation
t '- t + s of R. If I is an open interval of R, say I = (a, b), and o is a curve defined
on 1, then or o r, is defined on r-, (1) = (a - s,b - s). A change of origin on a is
defined to be a reparametrisation a or., defined on r_,(I ). The parameter value at
a given image point is decreased by s, and the endpoints of the interval on which
the curve is defined are also decreased by s. The tangent vector at any image point
is unaffected.

Exercise 22. Devise a definition of change of origin for a curve defined on (a, oo) and for
one defined on (-oo,b). D



62 Chapter 3

As before, a set of curves which differ only by change of origin is called a
congruent set. It would be possible, again as before, to call a collection of curves
on A, such that each point of A lies on a congruent set, and no two congruent
sets intersect, a congruence of curves. However, it is more convenient to modify
the definition in such a way that a flow may be associated with every congruence.
Accordingly, a congruence of curves on an affine space A is defined to be a set of
curves a2: I= -. A, one for each x E A, where for every x, Is is an open interval
containing 0, such that

(1) a,, (0) = z

(2) each x lies on exactly one congruent set
(3) the set of points D = UREA I= x { x } is an open subset of R x A and the

map a: D -+ A by (t, x) a,, (t) is represented by smooth functions when the curves
are presented in any (affine or curvilinear) coordinate system.

The third of these conditions expresses the requirement that the curves be
smooth and vary smoothly from point to point. In coordinates, a will be represented
by n functions 0 ° of n + I variables t and x°, and interchange of the order of
differentiation with respect to t and any z°, as well as with respect to any two za,
will be permissible.

Since the curves in each congruent set all have the same tangent vector at any
point, a vector field may still be associated with any congruence, and therefore with
any flow. It is often called the generator of the flow, by analogy with the case of a
one-parameter group. The smoothness condition for a congruence ensures that the
tangent vector field will be smooth.

Exercise 23. Show that ¢: D -. A by 0(t, x) = a. (t) associates a flow 0 with the congru-
ence a. o
Exercise 24. Show that in any coordinate system (x°) the tangent vector field V to a
congruence is given by V *a. where V *(x) = (do=/dt)i=o. o
Exercise 25. Let xi be an al ine coordinate on a 1-dimensional affine space. Show that,
for any given k > 1,

0(t,xi) = xi (I - (k - l)t(xi)k-i1-l/(k-I1

/is a flow whose generator is (x1)}81. D

Exercise 26. A collection of maps mt is given in affine coordinates (x', x') by

0e(xi,x') = loges' + t)
(where these make sense). Show that it is a flow.

i(xi,xr) = z, + t

D

4. Flows Associated with Vector Fields

The three related concepts-flow, congruence and vector field-may be exhibited
in the following diagram:

flow

vector field
R

congruence

The arrows denote implication of existence: with every flow there is associated a
congruence, and vice versa, and with every congruence a vector field. The remaining
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question, which we raised earlier but have not yet completely answered, is whether
a congruence, and thus a flow, may be associated with every vector field. This
amounts to the question, whether a certain system of differential equations has a
solution, because if V is a given vector field, with coordinate expression V = V°8Q,
the condition that a curve o be an integral curve of V is that its coordinate functions
satisfy

dtdad
V°(ab).

Such systems of differential equations are known to have solutions, which are
uniquely determined by their initial values. To be precise, for each (x°) there is a so-
lution (a°), defined on some open interval of R containing 0, such that o°(0) = x°;
and any two solutions satisfying the same initial conditions are identical on the
intersection of their domains. This result of differential equation theory guarantees,
for each point x, the local existence and uniqueness of an integral curve az of V
such that aZ(0) = x. An integral curve o= such that a,(0) = x is called a maximal
integral curve through x if every other integral curve through x is the restriction of
the maximal one to an open subinterval of its domain. By piecing together local in-
tegral curves it is possible to construct, for each point x, a unique maximal integral
curve through x. The key result in generating a flow from a vector field V is that
because of the uniqueness property the collection of maximal integral curves of a
vector field forms a congruence. To establish this we have to show that the maximal
integral curves through two points lying on the same maximal integral curve are
congruent, that is, differ only by a change of origin. We denote by I= the domain of
the maximal integral curve os through x; Is is an open interval, and may very well
be a proper subset of R, as Exercise 19 shows. Suppose that y lies on the path of
a,,, so that y = as(s) for some s - Is. Then the curve aZ or, is certainly an integral
curve of V (since a change of origin does not affect tangent vectors), and its initial
point, (as o r,) (0), is just as(s) = y. Thus as o r, is at worst the restriction of the
maximal integral curve through y to some subinterval of its domain. The domain
of aZ o r, is so it follows that r_,(IZ) C ly. But the same argument, with
the roles of x and y interchanged, gives r,(I,) C Is, from which it follows that
Is and Iy are just translates of each other. Thus maximal integral curves may be
partitioned into congruent sets, and each point lies on precisely one congruent set.

The smoothness requirement and the requirement of openness on the set D for
maximal integral curves to form a congruence may also be deduced from the theory
of systems of first order differential equations. We shall not go into the details.
The conclusion of this argument is that given a smooth vector field V on an affine
space A there is a congruence of curves on A such that V is the generator of the
corresponding flow.

The diagram may thus be extended to
vector field

flow

f N
congruence

The implications expressed in this diagram, that whenever one of the three con-
structions is given then the existence of the other two is assured, will be exploited
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frequently throughout this book.

Exercise 27. Find the flow whose infinitesimal generator, in affine coordinates (x',z2),
is ((x')2 + (z)=)(z=a, - z'a:). Describe the orbits. o
Exercise 28. Let V be a vector field on an affine space A generating a flow 40, let *: A A

be any smooth invertible map with smooth inverse, and let t(t, z) = 4'(4(t, $-'(x)). Show
that 0 is also a flow on A, and that its generator V is given by V,' = $.(V,_,i,l). o

5. Lie Transport

The constructions to be described in the following sections are among the most
useful and most elegant in differential geometry. Lie transport is a process for
displacing a given geometric object along a flow. The object may be a vector,
a covector, or something more complicated. Lie transport might also be called
"convective transport"; it is quite distinct from parallel transport, and in many
ways more fundamental.

The Lie derivative, to be described in the next section, is a process using Lie
transport to measure the rate of change of a field of objects along a flow. It is a
directional derivative operator constructed from the flow and expressed in terms of
the generator.

In this section we shall discuss the Lie transport of vector fields and covector
fields. We begin with a simple example, the Lie transport of a displacement vector
along a one-parameter affine group. The general case, which follows, entails the use
of induced maps of tangent vectors and covectors since the transformations are no
longer affine.

Lie transport along a one-parameter affine group. Let mt be a one-
parameter group of affine transformations of an affine space A, and let w be a
displacement vector attached to A at a point z. Under the action of 4it the points
x and x + w will be moved along their orbits to Ot(x) and 't(x) + At(w) where At
is the linear part of Ot. The result of this process, for each t, is thus to transform
the displacement vector w, attached at x, into A1(w), attached at Ot(z). In this
way a displacement vector may be constructed at each point of the orbit az of
x. An assignment of a displacement vector at each point of a curve, like this, is
called a field of displacement vectors along the curve. We denote by W the field of
displacement vectors, and by W(t) the vector it defines at o=(t) = Ot(z), so that
W (t) = At(w). The process of construction of W from w is called the Lie transport
of the displacement vector w along as by 4t (or just "along mt").

The significance of W, so far as the action of Ot is concerned, is that for each
t, W (t) connects corresponding points of the orbits of x and x + w.

Suppose for example that 4t is the one-parameter group of affine transforma-
tions of a 2-dimensional affine space A given in affine coordinates by

(x', x2) ti (x' cost - x2 sin t, xl sin t + x2 coe t).

(This example was treated in Section 1.) Let w be the displacement vector from
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Fig. I Lie transport of a displacement vector along a one-parameter affine
group.

(x',x2) with components (w1,w2). Then Oe takes (x' -+1,x2 +w2) to

((x1+w') cost - (x2 + w2) sin t, (x' + w') sin t + (x2 + w2) cos t)

x2),.O'(x',x2)) -+ . (w' cost -w2sint,w1sint+w2cost)

Thus W (t) has components (w' cost - w2 sin t, w' sin t + w2 cos t). In the Euclidean
interpretation, the effect of Og is to rotate w through angle t, as well as moving its
point of attachment around the origin through the same angle.
Exercise 29. Let 0e be a one-parameter group of translations. Show that any displace-
ment vector is Lie transported into a field of parallel vectors by t. 0
Exercise 30. Let 401 be the one-parameter group of affine transformations given in affine
coordinates by (z',z2) -+ (x' +tz2,z=) (another example treated in Section 1). Describe
the Lie transport of a displacement vector, and draw a sketch. 0
Exercise 31. Let to be the one-parameter affine group of a 2-dimensional affine space
given by z zo+e 1(z-zo) (a special case, with k1 = k3, of Exercises 2 and 9). Describe
the Lie transport of a vector attached at zo, and of one attached anywhere else. 0
Exercise 32. Let zo, v and a be a point in an affine space A, a vector, and a covector,
respectively, such that (v, a) = 0. Describe the Lie transport of an arbitrary vector w by
the one-parameter affine group 4i: z .--. z + t(z - zo,a)v. Distinguish between the cases
(w, a) = 0 and (w, a) j4 0. 0
Exercise 33. Let me be the one-parameter affine group of a 3-dimensional affine space
given in affine coordinates by

(z1,z2,zs)'-e (z1coskt - z2sinkt,z'sinkt+z'cookt,z3 +t).
Show that the orbit of the origin is a straight line, whatever the value of k, but the Lie
transport of a vector specified at the origin yields a parallel field if k = 0, while for k # 0
the Lie transported vector spirals round the za-axis. a

Lie transport may be applied to other figures besides displacement vectors. In
the first place, the whole of the line joining the point x to x + w will be transformed
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by iot into a new line, the one joining Ot(x) to Ot(x+w), since affine transformations
take lines into lines. Thus Lie transport along a one-parameter affine group may
be extended from displacement vectors to lines. Moreover, affine transformations
map hyperplanes to hyperplanes, and this may be used to define Lie transport of
hyperplanes along a one-parameter affine group. Consider the hyperplane through
x consisting of all points x + w such that (w, a) = 0, where a is some nonzero
covector. Then the points Ot(x + w) _ Ot(x) + At(w) lie in the hyperplane through
iot(x) determined by the covector A_t'(a), since (At(w),A_t'(a)) _ (w,a) = 0.
The field of hyperplanes along the orbit os of x constructed in this way is said to be
Lie transported; the Lie transported hyperplane at o,(t) is the one defined by the
covector A_t'(a). The minus sign arises because linear forms map contragrediently
under affine transformations.

The result of the process of Lie transport, in each case, is the construction of
copies of a chosen object along the orbit of a one-parameter affine group through the
point where the object was specified originally. The form of the copies is determined
by the configuration of neighbouring orbits, not by a single one.

The special feature of the affine one-parameter groups in these examples is that
they take lines into lines and hyperplanes into hyperplanes, so that it makes sense
to speak of the transport of an extended figure into one of the same kind. A general
one-parameter group, or a flow, does not preserve these objects, but nevertheless a
process similar to the one already described may be carried out in tangent spaces.
We next describe this general process.

Lie transport of a tangent vector along any flow. By the use of induced
maps one can generalise Lie transport from one-parameter affine groups to arbitrary
flows. Suppose there to be given a flow 0 on an affine space A and an element w
of the tangent space to A at some point x. We shall explain how to construct from
w a vector field (field of tangent vectors) along os, the orbit of x, by application of
the flow 0. (Vector fields along curves were defined in Chapter 2, Section 8.)

As before, we denote by I= the maximal interval on which a= is defined.
For each fixed t E .I the domain of the map y '(t, y) contains some open
neighbourhood of x. We denote this map mt. The corresponding induced map
46t.:TZA T#,(=IA = T,,(t)A is thereby defined. This enables one to construct,
from the vector w E T=A, a succession of induced vectors Ot.w E T,,(t)A along the
orbit a=, that is, a vector field along a. The process is best imagined as one in
which t varies continuously; the construction is called the Lie transport of w by 0.

In contrast to the affine case it is not possible to interpret the Lie transported
vector as a displacement vector joining corresponding points on different orbits.
However it does relate neighbouring orbits in a certain infinitesimal sense, which
may be described as follows. Consider the line through x determined by w, which
is given by s - x + sw. It will no longer be the case that the transform of this line,
namely s - Ot(x + sw), will be a line; it will however be a smooth curve (for each
fixed t), and the Lie transported vector ct.w is the tangent vector to this curve at
a = 0. (Of course, 40t (x + sw) will not necessarily be defined for all 8 E R if ¢ is not
a one-parameter group, but it will be defined for a in some open interval containing
0, which is sufficient for our purposes). So one could say that the displacement
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vector from 0, (x) to the corresponding point -At (x + sw) on a neighbouring orbit is
approximated by c,.sw, and this the more accurately the closer s is to zero.

Fig. 2 Lie transport along a flow.

Exercise 34. Show that if Oe is a one-parameter affine group then the Lie transport of
displacement vectors defined above agrees with the Lie transport of tangent vectors just
defined. O

In the next two exercises, affine coordinates on a 2-dimensional affine space are
denoted as usual by (x',x2).
Exercise 36. Carry out the Lie transport of 81 and of 82 from the origin of affine coor-
dinates along the orbits of the one-parameter group

(xI, x ) .-. (xI + t, x2 - sin x' + sin(xl + t)).
Exercise 36. Carry out the Lie transport of 8, from any point of the affine space along
the flow described in Exercise 26. 0

The same construction may be applied to covectors, paying due account to
contragredience. In the interval of definition of o= one may construct, from a
covector a E TTA, a succession of induced covectors O_t'a E T;=(,)A along the
orbit a=. Again the process should be seen as a continuous one, giving rise to a
covector field along a., and the construction is called the Lie transport of a by m.

Exercise 37. Carry out the Lie transport of dx' and of dx2 along the flows given in
Exercises 26 and 35. 0
Exercise 38. Show that if V and a are respectively a vector field and a covector field
obtained by Lie transport along an orbit of some flow then (V, a) is constant along the
orbit. a

6. Lie Difference and Lie Derivative

Suppose that W is a vector field along the orbit of a point x under a flow 0 on an
affine space A. If W is defined by Lie transport then for each s, W (s) = O,.W (0),
which one may equally well write O_,.W (s) - W (0) = 0. Even if W is not defined by
Lie transport one may form 0-,.W (s) - W (O), which is a vector at x; it is called a
Lie difference. In general a Lie difference will be nonzero, and in fact it will provide
some measure of the departure of W from being defined by Lie transport.
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The Lie difference may be constructed for each a in some interval containing 0.
A more useful quantity will be obtained if this dependence on s is eliminated, as may
be done by taking a suitable limit as s -' 0. Now lim,.o (4'_,.W (s) - W (O)) = 0;
but it happens that lim,-o a (4'_,. W (s) - W (0)) always exists, is not necessarily
zero, and gives useful information about W: it is called the Lie derivative of W
along qs at x. Since it is constructed from vectors at x the Lie derivative is also a
vector at x. If W is defined by Lie transport then its Lie derivative is zero; otherwise
its Lie derivative measures its rate of change along the orbit of x, in a sense in which
a field defined by Lie transport is to be regarded as unchanging.

To see why the limit in the definition of the Lie derivative exists it is advanta-
geous to regard a " 0-..W(s) - W (O) as defining a curve in the tangent space at
x; this curve is evidently smooth, and passes through the origin of TEA when a = 0.
The Lie derivative is simply the tangent vector to this curve at a = 0, regarded as
an element of TEA.

There is nothing particularly special about the role of x in this definition, which
may be easily modified to apply to any point on the orbit: the Lie derivative of W
along 0 at or. (t) is defined to be

lim 1 (4'_,.W(s + t) - W(t)).

In this way one may construct from W a new vector field along the orbit, whose
value at any point of the orbit is the value of the Lie derivative of W there. This new
field is again called the Lie derivative of W. It will become clear, from a formula
derived below, that it is a smooth field.

Given the equivalence of a flow and its generator, one may as well regard the
Lie derivative as being defined in terms of the vector field V which generates 45 as in
terms of m itself. In fact it is usual to include V rather than 0 in the notation for a
Lie derivative: one writes CvW for the Lie derivative of W along the flow generated
by V, and calls it the Lie derivative of W with respect to V. Here W is assumed
to be a vector field along an integral curve of of V, and CvW is then a vector field
along the same integral curve. We denote by CvW (t) the Lie derivative of W at
a. (t): thus

CVW(t) = Ii m (m_e.W(s+t) - W(t)).

It is suggestive and convenient also to write this

CVW (t) =
da

(4'_..W (s + t)).="

taking advantage of the fact that 4'o. is the identity.
It is often the case that V generates a one-parameter group, not only a flow,

and that the domain of W is more than a single orbit, but the construction of CvW
is unaffected by this.

Before giving an example of the calculation of a Lie derivative we shall conclude
the story of the relationship between Lie derivative and Lie transport. If W is
defined by Lie transport along aE then CvW = 0: for in this case,

W(s+t) = 4'(,+t).W(0) = (0,°mt).W(0) = 4'..4't.W(0) = m..W(t).
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Conversely, suppose that W is a vector field along os such that LvW = 0. We
consider the curve r .+ -0_r-W(r) in T=A, and show that it is in fact a constant
curve. We have, for each fixed t,

dr ds\ (s + t))a=o

d
_ W a+t_ -t

ds
)Ja=o - -t.CYW (t) = 0

(where the variable has been changed from r to s = r - t). Thus 0-,.W(r) is
constant and equal to its value when r = 0, which is W (O); and so W is defined by
Lie transport of W (O). Thus CvW = 0 is a necessary and sufficient condition for
W to be defined by Lie transport.

Computing the Lie derivative. We turn now to the computation of Lie deriva-
tives.

As an example, let V = -x219, + xt 82, which generates the one-parameter
affine group (x' , x2) -+ (x' cos t - x2 sin t, x i sin t + x2 cost); and let W be the
parallel vector field 8, -1 82. We compute CvW (0) along the integral curve of V
through the point with coordinates (1,0). The result will therefore be a vector at
that point.

The integral curve is t (cos t, sin t). We have therefore to compute qS_a.W (s),
where W (s) is the vector 8l + 82 at the point (cos s,sin s). One simple way of
carrying out this computation is to choose a curve through (cos s, sin s) to which
W (s) is the tangent, compute the image of this curve under Q_ and find its tangent
vector. A suitable choice of curve is the line r -+ (r + cos s, r + sins); its image
is the curve r '- (I + r(cos s + sin s),r(cos s - sin a)). (The image curve is also a
line, because is affine, though this is incidental.) The tangent vector to the
image curve at r = 0 is (cos a 4- sin s)8, + (cos a - sin s)82 = 0_..W (a). This is a
vector at (1,0): 8l and 82 are the coordinate vectors at that point. To compute the
Lie derivative we have merely to evaluate the derivatives of the components with
respect to s, at s = 0; we obtain CvW (0) = 8, - 82.
Exercise 39. Let dt be the one-parameter affine group given in affine coordinates by
(x', z2) -+ (z' + tx2,x2) and let W be the vector field given along the orbit of (0, 1) by
W (f) = cos 181 4- sin 182. Find CvW as a function of t, where V is the generator of Ot. E3

Exercise 40. Let 0t be the one-parameter affine group given in affine coordinates by
(z', 22,x3) .-. (c°z',e2tz2,estzs) and let W be the parallel vector field with components
(3,2, 1). Find CvW on the orbit of (1, 1, 1) as a function of t, where V is the generator of
0t. Also compute V. o
Exercise 41. Let +Gt be the one-parameter affine group given in affine coordinates by
(z',z2,x3) .-+ (x' + 3(,x2 + 21,z' F t) and let V = x'81 + 2x282 + 3z'8s. Find CwV
on the orbit of (1,1,1), where W is the generator of opt. Determine W. Describe the
connections between this exercise and the previous one. Compare CvW with CwV at
(1, 1, 1). o
Exercise 42. Let It:r -. zo + At(x - zo) + vt be a one-parameter affine group with
generator V. Let W be a vector field given along the orbit of z. Show that in an affine
coordinate system the components of CvW (0) are W'(0) - A; W e(0 , where W *(I) are the
components of W and the As are the entries in the matrix of d/df(At)(0). o
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Exercise 43. Show that for any vector field V, CvV = 0. 0
Exercise 44. Show that if V generates the flow ¢ and W is a vector field given along an
orbit of 0 then Cv (0j. W) = me. CvW . 0
Exercise 45. Let We and W3 be vector fields defined along an orbit of a flow 0. Show
that Cv(ciW1 + c2W2) = cjCvWi +c2CvW3 where V is the generator of 0 and ca and c3
are any constants. 0
Exercise 46. Let f be a function defined on a neighbourhood of r. Show that for any
vector field W defined along the orbit of z

Cv(IW)(0) = (V2f)W (0) + f(z)(CvW)(0). 0

The Lie derivative of a covector field. The Lie derivative of a covector field
corresponds to the Lie transport of a covector in the same way as the Lie derivative
of a vector field corresponds to the Lie transport of a vector. Let 0 be a flow on A,
a,, the orbit of the point z, and of a covector field specified on a=. One may construct
a curve in Tz A by Lie transporting to that point covectors specified at other points,
obtaining 0,'a(s) from a(s) given at o=(s). The change in sign (compared with the
case of a vector field) arises from the contragredience: 0, maps x to l,(x) = a,,(s),
so 0,' pulls a(s) back from as(s) to x. The Lie difference is i,'a(s) - a(0), and
if V denotes the generator of 0, then the Lie derivative of a along as, with respect
to V, at t = 0, is

Cva(0) =
J

s
(O,'a(s) - a(0)) =

ds (0"(19))(0).

In this way one can define a new covector field with the same domain as the original
one. The Lie derivative measures the rate of change of a along the flow, and is zero
if and only if a is defined by Lie transport, just as is the case for vectors.
Exercise 47. Show from the definition that if W is a vector field and a a covector field
defined along an orbit of a vector field V then at each point of the orbit V(W,a) =
(CvW,a) + (W,Cva) where (W,a) is regarded as a function defined along the orbit. (The
relative signs in the definitions are chosen so that this Leibniz formula will hold). 0
Exercise 48. Let ae and o= be covector fields specified along an orbit of V. Show that
for any constants ce and cr, Cv(ceaI + czar) = cICvae + e3Cv0:. 0
Exercise 49. Show that Cv(fa)(0) = (V=f)a(0) + f(z)(Cva)(0), f being a function
defined on a neighbourhood of x, and a a covector field specified along the orbit of z. o

7. The Lie Derivative of a Vector Field as a Directional Derivative

We now exhibit an explicit representation for the Lie derivative of a vector field as
a directional derivative operator, acting on functions. Before giving the relevant
expression we point out that from a vector field U and a function h one can derive
a new function Uh by setting (Uh)(x) = U=h. In coordinates, if U = U°8a then
Uh = U°8,h = U°8hs/8x°. If U is defined only on a curve then Uh is a function
on the same curve, while if h is a function on an integral curve of U then Uh makes
sense and is again a function on the same curve.

The formula in question is

(Cvw) f = V(Wf) - W(Vf).
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Here W is specified along an orbit of V, and f in an open neighbourhood of a point
of the orbit, so that Wf is determined along the orbit, and V, which differentiates
along the orbit, can sensibly act on it.

Fig. 3 Specification of W and I.

The calculation entails combination of an induced map formula with the defi-
nition of Lie derivative. For any smooth map of affine spaces 0 and any function g
on the codomain of 0, ,(,'dg = d(g o 0), where >[,' denotes the induced map which
pulls covectors back from r/.(x) to x (Chapter 2, Section 7). Here dg is considered
as a covector at tp(x), and d(g o +/i) as a covector at x. On the other hand, the Lie
derivative of a covector field a is given by d/ds(0,'a(s))(0). We use this expres-
sion with a the field of covectors along az defined as follows: a(t) is the covector
determined by df at a., (t). It follows from the cotangent map formula just stated
that 4,'a(s) = d(f o 0,), as covectors at x. Thus with this choice of a

CVa(0)
ds

(d(f o m,))(0).

The calculation of each component of this covector involves first the partial differ-
entiation of the function and evaluation at x, and second the differentiation of the
result with respect to the parameter a and substitution of 0 for s. It follows from
our assumption about the smoothness of a flow that these steps are interchangeable.
Moreover, d/ds(f o m,),=o = Vf since, for any point y, s'-. q,(y) is the orbit of y,
to which V. is tangent. On interchanging the differentiations we therefore obtain

Cva(0) = d(Vf)

(as covectors at x). We combine this result with the Leibniz formula (Exercise 47)

V (W, a) _ (CvW, a) + (W, Cva);

recognising that (W, a) = W f, one obtains

V(Wj) = (CvW)f4-(W,d(V!)) _ (CvW)/+W(Vf)
so that

(CvW)f =V(WI)-W(VI),
as asserted. This formula holds at any point where the operations are defined.
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By choosing f = xa in the formula, one obtains (CvW )a = V(W6) - W(V).
The component W* of W is to be regarded a function of the parameter along an
integral curve of V, so that V(W) = ti/a; thus

CvW(t) = (cys(t) - W(t)(Va))aa = (Wa(t) - W6(t)a6Va)aa.

The components of CvW are clearly smooth functions of t, assuming V and W to
be smooth; thus CvW is a smooth vector field.

Exercise 50. Compute CvW again from the data given in Exercises 40 and 41 using this
formula. 0
Exercise 61. Show that for any covector field a

Cv a(t) = (aa(t) + a,,(t)8,V e)dxa.

8. Vector Fields as Differential Operators

A vector field, like a tangent vector, is a directional derivative operator. If V is a
vector field and f a function then V f is a function, whose value at x is Vs f . These
ideas have arisen already, in the previous section, but there the vector fields in
question need be specified only along a single curve. We now consider vector fields
specified all over an affine space, or at least over an open subset of it, and describe
some of their operator properties.

The module of vector fields. The smooth vector fields on an affine space A
constitute an Abelian group (axioms 1 to 4, Note 2 of Chapter 1). Moreover, if U
and V are vector fields and f and g are functions then f U is a vector field, defined
by (f U)= = f (x)U=, and

(1) f(U + V) = fu + fV
(2) (f + g)U = f U + gU
(3) f (9U) = (f9)U
(4) 1 U = U

(where 1 denotes the constant function which takes the value 1 at every point).
These properties are formally similar to those which define a vector space. However,
the set of smooth functions, which here plays the role of scalars (the role played
by R in the definition of a real vector space) differs from R in one important
respect: the product of two functions may be zero without either factor being zero
(vanishing identically). Nevertheless, the set of smooth functions has many of the
other properties of R (commutativity of addition and multiplication, distributivity,
and so on), and includes R in the form of the constant functions. It is an example
of an algebra over R. A set with the vector-space-like properties enjoyed by the
set of smooth vector fields is called a module over the algebra in question (in this
case the algebra of smooth functions on A). The algebra of smooth functions on A
will be denoted 3(A), and the module of vector fields X (A). The coordinate vector
fields (a,,) in any affine coordinate system constitute a basis for the module X(A):
every vector field may be written as a linear combination of these, with coefficients
from the underlying algebra of functions. The existence of a basis is a property of
all affine spaces but does not extend to manifolds. Other bases for X(A) may be
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found, not necessarily consisting of coordinate vector fields: indeed, if functions Un
are such as to form a non-singular matrix at each point of A, then the vector fields
u,, = UQeh constitute a basis for X(A).

A vector field V acts on functions as a linear operator which satisfies Leibniz's
rule:

( 1 ) V(af +bg) = aVf +bVg a,bE R, f,g E 3(A)
(2) V (f g) = (Vf)g + fV g

An operator with these two properties is called a derivation. Thus the vector
fields on A are derivations of the algebra of functions 3(A). It may be shown
that, conversely, any derivation of 3(A) corresponds to a smooth vector field on A.
Besides the module and derivation properties we mention one other, the chain rule,
which is useful for computational purposes: if h: R -. R is a smooth real function
and V and f are any vector field and any function on A, then

V(hof)=(hof)Vf.
With these properties to hand it is easy to compute the action of a vector field
V on any function given explicitly in terms of the coordinate functions, when the
components of V with respect to the coordinate basis are known: for if V= V°8a
then V' = V (x°). As an example, suppose that f = x'x2 + sine x3: then for any
vector field V

Vf =V(x')x2+x1V(z2)+2sinx3cosz3V(x3) =x2V'+x'V2+2sinx3cosx3V3;

and if, for example, V = 81 + x382 - x283 then
V f = x2 + x 1x3 - 2x2 sin x3 cos x3.

Exercise 52. Let V = x181 + x202 + x'83 and f = z2x' + x3z' + z1r2. Compute V f . a

9. Brackets and Commutators

The composite of two vector fields V and W-that is, the operator f " V(Wf)-is
linear but does not satisfy Leibniz's rule:

V (W(fg)) = V ((Wf)g + f(Wg))

= (V (Wf))g+ (Wf)(Vg) + (Vf)(Wg) + f (V(Wg)).
However, the symmetry in V and W of the unwanted terms reveals that the com-
mutator V o W - W o V is a derivation of 3(A) and is therefore a vector field. The
commutator of two vector field operators is usually written between square brackets
and is therefore called their bracket:

(V,W) f = V(Wf) - W(Vf).

The geometrical significance of the bracket becomes immediately apparent if this
formula is compared with the one derived in the previous section for the Lie deriva-
tive: formally,

(V,WI = CvW.
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However, the present point of view differs from that of the preceding section: there
V was considered throughout in its role of generator of a flow, while W was supposed
specified only along an integral curve of V, which was enough for the definition of
the Lie derivative of W. Here, on the other hand, V and W have equal statue in
their roles as directional derivative operators, specified everywhere on A, or at least
on an open subset. Nevertheless it should be clear that the point of view of the
preceding section can be regained by considering the restriction of W to a single
integral curve of V.

Substituting V = V aaa and W = Waaa, where (xa) is any coordinate system,
affine or curvilinear, in the expression for the bracket, one obtains immediately its
coordinate expression

IV, WI = (VbabWa - WbabVa)aa.

Notice that on restriction to an integral curve of V the first term becomes the
derivative of Wa along the integral curve.

The following properties of the bracket are simple consequences of its definition;
they reveal some properties of the Lie derivative not so far apparent:

(1) the bracket is skew-symmetric: IV, W) = -IW,V)
(2) the bracket is bilinear, that is linear (over R) in each argument
(3) IV, fWI = fIV,WI + (Vf)W for any f E 3(A)
(4) IU,IV,WI)+ IV,Iw,Ull + IW,IU,VII = 0.

The last of these, which is known as Jacobi's identity, is a general property of
commutators of linear operators. Its proof is a simple computation:

IU,IV,WII+IV,IW,U11+1w,AU,V11
=UoVoW-UoWoV-VoWoU+WoVoU
+VoWoU - V o U oW - W o U o V+ U oW o V

+W oUoV - WoVoU -UoVoW + V o U o W =0.

Exercise 63. Infer that CwV = -CvW when V and W are globally defined vector
fields. o
Exercise 64. Deduce from property (3) that for f E T(A)

Cv(fW) = fCvW +(Vf)W while CfvW = fCvW - (Wf)V. o
Exercise 55. Show that Jacobi's identity may be written in the form IU, IV, WJJ =
IIU, V), WI + IV, IU, WJJ, which bears some resemblance to Leibniz's rule. E3

Exercise 66. Show that CvCwU - LwLvU = Cjv.wjU. 0
Exercise 57. Show that if V = (Aex& + K")8a and W = (Bex° + L")8a are linear vector
fields then

(V,W) _ ((B Ae - A<B6)x + (Be Kb - AOL'))8s
In particular, any two constant vector fields commute; the bracket of a constant with a
homogeneous linear vector field reproduces the action of a matrix on a column vector;
and the bracket of two homogeneous linear vector fields reproduces (except for sign) the
commutator of matrices, IA, B) = AB - BA. o
Exercise 68. Show that the commutator of matrices satisfies conditions (1), (2) and (4)
above, and that so does the "bracket" of vectors in 3-dimensional Euclidean space defined
by(a,bI=axb. U
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Exercise 69. Compute the commutator of each pair of vector fields that may be formed
from the three vector fields 8,, X181, and (X1)281 on a 1-dimensional affine space. o
Exercise 80. Show that if one of the vector fields U, V and W is a linear combination
of the other two, with constant coefficients, then Jacobi's identity is a consequence of
skew-symmetry and bilinearity of the bracket. E3

Vector fields related by a smooth map. Let 4Y: A -+ B be a smooth map. It
induces a linear map 1Y. of vectors tangent to A at any point. However, it is not
necessarily the case that a vector field V given on A will map under 11+. to a vector
field on B. We may certainly form 4'.=V= for all x E A: but if if is not injective
there is no reason to suppose that '1'.,Vt - %P.ZVZ when 1Y(t) = 41(x); even if if
is injective this procedure will not define a vector at each point of B if if is not
also surjective. Thus only when if is bijective can one be sure that Q+. maps vector
fields on A to vector fields on B. When this is the case, and 1Y has a smooth inverse,
the image vector field has the flow qt given -by t(t, y) = IV (O(t, if - I (y)) for y E B,
where 0 is the flow of V. (This result was obtained in Exercise 28 for a smooth
invertible map of A onto itself; the more general case is a simple extension.)

Thus for a general smooth map no theory of induced maps is possible which
applies to all vector fields. However, there are many occasions when one wishes
to consider vector fields V on A and W on B which happen to be related via the
induced maps of a smooth map if in the sense that, for all x E A,

W$(1) = 4F.:Vz.
The vector fields W is then said to be *-related to the vector field V. We now
describe some properties of *-related vector fields, and in particular show that if
W1 is if-related to V, and W2 is 41-related to V2, then IWI, W21 is 1Y-related to
IV1, V21-

Let W be a vector field on B, 4Y-related to the vector field V on A . We note
first of all that for any function f on B

(Wf)(`w(x)) = W*(z) f = V= (f o 41)

and thus
(Wf)oif =V(fo41).

Conversely, if V and W satisfy this relation for every function f on b then W is
4+-related to V. This gives an alternative criterion for *-relatedness in terms of the
vector fields as operators.

The property of the brackets of 41-related vector fields is now almost immediate.
Let W, be 1Y-related to V, and W2 to W2. To show that jW1i W21 is 41-related to
IV,, Vzl we have to show that for every function f on B

(IW1, W21f) o 41 = IVI1V21(f o W).

But
(IW1, W2lf) o 41_ (WIRd)) o 41- (W,(W1f)) o if

= V1((Wsf) o 41) - V2((W2 f) o 4')

V1(Vs(f o 4')) - V2(V1(f o'ff'))
= [VI, V21(f 0 W)
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as required.

Exercise 61. Show that if W is *-related to V then the flow 0 of W is related to the
flow 0 of V by 0(t, $(z)) = $(O(t, x)). O

10. Covector Fields and the Lie Derivative

Just as the concept of a vector field has been enlarged, from an object defined along
a curve to one defined all over the affine space, so also may the concept of a covector
field. A covector field on an affine space A is a choice of element of each cotangent
space to A. A covector field a may be expressed in the form a = aedx° in terms of
a coordinate system (x°), affine or not; the dx° are the coordinate covector fields.
The aQ are functions on the coordinate chart; the covector field is smooth if these
component functions, for an affine coordinate system, are smooth.

A function f on A may be used to define a covector field, its differential, whose
value at x is just df at x. We denote by df the differential of f as a field also. Given
any covector at a point there is a function (indeed an affine one) whose differential
agrees with the covector at that point. However, it is not necessarily the case that
given a covector field there is a function whose differential agrees with the covector
field everywhere. The conditions for this to be so are related to the conditions for a
vector field to be a gradient which are discussed in vector calculus. We shall return
to this point in Chapter 5.

The Lie derivative may be adapted to apply to covector fields, in a pretty well
self-evident way. Properties of the Lie derivative of a covector field along an integral
curve extend to the new situation in analogy with what happens for vector fields.

Exercise 62. From the formula V (W, a) = (CvW,a) + (W,Cva) deduce that CvCwa -
CwCva = Liv,wla for any covector field a. O

The definition of the bracket and the results of Exercises 56 and 62 may be
given a coherent formulation if first of all the Lie derivative on functions is defined
to be the directional derivative:

Cvf = Vf,

and secondly the bracket of Lie derivative operators is defined to be their commu-
tator:

ICv,CwI=CvoCw-CwoCv;

for then the Lie derivative on functions, vector fields and covector fields satisfies

ICv,CwI = Clv,wl

Thus the whole structure of Lie derivative operators is closely related to the bracket
structure of vector fields.

Exercise 63. Show that, so far as operation on functions is concerned, Cv od = do Cv. O
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11. Lie Derivative and Covariant Derivative Compared
In Section 9 of Chapter 2 the covariant derivative of a vector field along a curve was
defined by exploiting the parallelism of affine space to identify tangent spaces at
different points. Like the Lie derivative, the covariant derivative may be extended
to an operation of a vector field on a vector field, which results in a further vector
field. It may also be extended, again like the Lie derivative, to an operation of a
vector field on a covector field, leading to a further covector field. In this section
we shall first of all explain these constructions, and then compare the resulting
operation with the Lie derivative.

Suppose that W is a vector field defined along a curve a in an affine space A;
then in affine coordinates the components DW °/Dt of DW/Dt are given simply by
DW°/Dt = dW°/dt. At any chosen point o(t) of the curve, therefore, the covariant
derivative of W along the curve may be expressed in terms of the tangent vector to
the curve at that point, b(t), as follows:

DW
Dt - o(t)(W°)aa.

(Differentiation of W° along the tangent vector o(t) is intended on the right hand
side.) Note that, W being given, it is enough to know the tangent vector to a at
any point in order to compute DW/Dt at that point.

Suppose now that W is no longer a vector field defined along just one curve, but
is instead a vector field defined all over A, or at least on some open neighbourhood
of a point x in it. Then we may define, for each non-zero v E T=A, the covariant
derivative of W along v as the value of DW/Dt at x along any curve through x
which has v as its tangent there. If v = 0 then we define the covariant derivative
to be zero also. We shall denote this newly defined object it is an element of
T= A.

Exercise 64. Show that in terms of not necessarily affine coordinates
V.w = r;'w')aa,

where the l' are the appropriate connection coefficients for the given coordinates. 0
Exercise 65. Devise a corresponding definition for the covariant derivative of a covector
field along a tangent vector at a point. 0

This construction may be extended to a definition of the covariant derivative
VvW of a vector field W by a vector field V, as follows: VvW is the vector field
whose value at x is Vv,W. By adapting the result of the Exercise 64 above we
obtain the following expression for the covariant derivative in coordinates:

vvw vc(acw° + r2cwh)aa.

Exercise 66. Find the corresponding expression for the covariant derivative of a covector
field. 0

In terms of affine coordinates the covariant derivative takes the simple form

VVW = vc(acw°)aa.

However, in the more general situations to be treated later, the non-affine version
is the safer guide.



78 Chapter 3

From these expressions, or from the properties of D/Dt exhibited in Chapter 2,
Section 9, it is easy to see that the covariant derivative has the following properties:

(1) VU+vW = VUW + VvW
(2) V fvW = jVvW f E 3(A)
(3) Vu(aV + bW) = aVuV + bV(,W a,b E R
(4) VU(fV) = fVUV + (Uf)V.
We consider next the relation between the covariant and the Lie derivative, via

the bracket. It is clear from the formula IV,W = (V (W°) -W(V°))ae that VvW
provides just the first half of (V, WI, and that in fact

JV,WI = V,.W - VwV.

We call this the first order commutation relation of covariant differentiation. Fur-
thermore, using the expression for the covariant derivative in affine coordinates,

VU(VvW) = VU(V(W°)aa) = U(V(W°))aa,
and so

VU(VvW) - Vv (VvvW) = VIU,v1W.

This is the second order commutation relation.
The formula in Exercise 47 of Chapter 2 shows that the covariant derivative

operator acts on pairings in the same way as the Lie derivative: that formula may
be written immediately in terms of vector fields

V (W, a) _ (VV W, a) + (W, Vva).

Thus although covariant derivatives are defined in terms of parallelism and Lie
derivatives in terms of flows, they share many properties. We sum up by listing
first their similarities, and then their differences. We write D to stand equally for
V or for C when a statement is true for both:

(1) each is an operator depending on a vector field, which sends vector fields
to vector fields and covector fields to covector fields

(2) each is linear in both arguments over R
(3) each satisfies the following version of Leibniz's rule in the second variable:

Dv (fW) = fDvW + (Vf)W
(4) for each, its operations on vector and on covector fields are related as

follows: V (W, a) = (DvW, a) + (W, Dv a)
(5) for each, the commutator of operators corresponds to the bracket of vector

fields: IDv, Dwl = Div,wl
The reader should be warned, however, that so far as the covariant derivative is

concerned, this last property is specific to the absolute parallelism which one finds
in affine space, and does not generalise.

There are the following differences between covariant and Lie derivatives:
(1) (Vv W)= depends only on the value of V at x, whereas (CvW )= depends both

on the value of V at x and on the value of the partial derivatives of its components
at x

(2) V1vW = jVvW , but CjvW = f CvW - (W f )V (Exercise 54)
(3) for affine coordinate fields 8,,, Vva, = 0 but in general CVO, 34 0



Section 12 79

(4) CwV = -CvW, but in general VwV # -VyW
(5) VvW - VwV = IV,WI, whereas CvW = IV,WI (and soCvW - CwV =

21 V,WI).

Other expressions for the covariant derivative. We have shown that with
respect to non-affine coordinates (x°) the covariant derivative operator takes the

form
VVW = Vc(acW° + I . rv )a°

where the connection coefficients are defined in terms of affine coordinates (i°)
by

ax° a2id
rec = aid or V&,ab =axbax°

More generally, the covariant derivative may be referred to any basis of vector
fields {U°}, not necessarily coordinate fields. If we define the connection coefficients
rybc with respect to {U°} by

vn. Ub = 'Y& Ua,

then for any vector fields V V°U° and W .- W°U° (care is needed here: the V°
and W* are functions, the U° are vector fields)

VVW = V `(Uc(W °) + 76cWb)U°.

Exercise 67. State what type of object each symbol occurring in this equation repre-
sents. O

_If we express the new basis with respect to affine coordinate fields, say U.
Uaab, then

Ud(adUt)a, = Ud(adUe)(U-i)e

where the (U-i)a are the components of the matrix inverse to (U;) (non-singular
because the vector fields U. are linearly independent); thus

7bc = U6)(U-i)e
It is not necessarily the case that 7 b = -y , since IN, U,J is not necessarily zero; in
fact

IUb, UcI = (7 b - 7bc)U

Exercise 68. Confirm, from the definition of 74

Exercise 69. Show that if {0°} is another basis, and U° = A;U., then
A/7e Uc(n ) + Te AbA,.

O

O

12. The Geometrical Significance of the Bracket

In this section we tease out some of the geometrical consequences of the identifica-
tion of the Lie derivative with the bracket of vector fields, and show the relation of
the bracket to the corresponding flows.

First of all we show that if the bracket vanishes then the flows commute. Let V
and W be vector fields on an affine space A such that IV,W I = 0, and let 0 and 10 be
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the flows generated by V and W respectively. We assume throughout this section
that the parameters labelling the flows are confined to those domains for which the
equations make sense. If the flows are one-parameter groups, the equations will
make sense everywhere on A. We showed in Section 6 that IV, WI = CvW vanishes
on an orbit of V if and only if W is Lie transported by 0, that is,

W#,(x) = of-W=.

On the other hand, from the result of Exercise 28, one may conclude, interchanging
the roles of V and W, that for each t, . _ 0to0,o4_t is a flow on A with generator
W of given by

Therefore LvW = 0 if and only if W4, = W. It then follows from the uniqueness of
integral curves that the flows of W #1 and W must coincide: Ot o (r, o o-t = 0.,
whence

Ot 0 ',l =KGs o 0g.

This proves that if the bracket vanishes then the flows commute.
Exercise 70. Show that if the flows commute then the bracket vanishes.

The next two exercises are concerned with a particular type of one-parameter
group of interest, the matrix exponential, which we introduced in Section 1. Re-
sults about general one-parameter groups or flows have interesting consequences
for matrices; conversely, matrix exponentials can give useful pointers to the general
theory.

Exercise 71. Show that if A and B are square matrices, then exp(tA) and exp(aB)
commute if and only if A and B commute. Infer that exp(tA) and exp(sA) always commute
and that exp((A) commutes with A. a
Exercise 72. Show, using the Taylor expansion given in Exercise 12, that for a commu-
tator of matrix exponentials

exp(-sB)exp(-tA)exp(sB)exp(tA) = f - stjA,BJ
correct to second order terms in the Taylor expansion. O

The result of Exercise 72 suggests that it may be possible to interpret
the bracket of arbitrary vector fields in terms of the commutator of their flows
>V_, o 0_t o V). o qt. This is indeed the case, as we shall show. The following exer-
cise in coordinates paves the way.

Exercise 73. Let 0 and 0 be flows on A generated by vector fields V and W respectively.
Show that in affine coordinates (x')

ot(x') =x° 4-tv°+ 1t2Vba,va+0,
0.(0,(x')) = x°+tV°+SW'+

2
t2V6a,V°

+ stV °a,W ° + 1s2 W "a,W ° +O,

where each of the expressions on the right is evaluated at (x'), and O, denotes terms of
third order in s and t. Infer that

= x' + st(V, W1' + Os,
where the bracket is evaluated at (x'). a
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It appears from this result that when IV,W)Z y 0 the "square" obtained by
transforming the point x successively by 'j, vit, O_t and 0_1 does not close, and
that t21 V,WJZ is an approximation to the displacement vector between its ends.

i
z O-t(0-t(t't(Ot(z))))

Fig. 4 Non-commuting flows.

A more precise interpretation of FV,WlZ may be given in terms of the curve
t +G_t(as-t(tGt(mt(x)))). It would be pleasant to be able to say that jV, WIs is the
tangent vector to that curve at t = 0; but a moment's reflection will reveal that the
curve has zero tangent vector there. However, when a curve has zero tangent vector
at a point one may define a second-order tangent vector there, as in the following
exercise.

Exercise 74. Suppose that the curve a has zero tangent vector at t = 0. Show that the
map T(A) 3(A) by j d2/dt2(f oa(t))(0) has the properties of a tangent vector (that
is, the appropriate linearity and Leibniz properties). It is the second-order tangent vector
toaatt=0. 0

We shall show that IV, W I= is one half of the second-order tangent vector to the
curve t +L_t(45--t(tyt(mt(x)))) at t - 0. To do so we consider, for any f E 3(A),
the real function F given by F(t) = We have to show that
F(O) = 0 and that F(0) = 2jV, W I= f . In order to compute derivatives of F it is
convenient to introduce another function G, defined on a neighbourhood of (0,0)
in R2 by

G(r,s) = f (0-r(W...e(Wr(0,(x))))).

We denote the derivatives of C with respect to its first and second arguments by
G, and C, respectively. Then

F(t) = C(t,t)
F(0) = G,(0.0) 4" G,(0,0)

F(0) = Grr(0,0) + 2Grs(0,0) + Gss(0,0).

We shall compute G,,(0,0) from G,(0,s), and we therefore require to know
only Gr(r, 0), G, (0, s) and C,(0, s). Now G(r, 0) = G(0, s) = f (x) and so
Gr(r,0) = dG(r,0)/dr = 0, and similarly G,(0,s) = 0. Thus F(0) = 0; and
G,,(0,0) = 0. It remains to compute G,(0,s) and To
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do so, we note that for fixed s we may write G(r,s) = f (fI1_,(Xr(x))) where
Xr = m-, o 0, o 0. is a flow, whose generator is WO--. It is necessary, therefore, to
evaluate d/dr(f(0-,(X,(x))))(0) where 0 and x are two flows.

Once again it is convenient to introduce a function of two variables, say H, by
H(u, v) = f (t/'u(Xv(z))), whose domain again contains a neighbourhood of (0,0) in
R'. Then

dr (f (0-,(Xr(x)))(0) _ -Hu(0,0) + H., (0,0)

But H0(0,0) = d If(u,0)(0) = W=f,

while Hv(o,0) = d-H(0,v)(o) = (W°-')=f,

and so Gr (O, s) = -W= f + (W"--).f.

Thus, recalling that we see that

Gre(O,O) (CvW)(0)f = IV,WIif

as required.

Exercise 75. Show, using these methods, that for vector fields V, W which generate flows
0, 0, the tangent vector at t = 0 to the curve t -. 4e (0, (r)) is Y. + Ws. Show that Ot o 4.4
defines a flow if and only if 0, and Of commute for all relevant s and t. 0

Notice that if (V,Wl,, 54 0 then it is possible, by tracking round a "square"
built from orbits of V and W, to travel from x in a direction transverse to the
2-dimensional subspace of T=A spanned by V. and W. We develop this idea in
Chapter 6.

Summary of Chapter 3
A vector field V on an affine space A is a choice of element V. of TsA for each
x E A. In coordinates, V = V°8a, the V° being functions on A; V is smooth if the
V* are. The collection of smooth vector fields, X (A), is a module over the algebra
3(A) of smooth functions on A. Vector fields act linearly, as directional derivative
operators, on 3(A); they also satisfy Leibniz's rule. The bracket IV,Wj of vector
fields, which is to say, their commutator as operators, (V, W j f = V (W f) - W (V f ),
is again a vector field; IV, WI = (VbabW° - Wb86V°)8,.

A flow on A is a smooth map 0 of a suitable open subset of R x A, containing
{0} x A, to A such that 4.(0, x) = x, and 4.(s, m(t, x)) = 4(s+t, x) whenever both sides
make sense. Fixing x defines a curve a , the orbit of x under the flow; its domain
may not be the whole of R; a=(0) = z; and if y = as(s) then v,(t) = o=(a+t) (this
is change of origin of the parameter). A collection of curves with these properties
is a congruence. Fixing t defines a transformation Of; its domain may not be
the whole of A; 00 = ids; 0, 0 Of = 0.+1. When the domain of a flow is the
whole of R x A the corresponding transformations form a one-parameter group. If
these transformations are always elements of a particular group (translation group,
affine transformation group) the one-parameter group (of translations, of affine
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transformations) is the image of a homomorphism of R into that transformation
group.

Vector fields, congruences of curves and flows are equivalent to each other.
Each vector field defines a congruence, of its integral curves, which are given in
coordinates as the solutions of a system of ordinary differential equations; the con-
gruence property is a consequence of the theorem on the uniqueness of solutions of
such a system. Each congruence defines a flow, whose orbits are its curves, in which
l t(x) is the point a parameter distance I along the curve of the congruence through
x. Each flow defines a vector field, its generator, whose value at x is the tangent
vector at t = 0 to the orbit of x.

The generators of affine transformations are linear but, in general, inhomoge-
neous vector fields; of translations, constant vector fields. The one-parameter group
generated by a linear homogeneous vector field is determined by exponentiation of
a matrix.

The Lie derivative CvW (Cva) of a vector field V (covector field a) along an
orbit of the flow 0 generated by V is the vector (covector) field along the orbit
whose value at t is d/ds(4_ W(.s 1 (for a vector field) d/ds(c,.o(s+t))a=o
(for a covector field). In coordinates,

CVW - (Wa Wtc9bVa)aa Cva = (ita + abtaVb)dxa.

If W is a vector field on A then CvW = IV,WI. The Lie derivative is then skew
symmetric and linear in both arguments, and

Cv(fW) = fCvW + (Vf)W Cfvw = fCVW - (Wf)V

(CvW, a) _l (W, Cva) = V (W, a) I Cv, Cwl = Clv,wl.

The last property is related to Jacobi's identity

IU,IV,WII +IV,IW,(JII+(W,IU,VII = 0.

If 41: A -. B is a smooth map, a vector field W on B is said to be *-related to
a vector field V on A if W$(2) = 4'.2V2 for all x E A. If W1, W2 are *-related to
V1, V2 respectively then (W1, W2I is 41-related to IV1, V2I,

The tangent vector at t 0 to the curve t Ot(4i(x)) is V, 4 W7, where V
and W are the generators of 0 and 0. The tangent vector at t = 0 to the curve
t is zero, but its second-order tangent vector is 2IV,WI=.
Flows commute if and only if their generators do.

The covariant derivative operator V is defined by (VvW)= = Vv,W == DW/Dt,
where DW/ Dt is the covariant derivative of the restriction of W to the integral curve
of V through x (or any other curve through x to which V,, is tangent) evaluated at
x. It is distinct from the Lie derivative, depending on parallelism for its definition.
It is linear in both arguments, and

Vv(JW) fVvW + (Vf)W V1vW = fVvW
(VV W, a) + (W, Vv a) = V (W, o) VvW - VwV = (V,W I

(Vv, owl = Clv,wl

(this last property being special to affine space).
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In the terminology of vector calculus, the operation of directional differentiation
of a function f by a vector field V would be written V - grad f. The covariant
derivative would be written (V grad) W. The Lie derivative is practically unknown
in vector calculus.

Note to Chapter 3

Solution of systems of ordinary differential equations. Let Va, a =
1,2,... , n, be smooth functions defined on some open connected subset 0 of R".
Then for every point (sa) E 0 there are smooth functions oa, defined on some open
interval of R containing 0, such that

daa

dt
= VC(ab) and aa(0) = xa.

Moreover, the functions a° are unique, in the sense that any other functions with the
same properties coincide with the a° on the intersection of their domains, which is an
open interval about 0. In other words, the system of ordinary first-order differential
equations .i° = V"(xb) has a unique solution with given initial conditions.

This theorem is proved in many books. Very often the more general situation
in which the functions Va depend also on the variable t is considered. However,
the result is most often proved with the assumption that the V° are C' only. See
for example Sanchez 119681 Chapter 6, where the problem of piecing together local
solutions to obtain a maximal solution is also discussed. The proof of the theorem
under the smoothness conditions stated above is more difficult: a proof may be
found in Lang 119691, pp 126ff.

In case the map (za) (Va(xb)) is linear the equations always admit the
solution as = 0; thus, by uniqueness, a solution of the equations which is zero
anywhere is zero everywhere.

The books by Arnold 119731 and by Coddington and Levinson 119551 are stan-
dard.



4. VOLUMES AND SUBSPACES: EXTERIOR ALGEBRA

In ordinary Euclidean space the volume of a parallelepiped whose edges are vectors
e1, e2 and e3 is det(ea) where ei, ez and e3 are the orthogonal Cartesian components
of e1, e2 and e3. In an affine space without additional structure, on the other hand,
the idea of volume is without intrinsic significance for, like length, volume is not
preserved by general affine transformations. However, as we shall show in this
chapter, it is possible, exploiting the properties of determinants, to introduce an
idea of volume into an affine space without introducing a Euclidean measure of
length. Thus the availability of a measure of length is sufficient for the definition
of volume, but it is not necessary.

The statement that in Euclidean space the volume of a parallelepiped is given by
a determinant requires some qualification: the value of a determinant may turn out
to be zero or negative, both somewhat unlikely "volumes", as the word is commonly
used. However, it is convenient, in a systematic treatment, to give up the common
usage which expects volumes to be positive numbers. The value zero is obtained
when the vectors along the edges of the parallepiped are linearly dependent, so that
it collapses into a plane figure. Whether a non-zero value is positive or negative
depends on a convention. To explain the convention we distinguish between right-
handed and left-handed sets of vectors: a set of mutually perpendicular vectors e1,
e2 and e3 in ordinary Euclidean space is called right-handed if when the vector e3 is
grasped by the right hand, thumb extended in the sense of that vector, the fingers
wrap around the vector in the sense of rotation from el to e2. The set is called
left-handed if the same is true when the vector e3 is grasped by the left hand.

Fig. 1 Left- and right-handed sets of vectors.

The usual convention is to assign positive volume to a parallelepiped whose
edges can be obtained from a right-handed set by a transformation with positive
determinant, and negative volume to a parallelepiped whose edges can be obtained
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from a right-handed set by a transformation with negative determinant. Since
a left-handed set is obtained from a right-handed set by a transformation with
negative determinant, a parallelepiped whose edges can be obtained from a left-
handed set by a transformation with positive determinant will have negative volume,
according to this convention. An ordered set of vectors which comprises the edges
of a parallelepiped with positive volume is said to have positive orientation, with
negative volume, negative orientation. However, it should be emphasised that an
initial choice is necessary, and that it would be perfectly consistent to assign positive
volume and orientation to left-handed sets of axes instead of right-handed ones.

To give substance to the idea of volume, one has not only to specify it, but also
to pick out those affine transformations which preserve it. As we shall show, such
transformations form a subgroup of the affine group.

Another application of determinants is to the characterisation of subspaces of
an affine space. This is so because one can identify a subspace by a determinant
of pairings formed from vectors which span it. The familiar algebraic properties
of determinants may be summed up by saying that a determinant is an alternat-
ing multilinear function on its rows or columns, and in studying subspaces one is
confronted by such functions at every turn, which leads one to investigate them
more carefully for the sake of their geometrical interpretations. The study of al-
ternating multilinear functions, which is called exterior algebra, underlies all of the
developments in this chapter.

In the first seven sections we develop first the idea of volume and then the ideas
about subspaces going, as far as possible, from geometric property to formula. In the
subsequent sections we give an introduction to exterior algebra, and go from some
of the algebraic formulae to the corresponding geometric properties. (Determinants
are defined, and some of their properties listed, in Note 2 to this chapter.)

1. Volume of a Parallelepiped

A parallelepiped is the many-dimensional generalisation of a parallelogram. The
area of a parallelogram may be written as a determinant. In this section we define
the volume of any parallelepiped in an affine space and show how it, too, may be
written as a determinant.

The argument takes place in an affine space A modelled on a real n-dimensional
vector space V. A parallelepiped (z; v1, V2.... , in A is specified by giving a point
x, the principal vertex of the parallelepiped, and a set of vectors v1, v2, ... , V. in a
definite order, its edges. The parallelepiped consists of the set of points { x + tava
0 < to < 1 } (range and summation conventions for a). The vertices are the points
x + t"va for which each t" is either 0 or 1, and the faces are portions of hyperplanes
obtained by setting one of the t" equal to 0 or I and allowing the others to vary
in their domain. The 2n faces are thus divided into n pairs, the faces in each
pair lying in parallel hyperplanes. If the vectors va are not linearly independent
then the parallelepiped will be degenerate, and some of these assertions will need
modification: some faces may be lower dimensional and some pairs of faces may lie
in the same hyperplane.
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Two parallelepipeds are counted as different, even though they comprise the
same point sets, if a different vertex is chosen to be the principal one or if the edges
are given in a different order.

An affine transformation of A takes parallelepipeds into parallelepipeds. The
affine transformation A with linear part A takes the parallelepiped (z; v1, v2,. .., vn)
into (A(x); A(vl),.\(v2), ... , In particular, a translation rv, takes the paral-
lelepiped (z;vl,v2,...,vn) into (x + w;v1,v2,...,un).
Exercise 1. Show that the parallelepiped -v, v3, ... , vn) encompasses the same
point set as (x; v, v2, ... , Vn). O

Volume functions. It should be emphasised that, while a parallelepiped may be
defined entirely in terms of the affine structure on an affine space, a measure of
volume of parallelepipeds is something which is introduced as an additional struc-
ture, and which entails not only a conventional choice of sign, as in the case of
ordinary Euclidean space described above, but also a choice of scale for volumes. In
an affine space there are, to start with, no orthogonal unit vectors in terms of which
to define unit volume, so that the unit of volume, as well as the orientation, has to
be chosen. It is not to be expected, therefore, that there will be a single function
with the properties of a measure of volume on an affine space, even allowing for the
ambiguity of sign.

We shall approach the investigation of volume functions by setting out axioms
which any measure of volume might be expected to satisfy. We use A to stand for
a volume function, and 11(z; ul , V2.... , vn) to denote the volume it ascribes to the
parallelepiped (x; vi, v2,. - -, vn). The axioms are as follows:

(1) the volume of a parallelepiped is a real number, and there is at least one
parallelepiped for which it is not zero

(2) volume is unaltered by translation:

fl(x + w;v1,v2i...,v,,) = fl(z;vl,v2,...,v,) for all w E V

(3) if an edge of a parallelepiped is scaled by factor k, its volume is scaled by
the same factor:

fl(x;vl,v2- .,kvc,...,v,) = kfl(x;V1,v2,...,UC,...,un)

for all real k
(4) if a multiple of one edge is added to another, the volume is unaltered:

fl(x;vl,v2,...,ub + kvc,...,vc,....,vn)
fl(x;ul9v2,...,vy,...,vc,...9 un) for 6 # c.

Assumption (1) implies that fl is a function A x Vn -+ R (where Vn means
V x V x . x V with n factors V). It prohibits the assignment of volume 0 to
all parallelepipeds-an assignment which would be consistent with practically any
other plausible assumptions about volume, but is neither useful nor interesting.
Assumption (2) requires that volumes respect the homogeneity of affine space. It
asserts that the volume of a parallelepiped depends only on its edges and not on
the position of the principal vertex, and so reduces the study of volume to consid-
erations about the vector space V underlying the affine space A: 0 is independent
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of its first argument, and accordingly one may write fl(vi, vs, ... , v") instead of
f) (X; v1, vs, ... , v") and regard fl as a map V" -+ R. Assumption (3) asserts, for
example, that doubling an edge doubles the volume, and that if any edge is 0 then
the volume is 0. It asserts also that if an edge is reversed then the sign of the volume
is changed, the magnitude remaining the same. In view of Exercise 1 and assump-
tion (2) this is consistent with what has been said already about orientation, and will
allow us to define the orientation of any linearly independent ordered set of vectors
in an affine space with a volume function: the ordered set of vectors (v1, vz, ... , v")
will be said to have positive orientation if the volume fl(vlivz,...,v") is positive,
negative orientation if fl(v1, vz, ... , v") is negative. Assumption (4) generalises the
rule that figures with the same base, lying between the same parallels, have the
same volume. Consider, for example, two parallelepipeds with the same princi-
pal vertex x and with edges (v1 , vz, ... , v") and (v1, vz, ... , v" + kvi) respectively,
where {v,} are linearly independent. Each parallelepiped lies between the same
two hyperplanes, the one through x spanned by v1, v2, ... , vn_ 1 and the parallel
one through x + v". The faces lying in the hyperplane through x coincide, while
in the hyperplane through x + v" the face of the second parallelepiped is obtained
from the face of the first by translating it through kv1. These two parallelepipeds
with the same base, lying between the same parallel hyperplanes, are to have the
same volume.

Fig. 2 The significance of axiom (4).

Exercise 2. Show that there is a parallelepiped whose volume is 1. G

Exercise 3. Let w
that

= w°v, E V. Replace the cth edge of (x; vi, vz, ... , v") by w. Show

fl(vlivz,...,w,...,v") = w f1(vI,vz,...,v").
Show, in particular, that if the vectors v1, vz, ... , v" are linearly dependent then
fl(vi,vz,...,v") = 0. Deduce that the edges of any parallelepiped whose volume is non-
zero constitute a basis for V. 0
Exercise 4. Show that the function A on triples of vectors in 3-dimensional Euclidean
space defined by A(vI,vz,vs) = VI vz x v3 satisfies the axioms for a volume function. O
Exercise S. Let {e,} be a basis for V. Let A be the function which maps (v1, vz, , v")
to the determinant whose rows are the components of the v, relative to the e, as basis: if
v, = v;e then A(vi i vz, , v") = det(v;). Show that A satisfies the assumptions for a
volume function. Let {0°} be the basis for V' dual to {ea}. Show that A(v1,vz,...,v") =
det((v,,8')). Show that any parallelepiped whose edges are (e1,e2, .,e") has volume 1
(as measured by A). O

Exercises 4 and 5 exhibit volume functions, and show, therefore, that our ax-
ioms for volume functions make sense. In the next section we show that the con-
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struction in Exercise 5 is essentially the only possible construction of a volume
function.

2. Volume as an Alternating Multilinear Function

A function on a vector space with two or more arguments, which is linear in each
argument, is said to be rultilinear; a function which changes sign if any two of
its arguments are interchanged is called alternating. To be explicit, suppose that
T: VP -. R is a function with p arguments, each taken from V. Then T is linear
in its ith argument ( 1 < i < p) if, for every vt , vz i ... , v,, v', ... , v, E V and every
k,k'ER,

T(vl,v2i...,kv, + k v,,...,vP)
= kT(UI,v2,...,v...... v ) + k'T(vt,V2,...,v;,...,VP).

The function T is p-fold multilinear if it is linear in each argument. It is alternating
if

T(v1,v2,...,v3....,V,,...,1,1,) - --T(v1,v2,...,V,,...,vs,...,VP)

for every collection of vector arguments, and for interchange of any pair of argu-
ments. These two properties are of course quite independent; we shall have occasion
later to deal with functions which are multilinear without being alternating.

We show now, from the assumptions about volume, that every volume function
must be alternating multilinear. We show first, from the results of Exercise 3, that
any volume function fl is multilinear. We have to show that

r
fl(VI, V2,..., vc +

11(UI,v2,...,vc,...,Vn),

since by assumption f1(v1,v2,...,kv,.,...,vn) = kfl(vt,v2i...,vc,...,vn), this is
enough to show that fl is linear in its cth argument, and so that it is multilinear
(since the same result will hold for every c).

Suppose first that {v),v2,...,vc,...,v0} and {v1iv2,...,v...... v,j are both
linearly dependent. Then { vt , v2 i ... , vc + v', ... , vn } is also a linearly dependent
set, and so

fl(v1,v2,...,v,,,...,v,,) 4-

since each term is zero. On the other hand, suppose that. at least one of these
sets of vectors, say { v 1 , v2, ... , va, ... , v,}, is linearly independent. Then v' _
kvc + Ld#c kdvd say, and

fl(vt,v2,...,vc +vc1, ,vn) : fl(vI,v2, (1 +k)vc + kdvd,... V,,),

(I -+ k)fl(vt,v2,... , vn)

d$c

by Exercise 3, while

fl(v1, v2.... Vet, ... , vn) = kfl(v1 , v2..... V., ... , vn)
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so that again

= f1(v1,v2,. ,vc, . ,vn) + f1(vl,V2,...,VCI,... U.. n).

Thus f1 is linear in each argument; since it has n arguments it is an n-fold multilinear
form on V.

If two of the arguments of fl are the same, then its arguments are certainly
linearly dependent, so that, again by Exercise 3, its value is zero. From the multi-
linearity it now follows, inserting v + v' in any two places, that

f1(V1,v2i...,u + v',...,v + v',...,vn) = 0

= f1(VI,V2,...,V,...,U,...,Un) + f1(UI,v2i...,U,.... VI ,...,Vn)

+ f1(vl,v2,...,v',...,V,...,v,) + fl(vl,v2,...,v',...,v',...IVn)

leaving only

f1(V1,V2,...,V,...,V ,...,Un) + f1(vl,v2,...,v ,...,v,...,Vn) = 0,

which is to say, interchange of any pair of arguments changes the sign. Hence fl
is alternating: it is an n-fold alternating rultilinear form on V. An alternating
multilinear form is also called an exterior form; thus n is called an n-fold exterior
form, or exterior n-form, or even simply n-form. These latter expressions, although
less expressive of the nature of the object, are preferred for their brevity and es-
tablished by common usage. The word "skew" or "skew-symmetric" is also used as
a synonym for "alternating"; however, we shall reserve skew-symmetric to refer to
the components of an exterior form, to be introduced shortly.

If A is an affine space modelled on V, then an exterior form on V determines
an exterior form at each point of A. The same language is used to describe forms
on A and on V.

Volumes and determinants. We now make explicit the connections between
volumes, exterior forms, and determinants. Let (x; e1, e2, ... , en) be a parallelepiped
whose volume is not zero. The ea must be linearly independent, and hence a basis
for V. Now let r be any permutation of (1, 2,... , n). Then

fl(e,r(l),e*(2)....,e,r(n)) = C(lr)f1(e1,e2,...,en),

where c(r) is the parity of r; because if r is written as a product of transpositions,
each transposition will effect a change of sign, by the alternating property of A, and
c(r) is just (-1) to the power of the number of transpositions. We shall express the
volume of any other parallelepiped in terms of the volume of this one by writing
the vectors which specify its edges relative to the ea as basis. For this purpose it
is convenient to introduce the Levi-Civita alternating symbol, which is a tensor-
algebraic device for constructing determinants: for each ordered set of n integers
(a, I a2, ... , a,) with I < ai < n let

a, a2...a,, 0 if a1,a2i. . .,an are not all different
E l t(r) otherwise
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where, in the second case, a is the permutation which brings (1,2,... , n) to
(al,a2,...,a,).

Now choose any (a1ra2,... ,an), possibly with repetitions, and define

flat as...a., = Weal , eat, ... , eat. )

These numbers (for all possible (a,, a2,... , an)) are called the components of fl
relative to the basis {ea}. Notice that the array of components is skew-symmetric:
if any two of its indices are interchanged a component changes sign, and if any two
are equal it is zero. Comparing the definition of components with the expression
for given above, one sees that

fln,ay...a., =

with each index at allowed to range over 1, 2, ... , n.
Now let (x; VI, v2i ... , vn) be any other parallelepiped, and express the Va in

terms of the ea, say va = vaet. By the multilinearity of fl,

fl(VIIV2,...,Vn) =
a, a .a%= Eata2...a,V1 V2 .Vnnl el,e2,...,en ;

but from the definition of (ata,.... and the definition of a determinant,

Eat Us' ... vn° _ E(lr)v1 lllvz (2) ... vnlnl = det(Va),

(the sum on the right being over all permutations Ir of (1,2,... , n)) since the n
summations on the left contribute only when (al,a2i...,an) is a permutation of
(1, 2,... , n). Substituting in the preceding formula, one is left with

fl(VI,V2,...,vn) = det(vQ)fl(el,e2,...,en).

Compare this with the result of Exercise 5, which is a special case. What has been
shown here is that any volume, because it is an exterior n-form, may be written as
a determinant of its edge vector components times a standard volume.
Exercise 6. Let (f°) be another basis for V, related to the basis already introduced by
k. = h;eb. Show that

where 'L t a=...a are the components of f) relative to the new basis. o
Exercise 7. Let (91,92,...,9^) be a set of covectors, given in order, and let 0: V^ -. R
be the function defined by f1(vl, v2, ... , v^) = det((v,,, 9')). Show that fl is an exterior re-
form, that is, that it is multilinear and alternating, and that every non-zero exterior n-form
may be so obtained, by a suitable choice of (9°). Show that 11 takes the value zero on every
set of vectors if and only if the e° are linearly dependent, and that if the 9° are linearly
independent then ft takes the value zero only when its arguments are linearly dependent.
Let {0} be another set of covectors, related to the given one by B° = kj9'. Show that
{9°} yields the same exterior n-form, by det((va,9°)), if and only if det(ks) = 1. O

The exterior n-form defined by fl (v 1, V2, ... , v,) = det((v3, 01)), the covectors
91 being given, is called the exterior product of the 911 and denoted

f1=91n92A...Aon
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(the mark n is read "wedge"). The order of factors in the product is important.
In fact, this construction is not limited to n-forms. If {6',62,...,9'} are any r
covectors, given in order, and w: V' -. R is the function defined by

w(vj,V2,...,Vr) = det((va,61))

then w is an r-fold multilinear alternating form. Its geometrical significance will
become apparent in Section 4.

Exercise 8. Show that
6"(') n 9"(2) n ... n 6*(") = c(rr)6' n 62 n ... A 6"

for any permutation a.
Exercise 9. Let 12 and Cl be two volume functions on V, let {e,} be a basis for V, and let
(v,) be any n vectors in V. Show that if f2(vi,v2,... ,v") = 0 then fl(vi,v2,.. ,v") = 0;
and that

f2(vi,v2i...,v") fl(ei,e2,.... e")

fl(vi,v2,...,v") f2(ei,e2,...,e")

when fl(vi,v3,...,v") V_' 0. O

It follows from the result of this exercise that fl differs from 1`1 by the same
constant factor for the volumes of all parallelepipeds, and that any volume function
is determined completely by its value on one ordered basis of V. The only n-form
which does not correspond to a volume is the zero form, which takes the value
zero whatever its arguments. Consequently, if {6°) is any basis for covectors, every
exterior n-form may be written fl = k6' n 62 A . . . A On for some k, and fl is a volume
function if and only if k 54 0. The non-zero n-forms may be divided into two disjoint
sets, the forms in each set differing from one another by a positive factor and from
the forms in the other set by a negative factor. This allows one to generalise the
idea of an orientation, described in the introduction to this chapter. An orientation
on V is a choice of one of these two sets of n-forms, and two forms in the same set
are said to define the same orientation. Choice of an orientation for V amounts to
choice of a volume function, up to a positive factor. An orientation having been
chosen, an ordered basis {el,e2i...,e,,} for V is said to be positively or negatively
oriented according as fl(e I , e2, ... , e") is positive or negative, for some, and hence
for any, volume function defining that orientation.

If A is an affine space modelled on V, then an orientation on V determines an
orientation on A. The other definitions just stated may be repeated word for word
for A. As has been pointed out before, the choice of an orientation, like the choice
of a volume form, is conventional.

3. Transformation of Volumes
We have already described the effect of an affine transformation on a parallelepiped.
We show now what it does to a volume function fl. Let (z; vt, v29 ... , v") be a
parallelepiped in A, and let A be an affine transformation of A with linear part A.
The transformed parallelepiped is (A(x); A(v, ), A(v2 ), ... , A(v")) and its volume is
fl(A(vi),A(v2),...,A(v")). Notice that the function

(vl,v2,...,v,,) - fl(A(vi),A(v2)...... (v"))
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is alternating and multilinear, so that it is an n-form on V. It must therefore be a
multiple of the n-form 11; call the multiplying factor D(A). We show that D(A) is
just the determinant of the matrix representing A, with respect to any basis. Let
{ea} be any basis for V, and let A(ea) = AQeb. Then

D(A)n(ei,e2,...,en) = ft(A(ei),A(e2),...,A(en))

= Aa' A12 ... A"" fl e e e2 n al, a2,..., a
a, a2 a

= Ea,a2...a..A1 A2 An fl el,e2....sen

= det Aba)fl(el,e2i...,en).

But 11 is non-zero and {ea} a basis, so fl(el,e2i...,en) j4 0. Thus D(A) = det(Aba)
as asserted. Since it is independent of the choice of basis, we can write det A for
det(A6 ).

Exercise 10. Show that det does not depend on the choice of U. o
Exercise 11. Let A and M be affine transformations with linear parts A and p. By
considering the effect of MoA on a volume form fl show that det(poA) = (detp)(detA). O
Exercise 12. Show that det A = 0 if and only if A is singular. 0
Exercise 13. Let A be a linear map and f1 a non-zero n-form on V. Show that the
function V" R given by

(VI, V2i ... , Vn) t--, n(Vl, V2, ... , A(VC), ... , Vn)
c=I

is an n-form on V, and is therefore a constant multiple of U. Show that the factor is the
sum of the diagonal entries of the matrix representing A with respect to any basis for V,
and that it is independent of choice of 0. O

The factor is called the trace of A and denoted tr A.
Whether or not an affine transformation changes orientation is determined by

the sign of the determinant of its linear part: if det A > 0 then orientation is pre-
served, if det A < 0 it is reversed. The orientation-preserving affine transformations
form a subgroup of the group of all affine transformations. The linear parts A with
detA > 0 form a subgroup of the general linear group GL(V). The affine transfor-
mations with det A = 1 preserve not only orientation but volume itself, and no other
affine transformations preserve volume. A linear transformation A with det A = 1 is
called unimodular, and an affine transformation with unimodular linear part may
also be called unimodular.
Exercise 14. Show that the unimodular linear transformations of a vector space V form
a group, and that this group is a normal subgroup of GL(V). Show that the unimodular
affine transformation of an affine space form a group, and that this group is a normal
subgroup of the group of all affine transformations.

The groups of unimodular transformations of R" and of V respectively are
denoted SL(n) or SL(n,R) and SL(V) and called special linear, "special" being in
this context a synonym for "unimodular".

The assignment of an orientation and the assignment of a volume function are
two examples of the addition, to the affine structure of an affine space, of a further
structure whose preservation entails the restriction of transformations of the space
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to a subgroup of the affine group. This is a frequently occurring situation; further
examples will appear in Chapter 7.

It is instructive to compute the rate of change of volume under the transfor-
mations of a one-parameter affine group. Let 01 be a one-parameter affine group,
with linear part At. Then

d nEn(v1,v2,...,A(v0),...,vn)
0=1

_ (trA)n(vl,v2,...,vn)

where A = d/dt(At)(0). The vector field V which generates Ot is given with re-
spect to affine coordinates by (Abx° + Ba)8a, where A = (At), and trA may be
suggestively expressed in the form 8aV a. We shall use this in the next chapter as
the basis for a definition of the divergence of a vector field. Notice that if Ot is a
one-parameter group of unimodular affine transformations (which preserve volume)
then tr A = 0.

4. Subspaces

In this section we show how alternating multilinear forms may be used to charac-
terise affine subspaces. The setting is again an affine space A modelled on a vector
space V of dimension n. An affine subspace of A of dimension p, or p-plane, denoted
8, is constructed in A by attaching at the point xo a p-dimensional subspace 1V of
V. In Chapter 1, Section 2 we described two different ways of characterising the
p-plane 8:

(1) parametrically, choosing a basis {w0} for 1V (a = 1,2,...,p): any point y
of B may be written y = xo + y°w0

(2) by constraints, choosing a basis (9") for constraint forms of hyperplanes
which intersect in the p-plane (p = p + 1, p + 2, ... , p + n): any point y of B must
satisfy the equations (y - xo, 90) = 0.

These two descriptions are related by the fact that the constraint forms vanish
on vectors which lie in the p-plane, so that (w0, 90) = 0 for a = 1,2.... , p and
p = p + 1, p + 2,... , n. They may be regarded as dual descriptions, in the sense that
one is in terms of elements of V, the other in terms of elements of the dual space
V. This duality pervades the developments which follow. The notation will be
adapted to it: throughout this section, indices a, P from the beginning of the Greek
alphabet will range and sum over 1,2,... , p, and indices p, or from the middle of
the alphabet will range and sum over the complementary values p + I, p + 2, ... , n.
Latin indices a, b will range and sum over 1,2,... , n as hitherto.

Hyperplanes and multivectors. Each of the descriptions of a p-plane men-
tioned above is highly redundant; the p-plane may be determined by any set of
p independent vectors which lie in it or any set of n - p independent constraint
forms for hyperplanes which intersect in it, and in choosing any particular set of
either one is giving unnecessary information. Experience shows that descriptions
which include the minimum of unnecessary information are likely to be the most
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revealing, and so it is worth seeking a less redundant description. A description in
terms of determinants is suggested by the facts that one could change the order of
the vectors, or constraint forms, in the independent set, or add a multiple of one of
them to another, without changing the p-plane--compare the properties of volumes
set out in previous sections.

A determinantal description turns out to be convenient, and to have other
important applications. In formulating it we suppose the point xo at which the
subspace 8 is attached to be fixed once for all, so that we may as well deal with the
position of the subspace 1U in the vector space V as with the position of the affine
subspace 8 in the affine space A.

Out of the basis {wa} for 1U we construct a p-fold alternating multilinear
function W on the space V' of all covectors, as follows: for any r r 1 , 1 2, ... 117P E

= det((we,np)).

Writing this determinant out with the help of the Levi-Civita symbol one finds
W(,71,172 e + =qP) - E0,a7...a,.(w (uo°e rlP)all a>>

... a1. awal ,

w
49 ... a,.

17

1= C0102
a] U/ct,. al rla .. . a

,.

A'1/6, a2 al 17a' ... 1Ia,

where
Wa,a2...rt,. = (a,aa...o, ,a, wag ... Wa,.

al 02 aI

are the components of W with respect to a basis for V, in which the wQ have
components wv, while the Y7' have components rta with respect to the dual basis
for V

Exercise 15. Verify that this function W is alternating and multilinear. C3

Exercise 16. Show that if tia = kQwp, where {wa} is another basis for 1U, and if
det((v,a,gs)), then i4' = det(ka)W. o

A multilinear alternating function on V' is called a multivector, and a p-fold
multivector is called a p-vector. A 2-vector is usually called a bivector. It follows
from the last exercise that each p-plane determines a p-vector, up to a non-zero
scalar factor. Any one of these p-vectors will be called a characterising p-vector for
the p-plane. The p-vector W defined above is denoted

W =wi

and called the exterior product of the wa (and n is again read "wedge"). Any
multivector which may be written in this way as an exterior product of vectors is
called decomposable, but not all multivectors are decomposable.

One can easily retrieve from a decomposable p-vector W a basis for the vector
subspace which it characterises, but one cannot, for p > 1, reconstruct the individual
vectors of which it was formed as exterior product-the whole idea, after all, was
to find a description of the p-plane avoiding any particular choice of basis for it.
The retrieval can be carried out by acting with W on p - 1 covectors, leaving one
argument to be filled: W( , Y72'... ,,7P), with first argument left empty, is a linear
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form on V', to be evaluated by filling in the first argument, and is thus an element
of V. Explicitly,

_ Q,aa...aP ZW(' ,RZ,...,Rp) - E (woa,R )... (woPrVIP) wati

this is a linear combination of the original vectors, hence lies in the subspace V.
Choosing the q° p - 1 at a time from a basis for V, one recovers a spanning set for
V. This shows that the p-vector W determines the subspace 1V, and hence also,
given a point zo on it, the p-plane B.

Exercise 17. By completing {wa} in any manner to a basis for U, and choosing the t
from the dual basis for V', show that W ( , q=, ... 117P) spans the subspace 1V as the 97*
are varied. o
Exercise 18. Let x be a permutation of (1, 2,, .., p). Show that

w.(I) n W.(2) n ... n W,(P) _ ((7r)wi n w3 n ... A wp. O

Exercise 19. Let {e.} be a basis for V, relative to which a p-vector W has components
W e'" °P; let {d,) be another basis for V, related to {e.} by e. = htee; and let

W relative to {e.}. Show that lV he he' .. ha W'th"'6P., 6P

Thus each index of W transforms in the same way as a vector index under change of basis. a

Hyperplanes and exterior forms. We now develop the dual description of a
p-plane, in terms of constraint forms for the hyperplanes which intersect in it. The
process is very similar to that just carried out. The notation is as before: {PP)
is a basis for constraint forms determining the affine subspace B constructed by
attaching at the chosen point zo of A the vector subspace 1V of V. Therefore
(w, $P) = 0 f o r every w E 1 V and for p = p + 1, p + 2, ... , n. Out of the basis {BP}
for covectors annihilating all vectors in 1V we construct an (n - p)-fold alternating
multilinear function w on V , as follows:

o

for any vp+l,vp+s,...,v,, E V. Writing this determinant out with the help of the
Levi-Civita symbol one finds

w(VP+I,Vp+2,...,Vn)
Pr+iPr+a.P..(VP+I,ePP+,)(VP+Z,ePP+a) .. (Vn,eP.)

= E ePP+, SP,.-, .. , O.P. . /dap+t Va,.42 .. Va.n,,+, a,. +a p+1 p+2 n
a,,+t aP+a n

= wa,,+,ap+a.a, V P + 1 Vp+2 ... Vn

where
PP+t Opt-+I P.war+,a,-+ra. = EPP+IP,.+2 Pnea,,+,aP+a ea.

are the components of w with respect to a basis for V', in which the OP have
components 0Q, while the vP have components vo with respect to the dual basis for
V. In this calculation repeated as sum over 1,2,. .. , n and repeated p s sum over
p+ 1,p+2,...,n.
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Exercise 20. Verify that this function w is alternating and multilinear. Show that
if B° = k."9°, where {6°} is another basis for forms which annihilate 'W, and if
m(vp+t, vv+z,... det((vr,B°)), then w = det(ke)ob. a

Generalising from the nomenclature for a volume function, one calls any mul-
tilinear alternating function on V an exterior form; an r-fold exterior form is
called an exterior r-form, or simply an r-form. The number r is called the de-
gree of the form. In particular, a covector is also called a 1-form, and a vol-
ume function is an n-form. The exterior (n - p)-form w defined, as above, by

det((vp,9°)) is denoted

w=Bp+lnep+2n ...Ao"

and called the exterior product of the B°. Any exterior form which may be written
as an exterior product of 1-forms is called decomposable, but not all exterior forms
are decomposable.

A decomposable form which is the exterior product of independent constraint
forms for an affine subspace is called a characterising form for the subspace and for
the corresponding vector subspace V. If any one (or more) of the vectors on which a
characterising form w is evaluated lies in the subspace V which it characterises, then
the value is zero. If, for example, w lies in V and v , 1 , . .. , v" are arbitrary vectors
then w(w, vp+2, ... , is a determinant whose first column consists of pairings of
w with Br+t,gp}2,. ,9" in turn, and all these pairings yield zeros. Conversely, if
W (W, vp+2,... , vn) = 0 for some fixed w and all vp+2 i ... , v", then w must lie in
the subspace 3U, for otherwise the constraint forms Bp+t , Bp}2, ... , $" could not be
independent.

Exercise 21. Let w be a decomposable r-form. Show how to recover a basis for the
1-forms of which it is the exterior product. a
Exercise 22. Let x be a permutation of (1,2_.,p) and let 9° be 1-forms. Show that
gr(t) n gr(=) n ... A Or(v) = c(a)9t n 9= n ... A 9p. a

5. The Correspondence Between Multivectors and Forms

We now display a relation between the characterising multivector and characterising
form descriptions of a subspace. Once again let V be an n-dimensional vector space
and let lU be a p-dimensional subspace of it. Let W be a characterising p-vector
for V, and w a characterising (n - p)-form. Then there is a basis {w0} for V
such that W = wt A w2 A A wp; and if {th0} is any other basis for 1V such that
W = tbt n tie n . A tbp then tLQ = kawp with det(ka) = 1.

Now suppose given a volume form fl on V. Let w be the function on V"_p de-

fined by filling in the first p arguments of the given volume form with wt, W2i ... , wp:

(D = 11(wi,w2,...,w,, - , ,..., ).

Then w takes n -- p vectors as arguments, and is alternating and multilin-
ear in them, and is therefore an (n --- p)-form on V. Moreover, if wr =
f1(tb1, tL2r ... , tbp, , , ... , ) is the (n - p)-form constructed in the same way
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from the basis fib,,) then w' = w, as can be seen by filling in the remaining ar-
guments arbitrarily with vectors chosen from V and recalling that the matrix re-
lating the wQ to the wQ has determinant 1. Hence w is completely determined
by the characterising p-vector W, irrespective of the choice of basis for which
W = w1 A w2 A ... A wp. We shall show now that w is a multiple of the char-
acterising (n - p)-form w.

To this end complete {wa) arbitrarily to a basis {wa} for V by specifying n-p
further vectors wp+1, wp+2, ... , w, . Let {9° } denote the dual basis for V'. Then
(wa, 9P) = 0 for each a = 1, 2, ... , p and each p = p + 1, p + 2, ... , n. Therefore
the 9P are constraint forms for the subspace W, and 9P+1 A 9P+2 A ... A On is a
characterising form for it. By the result of Exercise 20, BP+1 A 9P+2 A ... A on = ew
for some (non-zero) number c. Moreover, since {9°} is a basis, fl = c'91 n92 n A. .n9"
for some (non-zero) number c'. Now let vp+ 1, vp{ 2, , vn be any n - p vectors in
V and evaluate Co on them:

W(vp+1,vp+2,...,un) = fl(wl,w2,...,wp,up+1,vP+2,...,vn)

= c'(91 n 92 n ... A 9")(w1, w2, ... , vn).

Apart from the factor c', this expression is a determinant, which we divide into
pxp,px(n-p),(n-p)xpand(n-p) x (n-p) blocks:

W(vP+I,vPt2,...,vn)

= I \(w0,C"))
(vp,800) V 00)

")/ I = 11P (vPe')
since {wa} and (9°) are dual bases. Thus

c'det((v,,,9°))

c'(ep4 n ep42 A ... n9")(VP+ VP+2'...,vn)
r

Thus w is indeed a non-zero multiple of the characterising (n - p)-form w, and is
therefore itself a characterising form for V.

We have shown that every characterising multivector determines a character-
ising form, by the construction

w = H(wt,w2,. ..,Wp, , ,..., ),

the wa being vectors which can be determined from the characterising form by the
construction explained in the last section. The characterising (n - p)-form con-
structed in this way is called the dual of the characterising p-vector W with respect
to the given volume form fl. Choice of a different volume form will yield a dual
which differs from this one by a scalar factor. It follows from these constructions
that if a volume form is given on an affine space then it may be used to establish a 1 :

I correspondence between decomposable p-vectors and decomposable (n - p)-forms.

Exercise 23. Let Wn'°= a,- be the components of a given decomposable p-vector W
relative to a chosen basis {en } and let fl be any volume form such that fl(et, e2,... , en) = 1.
Show that

a2 ap a.. W

are the components of the dual w of W relative to fl. 0
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Exercise 24. Let w be a characterising (n - p)-form for a p-plane. Show that
War 42 a,. = (a, a2 war'4141.f" 0.

are components of a characterising p-vector W for the p-plane, and that w is a multiple of
the dual of W. a

6. Sums and Intersections of Subspaces

We now explain, by means of some examples, how the sums and intersections of
subspaces may be characterised. Let A be an affine space of dimension n, modelled
on a vector space 11, and let B and C be affine subspaces of A, modelled on vector
subspaces V and V respectively. We shall assume that B and C have in common at
least one point xo, and so consider them to have been constructed by the attachment
of V and W to A at that point. The intersection B n C of B and C means the largest
affine subspace of A which lies in both; it comprises their common points, and is
constructed by attaching V n W at xo. The sum B +- C of B and C means the smallest
afline subspace of A which contains them both; it comprises points which can be
reached from xo by a displacement in B followed by a displacement parallel to C or
vice versa, and is constructed by attaching V + V at xo. The formula

dim(B + C) + dim(B n C) = dim 8 + dimC

follows from the corresponding one for vector subspaces (Chapter 1, Section 3).
(1) Suppose that B and C are distinct hyperplanes. Let t and S be constraint

forms, hence characterising forms, for B and C respectively. Points in B n C must
satisfy both (x -- xo, q) = 0 and (x - xo, S) = 0; and therefore rt n S is a characterising
form for B n C, which must be an (n - 2)-plane. (In this case B + C is the whole
space A, as follows from the dimension formula).

(2) Suppose that B is a p-plane and C a q-plane, and that B + C is the whole
of A, which entails p + q > n. Then dim(B n C) = p + q - n. We shall characterise
B n C. Any characterising form for B is a decomposable (n - p)-form, say w =
np+l n 7p+2 n ... A qn, and for C, an (n - q)-form, say X = S9+1 A fq+2 n ... A Sn.

A point of B n C must satisfy (x - xo, r)P) = 0, where p = p + 1, p + 2, ... ,n, and
(x - xo, Sc) = 0, where o = q + 1, q + 2,.. . , n. If these constraints are linearly
independent then there are 2n -- (p + q) of them, so that they are satisfied on a
subspace of dimension n- (2n-(p+- q)) = (p+-q)-n, which is exactly the dimension
of B n C. Hence a characterising form for B n C is

17
p+1

A 77
p+2 A ... A nn A 59+I A ... A Sn

formed by taking the exterior product of all the constraint forms for the two sub-
spaces. This product is written w n X and called the exterior product of these two
exterior forms.

(3) Suppose that B is a p-plane and C a line through xo, and that one wishes
to find their sum. If the line lies in the p-plane then the sum is the p-plane itself,
but if it does not, then the sum is a (p + 1)-plane, and the intersection is just the
point xo. We show how to find the sum in this case. Let w be a characterising
(n - p)-form for the p-plane and let v be a (non-zero) vector tangent to the line.
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Since v does not lie in the p-plane, w(v, vp+2, ... , v,,) does not vanish for every
choice of vp+2, ... , v,,. It does vanish, however, if one or more of Vp+2, ... , vn is a
linear combination of v and a vector which lies in the p-plane. Moreover, v being
kept fixed, w(v, vp+2, ... , vn) is alternating and multilinear in vp+2, ... IV.- Thus, v
being kept fixed, w(v, - , ... , -) is an exterior (n -p-1)-form which vanishes precisely
when one or more of its arguments lies in B + C; it is therefore a characterising form
for B + C. This (n - p - 1)-form is denoted vJw (J is read "hook"); once more,
explicitly,

(VJw)(Vp+2,...,vn) = W(V,Vp+2,...,Vn).

The form v Jw is called the interior product of v and w (if the line lies in the p-plane,
then v Jw, so defined, is zero).

These examples do not exhaust the possibilities for the intersections and sums
of subspaces; but we have done enough to indicate how intersections of subspaces
may be characterised by exterior products, and the sum of a subspace and a line
by an interior product.

7. Volume in a Subspace

The idea of volume introduced in Section 1 may be extended to the case of an affine
space which is a subspace of a larger space. Suppose that B is a p-dimensional affine
subspace of an affine space A constructed by attaching the vector subspace W of V
(the space on which A is modelled) to A at some chosen point so. Then a volume
form flw may be chosen on 1V and used to compute the volumes of parallepipeds
in B. Since B is p-dimensional, f1w must be a p-form, but it will differ from the
p-forms, with p < n, introduced so far, because it will need to be defined only on
vectors in 1V (and be non-zero on every basis) whereas a p-form which arises as a
characterising form is defined on all vectors in the ambient space V, and vanishes
on those which lie in the (n - p)-dimensional subspace which it characterises.

It is a straightforward matter to define a p-form on 1V, given a p-form w on V,
with the help of the inclusion map is B A and the corresponding inclusion map
W V which (in view of the developments in Chapter 2) we denote i.. Given any
p-form w on V one can define a p-form on 1V, denoted i'w and called the restriction
of w to 341, by

i w(w1,w2,...,w,,) = W(i.w1,i.w2,...,i.wp).

Note the role of the inclusion map in distinguishing two rather different objects:
i'w, whose arguments may come only from 1V, and w, whose arguments may be
any elements of V.

Now i'w will serve as a volume form on 1V only if it does not vanish on a basis
of V. This is easy to ensure, as follows. Let U be any subspace of V complementary
to 1V, so that V = 1V ®ll, and let w be a characterising form for U. Since dim 1V = p,
dimU = n - p, so that w is a p-form. We show that i'w is a volume form for V.
Let {ea }, a = 1, 2, ... , p, be a basis for 1V and {e p}, p = p + 1, p + 2,... , n, a basis
for U, so that {e,}, a = 1,2,...,n, is a basis for V. Let {90} be the dual basis.
Then 01,02'...'$p are constraint forms for U, and sow = c9' A 92 A ... A Bp, where
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c is some non-zero number. Therefore

i'w(ei,e2i...) e,) -- edet((e0,9')) = c,

and so i'w is a volume form. A different choice of complementary subspace will
yield a different w, but i'w can change only by a scalar factor.

Thus the characterising form for any subspace will serve, by restriction, as vol-
ume form for a complementary subspace. Suppose that w and X are characterizing
forms for complementary subspaces U and w respectively, so that the restriction of
w to w is a volume form on that subspace, as is the restriction of X to U. Then W AX
is an n-form on V, which is non-zero (it is a characterising form for the zero sub-
space!); thus w n X is a volume form on V. If (xo; vi, v2,... , is a parallelepiped
whose first p edges belong to w and whose last n - p edges belong to U then its
volume as measured by WAX is just w(vi, v2, ... , vp)X(vp+1, Vp+2, , v, ). One may
regard (zo; vi, v2, ... , vp) as a parallelepiped in B and (zo; vp+t, vp+2, , v,,) as a
parallelepiped in C. The forms w and X define (by restriction) volume functions
in B and C, and then w(vi, v2, ... , vp) and X(Vp+i, Vp+2, ... , vn) are the volumes
of these parallelepiped faces in B and C respectively. The exterior product gener-
alizes, in this sense, the familiar formula "base areaxheight" for the volume of a
3-dimensional box.

An important instance of these ideas arises when 1V is of dimension n - 1, so
that the complementary subspace U may be any 1-dimensional subspace not lying
in w. In this case a basis for U consists of a single vector u. The dual of u with
respect to a volume form fl on V, which is a characterising form for w, is simply
the interior product uJfl. In this case the restriction of uJll is a volume form for
w.

Finally, we consider the orientation of a hyperplane. An orientation for w is a
set of volume forms on w which differ from one another by positive factors. Thus
the vector u determines one orientation of w, that corresponding to u if), and -u
determines the opposite orientation. Thus if an orientation has been chosen for
V, and 1V is a subspace of V of codimension 1, then any vector u not tangent to
w determines an orientation for w, called the orientation of w induced by u and
the orientation of V: if 1l determines the orientation of V, then the restriction of
uJfl to w determines the induced orientation of V. Likewise, if A is an affine
space modelled on V and B a hyperplane in A modelled on w, if fl is a volume
function on A, and if u is any vector given at a point of 8 but not tangent to it,
then uJfl determines an orientation of B, called the orientation induced by u and
by the orientation of A.

Notice that the establishment of an induced orientation, as here set out, has
nothing to do with whether u is orthogonal to w: only the sense of u is relevant,
and the concept of orthogonality is not required.

8. Exterior Algebra

The definition of volume and the characterisation of subspaces are only two of the
many applications of multivectors and exterior forms in geometry. We therefore
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supply, in the rest of this chapter, the apparatus for these applications, in an expo-
sition of the algebraic properties of multivectors and exterior forms and of exterior
and interior products. Here we give prior place to algebra, not geometry. One of
the principal ideas of this section is that forms or multivectors of a given degree
may be considered to constitute a vector space.

We begin with a recapitulation of the ideas introduced so far. An alternat-
ing multilinear function on a vector space V is called an exterior p-form on V.
An alternating multilinear function on V' is called a p-vector on V. The p-form
(v1, v29 ... , vp) -+ det((v°, 90) ), where 91,g2, . , 9p are given 1-forms, is denoted
01 A 92 A ... A 9p and called a decomposable p-form; it is the exterior product of
the P. A p-vector (q', rte, ... , qp) --+ det((w°, qp)), where wl, w2, .... wp are given
vectors, is denoted w1 A w2 A . . . A wp and called a decomposable p-vector; it is
the exterior product of the w°. If w is any p-form, and v a vector, then vJw is
the (p - 1)-form defined by vJw(v1,v2,...,vp_1) = w(v,v,,...,v,,_,). If w is any
decomposable p-form and X is any decomposable q-form, say w = q' A "2 A .. np
and X = S ' n S2 n A f °, and if {n 1, ... , rlp, S' , ... , S°} are linearly independent,
then wAXis the (p+q)-formging2A...Aq'AS'AS2A...A Cq.

The symmetry between V and V' expressed by (V')' = V entails that a p-
vector on V may also be regarded as a p-form on V', and that a p-form on V may
also be regarded as a p-vector on V', but to reduce confusion we shall write "p-
form" to mean "p-form on V" only, and "p-vector" to mean "p-vector on V" only.
By far the greater part of our treatment will refer only to forms; it should be clear
how, by interchanging the roles of V and V', it could be extended to multivectors.

Vector spaces of multilinear maps. Let w1 and w2 be p-forms, and let c1 and
C2 be numbers. A p//-form c1w1 + C2W2 is defined by

(Clwl +C2w2)(vI,V2,...,Vp) = C1w,(V1,V2i...,Vp) +C2w2(V1,V2,...,Vp)

for all v,iv2,...,Vp E V.
Exercise 25. Check that c1w1 + c2w2, so defined, is alternating and multilinear. O

Exercise 26. Let W, and W2 be p-vectors, and let c1 and c2 be numbers. Devise a
definition of c, W1 + c2 W2 on the model of the definition for forms, and confirm that the
object thus defined is indeed a p-vector. 0
Exercise 27. Check that these definitions make the p-forms on V, and the p-vectors on
V, into vector spaces. a

The vector space of p-vectors on V will be denoted A V, and the vector space
of p-forms on V will be denoted Ap V'. It can be shown that A PV' is naturally
isomorphic to the dual of A PV, but we shall not prove this here. Note that A' V
is just V itself, and A` V' is just V.

The advantage of forming a vector space of (say) p-forms is that one may apply
the methods and results of linear algebra to it. The disadvantage is that not all of
its elements have the simple geometrical interpretation which we have described in
earlier sections. For example, there is no reason to suppose that a linear combina-
tion of two (decomposable) p-forms which characterise distinct (n - p)-dimensional
subspaces characterises any subspace at all. This observation (which raises the
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question of how one determines which forms are decomposable) is considered again
in Section 12.

The multilinearity is more fundamental than the alternating property in the
construction of these vector spaces. In fact, if T, and T2 are any two p-fold multi-
linear maps VP -+ R, not necessarily alternating, and cl and c2 are numbers, then
c1Tt + c2T2, defined by

(ciTi +C2T2)(ut,v2,...,vp) = ciTi(Vt,V2,...,vp) +csT2(ut,v2,...,vp)

is also a p-fold multilinear map, and the set of all p-fold multilinear maps is made
into a vector space by this definition.

Multilinear maps may also be multiplied together. If S is a p-fold multilinear
map VP --. R and T is a q-fold multilinear map Vq R then their tensor product
S ® T is the (p + q)-fold multilinear map Vp+q --+ R defined by

S ®T(vl,v2,...,vp4 q) = S(vl,v2i...,vp)T(vp+i,vp+2,...,vp+q)

Exercise 28. Check that S ® T is multilinear. D

For the purposes of exterior algebra it is necessary to be able to pick out
the alternating part of an arbitrary multilinear map. For example, one may form
the tensor product of two alternating maps, but the result, though multilinear,
will not be alternating. The extraction of the alternating part of a multilinear
map is achieved by an operation which is a generalisation of the construction of a
determinant. Let T be a p-fold multilinear map VP R. Define the alternating
part of T, alt T, by

alt T(vi,v2,...,t',,) = 1
V 9

the sum being taken over all permutations n of (1,2.....p).
Exercise 29. Show that alt T is alternating, that alt(alt T) = alt T, and that if w is a
p-form then altw = w. o

Now let {ea} be a basis for V. The components of T relative to this basis are
the numbers

Ta,a,...a,, = T(ea,,ea,,...,ea,,).

There is a special notation for the components of alt T: instead of (alt
one writes

TIa, a....a,.l .

Exercise S0. Show that if Ta6 are the components of a 2-fold multilinear (bilinear) map
T then

Tlobl = 1(Tab - T6.);
while if T is 3-fold multilinear (trilinear)

T1a6cl = d(Ta6c + Tbca }' T-6 - T-6 - Tbac - Tcba) o
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The exterior product. A general definition of the exterior product may be
expressed in terms of the operation alt. Let w be any p-form and X any q-form.
Their exterior product w A X is defined by

WAX= (p+9)lalt(w®X)
p! q!

The awkward numerical factor, if suppressed here, will pop up elsewhere. In terms
of its action on vectors, one may read off w A X from the definitions of 0 and alt:

(w n X)(v1,v2,...,vp+q)

= 1

t
(p+2),...,V,(p+q))

where the sum is taken over all permutations r of (1, 2, ... , p + q).

Exercise 31. Show that (according to this formula) if 71 and 72 are two 1-forms then

(7' A7')(vi,vi) _ (v1,71)(v2,7) - (v1,7')(v2,7') =det((va,7O))
(where a,,6 = 1,2). Show further that if 7 is a 1-form and w a 2-form then

(7 n w)(u, v, w) = (u, 7)w(v, w) + (v,7)w(w, u) + (w, 7)w(u, v)
Deduce that if 71,72,73 are any three 1-forms then

(7' A (72 A 7s))(v1,v:,vs) = det((v,,7p))
(where now a,,6 = 1, 2, 3). O

We now discuss some of the algebraic properties of the exterior product. It is
clear from the definition that it is distributive:

(c,w1 + c2w2) A X= c1w1 A X+ C2W2 n X
w n (c1X1 + c2X2) = city A X1 + c2w A X2

for any numbers c1,c2. The exterior product is also associative:

wA(XA 1P(wAX)A
for any three forms w, X, 0. This is not so easy to see, though Exercise 31 gives a
clue as to what happens when the forms are all 1-forms: it turns out that in this
case ((71 A 72) A 73)(vl,v2,v3) = det((va,7p)) also. The basic idea of the proof
of associativity is to show that w n (X A 1()) and (w A X) A 1(i are both equal to
alt(w ® X ®+G) (apart from numerical factors, the same in each case). It depends on
the fact, obvious from the definition, that the tensor product of arbitrary multilinear
maps V' - R, r = 1,2,... is associative.

First, let S be any p-fold multilinear function and T any q-fold multilinear
function on V, neither necessarily alternating. We show that if alt S = 0 then
alt(S 0 T) = 0. Partition the symmetric group on p + q elements into equivalence
classes by the rule that r' r if r'(1, 2, ... , p + q) has the same last q entries as
7r(1,2,... , p+ q), in the same order. Then in each equivalence class all permutations
of the first p entries occur, and so since alt S = 0 the contribution of each equivalence
class to the sum in the evaluation of alt(S®T) is zero. In components, this amounts
to

0 if 0.
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Now write alt(w 0 X) - w 0 X in place of S in this argument, and +/i in place of T.
Then alt(alt(w 0 x) - w ® x) = alt(w 0 X) - alt(w ®X) = 0, so that

0 = alt((alt(w ®X) -- w ®X) 0 ) = alt(alt(w ®X) ®t>,) - alt(w ®X ®

(The associativity of the tensor product has been assumed here.) But this says
(putting in the numerical factor)

1

(w A X) A j, p+q+ r alt(w®X®IG)
p! 9! r!

(where w is a p-form, X a q-form, 0 an r-form). Now apply the corresponding
argument to the formation of w n (X A 0).

Now that associativity has been established it is no longer necessary to include
the brackets in expressions such as w n (X A t/i); and this is equally true of products
involving more than three terms. In particular for any 1-forms , 1 , , 2 , , gr the
expression ill A g2 A ... A gr is unambiguous, and in fact

(gl A g2 A ... A 7r)(V1, V2, ... , Vr)

_ r!
1!I!...ilalt(ga ®g2®...(D rlr)(V1,V2,...,Vr)

t(,r)(Vw(1),'1')(Vr(2), ill) ... (Vw(r), ilr)
V

= det((va,gp))

where a,# = 1, 2, ... , r and the summation is over all permutations A of (1, 2, ... , r).
In this way we recover the formula for the exterior product of 1-forms used exten-
sively in previous sections of this chapter.

Though exterior multiplication shares with ordinary multiplication of numbers
the properties of distributivity and associativity, it is not commutative. In fact if
w E A" V' and X E Aq V' then

XAw=: (._1)rgwAX.

This may be seen as follows: if x is the permutation

(1,2,...,p + 1,p + 2,...,p + 9)- (p + 1,p + 2,...,p + q,1,2,...,p)

then

(X A w)(V1, V2, ... Vp, Vp+1, Vp+2, ... , Vp+q)

g1r)(X n w)(Vp+1, Vp+21 ... Vp+q, V1, V2, ... , Vp)

A X)(VI,V2,...,Vp,Vp+1,Vp+2,...,Vp+q);

and ((ir) _ (-1)P9 since x involves transposing each of Vp+1,Vp+2,...,vp+q with
each of vp, Vp..1i ... , v1 in turn. Thus for any two 1-forms g, S

SA1---ilAS;

and in particular the exterior product of a 1-form with itself is 0.
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Exercise 32. Show that, more generally, if w is a p-form and p is odd then w A w = 0. 0

With these algebraic properties of the exterior product to hand it is easy to
calculate exterior products of forms directly, without having to appeal to the def-
initions in terms of alternating multilinear maps. As an example we consider the
direct calculation of the exterior product of three 1-forms on a 3-dimensional vector
space. Let {0°} be a basis for 1-forms on the vector space and let

w = (pig' + 172102 +, 93) A (17 201 + 17202
+ 17 393) A (1729' -4 7392 + Rs93)

where the 17b are numbers. Carrying out the multiplication of the first two factors
one obtains

171171 1 n0' +17217 20' net+1711730' Ae3

+ 172172 02 A e l + 17 217202 A 92 + 172117302 A 93

+
17317293 A 0' + 17317203 A 02 + 8317393 A 03.

Deleting terms with repeated factors and rearranging the others so that all the basis
forms appear in order one obtains from this

(171172 - 172171 )e' A e2 +
(,711,73

- 83171 )B' A e3 + (172173 - 173172)e2 A 03

Multiplying this by the last factor and omitting terms containing a repeated factor
one obtains

(171172 - 172,72 )173 (el A e2) A 03 + (17 117 3 - 17 317
2),73(91

A 93) A 02

+(,72,73 -,73173),7 (02 A 03) A 0'.

Again rearranging factors so that the basis forms appear in order one is left with

(171172173 -172171173+173,71172 -171173172+172173,71 -173172171)0' ^02^03

(a change of sign occurs for the middle term since 91 A e3 A 92 = -91 A 92 A 93).
The result is in fact det(r)b )9' A e2 A 03.

Exercise 33. Let {0°} be a basis for 1-forms on a 4-dimensional vector space, and let
17 = el + 202 - e3 and w = B' A e3 + 92 A e4. Compute 17 n w and w n w. 0
Exercise 34. Show that if 171,17=,... ,17a are linearly dependent 1-forms then 17' A 173 A
...A17o=0. 0

Exercise 33 provides an example of a form w such that w n w A 0; it is, necessarily,
a form of even degree.

9. Bases and Dimensions

Several of our earlier calculations and results should suggest how one may construct
a basis for p-forms. In fact one may construct a basis for A V' out of a basis
{9°} for V as follows. For each collection of distinct integers at,a2r...,a, (with
1 < a, < n = dim V) the p-form 9°' A 9°3 A ... A 9°1, is non-zero: for if {e°} is the
basis for V dual to {9°} then

(9°j n9°' 1
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(no summation) by the determinant formula. The p-forms 8bI A 8b2 A ... A 06-, and
8a' A 8a' A A 8a' differ only in sign, if at all, when (b,,b2,...,b,) is merely a
permutation of (a, , a2 i ... , a,,). Consider, therefore, the p-forms

{8a'n8a=n...nOat' I 1<a,

Each of these forms is certainly non-zero, and no coincidences among them can arise
from reordering. We shall show that they form a basis for AP V'. To do so we most
show that they are linearly independent, and that every p-form may be expressed
as a linear combination of them.

Note first of all that, by the determinant formula, if 1 < 61 < 62 < ... < b,, < n
then

(8a' A 8a' A ... A 8a'') (eb eb2 , ... , eb,.) = 0

unless a, = b,, a2 = b2, ... , by = ap. Suppose that

A eaz A ... A 8a'' = 0,

the sum being taken overall p-tuples of integers (a, , a2 i ... , ap) with I< a, < a2 <
< ap < n, the ks being certain numerical coefficients. The expression on the left

is a p-form, and asserting that it is zero is equivalent to asserting that the result of
evaluating it on any p vectors is zero. But

ka,a,...a,.(Ba' A 8a7 A ... A kb,b,...b,.

if I < b, < b2 < ... < by < n. Thus the p-form can be zero only if all its coefficients
are zero: and so the forms {8a' A Bat A ... A 61'-} are linearly independent.

If w is any p-form then (since it is multilinear) the value of w on any collection of
arguments is known if its value is known whenever its arguments are basis vectors.
But (since w is alternating) its value on any collection of p basis vectors is known
if it is known when the basis vectors are distinct and arranged in increasing order
of their suffices. It follows that

w = >2 w(ea ea_, ... , ea,. )8a' A 9a2 A ... A Oaf',

the sum being again taken over all 1 < a, < a2 < ... < ap < n.
We have shown that { 8a' A 8a2 A ... A 8a' I 1 < a, < a2 < .. < ap < n } is

a linearly independent set of p-forms that spans A" V', and so is a basis for that
space. The dimension of A" V' is thus the number of ways of choosing integers
a,, a2i ... , aP to satisfy 1 < a, < a2 < < ai, < n, which is n!/p! (n - p)! (or the
binomial coefficient (np) or ,,Cp), provided p < n. If p > n there are no non-zero p-
forms. The space A" V' is 1-dimensional with basis the single n-form 8' n82A.. n8"
which confirms the observations of Section 2. At the other end of the scale, the space
At V' has dimension n according to this result, as is required by its identification
with V'. It is frequently convenient to regard R itself as constituting the apace of
0-forms: with the usual interpretation of 0! as 1, the formula n!/0! (n - 0)! gives the
correct dimension; moreover the exterior product rules continue to apply if exterior
multiplication by a 0-form is taken to be scalar multiplication.
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It is sometimes advantageous to lump all forms, of degrees 0 to n inclusive,
together, to form one big space, which we denote A V'. This space is defined as
the direct sum of the spaces ' V' from p = 0 to n: it is thus a vector space
of dimension Fn=o (P) = 2". Its elements may be thought of as formal sums of
p-forms of varying degrees (the use of the word "formal" is intended to indicate
that such a sum may not be considered as an alternating multilinear map if terms
of different degrees are involved). It is, moreover, equipped with an associative,
bilinear (but non-commutative) product, the exterior product; and is therefore an
example of an algebra. It is called the exterior algebra of V.

Finally, a computational point. The summation convention has been in
abeyance during this discussion of bases of spaces of p-forms, and it would be
convenient to restore its use. But then certain adjustments must be made to
the coefficients of forms to take account of the fact that without the condition
a t < a2 < < ap the p-forms {66I A 6°'3 A ... A $a,,) are no longer independent,
though they do span AP V'. The following two exercises deal with this matter.

Exercise 35. Let w be a p-form, (e,) a basis for V, {6°} the dual basis for V', and let
w(e., , e&2,. .. , e,,,) = w,, ,2 wla, 62 be the components of w relative to (C.).
Show that

W We,a a,.60' AB02 A... A6'1,= '
(summation over repeated indices intended).

Exercise 36. Show that if W,664 A 6° = 0 for linearly independent 6°, then
but it is not necessarily the case that web = 0.

wb,

0

Web,
0

(Alternative treatments of the numerical factors in wedge products are de-
scribed in Note 3.)

10. The Interior Product

The interior product may also be generalised to arbitrary exterior forms. Let w be
any p-form and v a vector. The interior product of v and w is the (p - 1)-form vJw
(read "v hook w") defined by

(vJw)(vt,v2,...,vp-1) = w(v,vt,v2,...,vp_1)

for all choices of the vectors v1, v2,... , vp_ 1. (The interior product is also frequently
denoted ivw.) It has the properties

(1) if p = 1 then vJw = (v,w)
(2) v J(clwl + c2w2) = C1 (V Jw1) + c2(v Jw2)
(3) if w is a p-form, and X a form of any degree, then

vJ(w A X) = (vJw) A X + (-1)pw n (vJX).

The first two of these follow immediately from the definition. To prove the third
we observe that as a result of the second it is enough to know that it holds when w
and X are exterior products of 1-forms, that is, when they are decomposable. Now
if w = q 1 n rte n n r<t' say then for any vectors V2, V3.... , vp, (vJw) (vy, v3i ... , vp)



Section 11 109

is a determinant whose first column has the entries (v, n i), (v, r)2), ... , (v, 71P). Ex-
panding by the first column, alternating the signs in the usual way, we obtain

(V Jw)(V2i V3, ... , Vp)

= (Y7' n12A...ni )(v,v2,...,VP)
P

_ t-1 t 1= ( 1) (v,n)(n A ...q''..A 71P)(v2,v3,...,vp)

6=1

where, in the sum, the caret mark is used to indicate that the 1-form below is to
be omitted from the exterior product. Thus

P

VJ(q' A712A...n1?P) _ (-1)'-'(v,17')(17' A...ni...n 7P).
i=1

Now suppose that X = S` A S2 A ... A S9 Then

vJ(wAX)

A A...S)...ASP
J=1

_(vJw)nX+(-l)PWA(vJX)

as asserted.

Exercise 37. Show that, if dim V = 4, if w = B' A0' + 03 Ae", and if v = el (where {e°}
and {9°} are dual bases) then vJw = 9', while if v = e2 +es then vJw = --e' +e4. o
Exercise 38. Show that if is = v°e° with respect to a basis {e°} for V (and {9°) is the
dual basis for V') then

0°' A e°' A ... A e°r-,vJw = V°w°°, °,a,._,

when w is expressed as in Exercise 35. O

Exercise 39. Show that for any w E nP V', 6° A (e° Jw) = pw (summation intended).
(This formula is analogous to Euler's formula for derivatives of a homogeneous polyno-
mial). 0

Note the following useful property of the interior product: for fixed w E AP V'
one may regard the rule is '-+ v Jw as defining a map V -. AP-' V'; this is a linear
map, as follows immediately from the multilinearity of w.

11. Induced Maps of Forms

Linear maps of vectors and covectors may readily be extended to multivectors and
exterior forms. The induced maps of forms are of much the greater importance,
and we confine our exposition to them. We have already given two examples:
the induced map of a volume form in Section 3 above, and the restriction of a
decomposable form by the inclusion map in Section 7.

1
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Recall that a linear map A: V - 1V of vector spaces induces a contragredient
linear map A' of the dual spaces, by (v, A' (q)) = (A(v), PI). This construction may
be extended to p-forms, to give a linear map of forms, also denoted A' and also
contragredient, defined as follows. For X E AP W' set

(A'X)(vl,v2,...,up) = X(A(vi),A(v2),...,A(up))

for all vi, v2i ... , vp E V. Evidently A' X, so defined, is alternating multilinear and
is therefore an element of AP V'. Moreover, A': AP 1V' -+ AP V' is a linear map.
It is called a map of forms induced by A.

Note that if X E AP 1V' and p > dim V then A' X is necessarily zero.
The induced map of a composite of two linear maps is the composite of the

induced maps in the opposite order, as is required by contragredience: if rc: U -+ V
and A: V -' W are linear, then (Aoic)': A" W -. A" 1l' is given by (Aosc)' = ,c'oA'.

One important property of induced maps of forms is that they preserve the
exterior product, in the sense that A' (X A tv) = (A' X) A (A'>G). We now prove this
result. Suppose that X E AP W' and ,i E A 3U'. Then

1
A'(X A i)(v1,V2,...,up+q) = (X A tp)(A(vi),A(V2),...,A(up+4))

Pl

1

9l
E(w)(A(v,,(j)), A(v,.(2))...... (v,.(P)))

X t(A(v*(r+j)),A(v*(P+2)),...,A(v,.(P+v)))
1

1 11

P! q' ,.

= (A'X) A (A'i&)(v1,v2,...,Vp+v)

The sum is taken over all permutations w of (1,2,... , p + g).
These ideas may be extended to any affine map of affine spaces by taking its

linear part for A.

12. Decomposable Forms

The forms which we introduced in Sections 1 to 7 were all decomposable, that is,
exterior products of 1-forms. In particular, a characterising form of a subspace is
the exterior product of 1-forms which vanish on the subspace. In general, elements
of APV' are not decomposable: each is a linear combination of decomposable P.
forms, since the basis we constructed consists of decomposable forms, but this is
the most that can be said. We now explain how the decomposable forms may be
singled out in a convenient way.

The problem is that it is not immediately apparent from the expression for a
form in terms of a basis (for example) whether or not the form may be expressed
as an exterior product of 1-forms. Consider a 4-dimensional vector space V, and
compare (to take a simple example) the 2-forma 81 A 02 +02 A 94 and 81 A92+93A04.
(Here the B° are supposed to constitute a basis for V'.) It takes only a moment's
thought to realise that the first of these 2-forms is decomposable (it may be written
(6' - 04) A 82). But what of the second?
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Suppose that w = 9' A 02 F 03 A 04 were decomposable, so that one could find
two linearly independent 1-forms r11,t7 2 such that w = q' A q2. Then w would
be the characterising 2-form of a 2-dimensional subspace, spanned by any pair
of linearly independent vectors v1iv2 such that (va,nb) = 0, a,b = 1,2. Then
v1 Jw = v2 Jw = 0. In fact, the linear map V -+ A 1 V' by v - v Jw would have
kernel of dimension (at least) 2. On the other hand, considering the same map
with w expressed in its original form, one sees that with {ea} the basis of V dual
to {9°} the forms {eaJw} are linearly independent: they are {9s,-91,94,-93}. It
follows that the map v i--, vJw is actually an isomorphism. The hypothesis that w
is decomposable is therefore untenable.

A vector v E V is called characteristic for the exterior form w if v Jw = 0. The
set of characteristic vectors of a given form, being the kernel of a linear map, is
a subspace of V. This subspace is called the characteristic subspace of w and will
be denoted charw. If w is a decomposable p-form, which is a characterising form
for an (n - p)-dimensional subspace W of V, then charw = W. For suppose that
w wE 1V if and only if(w,q') _ (w,qZ) (w,qP) =0.
Then for any v E V

vJw= (v,q')g2A...A1' -(v,g2)n`A A...... A,'

+... + (-1)p-'(v,nP)n' n n2 n ... A nP-';

the (p - 1)-forms occurring on the right hand side are linearly independent, since
the q° are, and so v E charw if and only if v C V.

Thus a decomposable p-form on an n-dimensional space has characteristic sub-
space of dimension n - p. Other p-forms may have characteristic subspace of smaller
dimension-indeed, we have given an example whose characteristic subspace has di-
mension 0.

Exercise 40. Show that if w E A" V' and the dimension of charw is greater than n - p
then w = 0. D

We show now that the decomposable forms are precisely those non-zero forms
whose characteristic subspaces have maximal dimension. We show, in fact, that if
w E AP V' and dim charw = n-p then w may be written as an exterior product of p
1-forms. Let {ea } be a basis for V such that {ep+1, ep+2, ... , e,, } is a basis for charw;
then w(e1, e2i... , et,) f 0 (or e1 would also be a characteristic vector) and so we may
assume, without loss of generality, that w(el,ez,...,ep) = 1. Let {9a} be the dual
basis for V*. Then w = B' A9sn ..A0', since w may certainly be expressed as a linear
combination of terms 0" A 9°2 A .. A Oar with 1 < a, < az < < ap < n, but the
occurrence of any ak > p is prevented by the fact that the vectors ep+l, ep}zi ... en
are characteristic, while (91 A 92 n . . . A 9P) (e, , e2i ... , ep) = 1.

Exercise 41. Show that two decomposable forms have the same characteristic subspace
if and only if one is a scalar multiple of the other. D

Exercise 42. Show that if 11 is a fixed non-zero n-form on an n-dimensional vector space
then the map v '-. viii is an isomorphism of vector spaces of dimension n. Deduce
that every (n - 1)-form is decomposable; and in particular, if n = 3 then every

p = 1, 2,3; while if n = 4 the only non-decomposable p-forms occur when
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p = 2, and any such may be expressed in the form 8' A 02 + Bs A 94 with {9'} a suitable
basis for 1-forms. O

The rank of a p-form w is the codimension of its characteristic subspace, namely
n - dim charw. The annihilator of the characteristic subspace, annw, is the sub-
space of V' consisting of those q such that (v, q) = 0 for all v E charw.
Exercise 43. Show that the dimension of annw is equal to the rank of w. Show that annw
is the subspace of V' spanned by all elements of the form vl J(v2 J(... J(vp_ 2 Jw) ...)) for
any vi, v2, ... , vp_ 1 E V. Show that w may be expressed as a linear combination of p-fold
exterior products of elements of a basis for annw, which is the smallest subspace of V'
with this property: thus the rank of w is the smallest number of linearly independent
1-forms required to express it. 0
Exercise 44. Show that a non-zero (n - 2)-form is of rank either n - 2 or n. O

Exercise 45. Show that if w = 1w.69° A 01 (we. = -w.&) is a 2-form such that w12 # 0,
and if X = w - (w12)-1(w1.9e n w2D9b), then el JX = e2 JX = 0, where {e.} and {9'} are
dual bases. Deduce that there is a basis {0'} of V' such that

w=40 1 A03+03 A 04 +...+02r_1A02r

where 2r is the rank of w sand 01 = (w12)-1(wI.9') and 02 = wu9', for example). Show
that w n w n A w = r!# n #2 A . . . A 02' (there being r factors on the left hand side);
deduce that a 2-form w has rank 2r if and only if w n w n n w $ 0 when there are r
factors, = 0 for r + I or more factors. Show that the map V V' by v - v Jw has
rank (as a linear map) the rank of w (as a 2-form). Show that this map can never be an
isomorphism if n is odd; if n = 2k is even, then the map is an isomorphism if and only if
w n w n n w (k factors) is a volume. O

Exercise 46. Show that if 1V is the characteristic subspace of a p-form w and 9 is a 1-form
such that 9 n w = 0 then 9 is a constraint form for V. Show that the converse is not true
by considering the 2-form w = 91 A 92 + 93 A 9" (where {9'} is a basis for 1-forms on a 4-
dimensional vector space), whose characteristic subspace consists of just the zero vector:
show that 9 A W .is never zero for any non-zero 1-form 9. Show that if w is decomposable,
on the other hand, then every constraint form 9 for its characteristic subspace satisfies
9nw=0. 0
Exercise 47. Show that w is a characterising form for a subspace 1V if and only if 9nw = 0
for every constraint 1-form 9 for W. O

Exercise 48. Let X be a p-form on V which is zero when restricted to a subspace 1V of
V, and let w be a characterising form for 3V: show that X n w = 0. Show that, conversely,
if w is a characterising form for 1V and X a form such that X n w = 0 then X restricted to
1V is zero. O

13. An Extension Principle for Constructing Linear Maps of Forms

The most approachable p-forms (in concept) are the decomposable ones; as we
have mentioned, we have built the linear spaces A V', whose elements are linear
combinations of decomposable p-forms, mainly in order to take advantage of the
convenience of linearity (compare the case of tangent spaces, where it is very useful
to be able to add tangent vectors, though there is no natural way of combining curves
which results in the addition of vectors tangent to them). Accordingly, one is often
faced with constructions which appear natural in terms of decomposable p-forms,
which one wishes to extend to the whole space K V' in a linear way. One might try
to tackle this head on, but that would involve a complicated check of consistency
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because a non-decomposable p-form may be written as a linear combination of
decomposable p-forms in many different ways. We now present a useful technical
lemma which states, roughly speaking, that a map of decomposable p-forms into a
vector space 1V may be extended to a linear map of AP V' into V.

Each decomposable p-form is the exterior product of p linear forms, that is, p
elements of V. The construction of decomposable p-forms is therefore represented
by a map 6: V'P - AP V', where 6(n', rt2, ... , qP) = q' ng2A...ngP. It follows from
the properties of the exterior product that 6 is multilinear, which means linear in
each variable separately, and alternating. Suppose, for the purposes of illustration,
that one is given a linear map A: AP V' -+ W: then A o 6 in a way represents the
restriction of A to decomposable p-forms, though it is in fact a map V'P -. 1V and
as such is again multilinear and alternating. The result we shall prove is essentially
the converse of this: if p is any alternating multilinear map V'P -e 1V then there is
a unique linear map A: AP V' -. 1V such that A o 6 = p. Thus it is enough to check,
for a map defined on decomposable p-forms, that it is alternating and multilinear,
to know that it extends to a linear map of the whole space AP V'.

The proof depends on the observation that the set of all alternating multilinear
maps V'P - V and the set of all linear maps AP V' --+ 1V are both vector spaces,
that these vector spaces have the same dimension, and that composition with 6 is
a linear map from the second space to the first. We denote by AP(V', V) the set of
all alternating multilinear maps V'P -+ 1V and by L(AP V',1V) the set of all linear
maps AP V' --+ V.

Exercise 49. Show that taking linear combinations of images imposes on each of these
sets the structure of a vector space. a
Exercise 50. Show that the dimension of the space of linear maps L(A' V', W) is given
by dim A V' x dim W = (P) dim V. 0

Exercise 51. Show that dim AT(V', R) _ 0(P).

From the last exercise it follows that dimAP(V',1V) _ (P)dim1V, for if {e0} is
a basis for 1V, where a - 1, 2, ... , dim W, then each p E AP(V', IV) determines
uniquely dim 1V elements of AP(V',R), its components with respect to {e0}, and
conversely. Thus AP(V',1V) has the same dimension as L(AP V',1V).

Now the map which associates with each element A of L(AP V', W) the element
A o 6 of AP(V ' ,1V) is evidently a linear one. Moreover, its kernel is just the zero
element of L(AP V', IV), for if A o 6 = 0 then, for any basis {B°} of V' and for any
1 < a, < a2 < . < aP < n, A(0a1 A 6 A ... A 6°i.) = 0, and so A = 0 since
these p-forms constitute a basis for A V'. It follows that A A o 6 is a bijective
map, and so given any p F AP(V', V) there is a unique A E L(AP V', 1V) such that
p=Ao6.

As an example of the application of this result, we consider once again the
linear map of forms induced by a linear map of vector spaces. Let K: U -+ V be a
linear map. The construction is based on the adjoint map rc': V' -+ il'. For any
linear forms r? 1, 172'... , r)P C V set

h z..... nP) = sC*(q') A A ... AK'(r/P).
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Then by linearity of K', k' is multilinear; it is evidently also alternating, so k' E
AP(V', A U*). There is thus a unique linear map A° V' - A° il', also denoted r.*,
such that

K' (n' A ?2 A ... A tIP) = K' (171) A K' (172) A ... A r.* (j7°).

Note that, for any u 1, u2, ... , up E IL,

K (171 A ,j2 A ...nTI°(u l,u2i...,up)

= (t)1 A 712 A . A r)P)(K(ul),K(u2),...,K(up)),

and so the same holds true for any p-form w on V:

(K'W)(u1,u2,...,u,) = W(K(ul),K(u2),...,K(up)).

So the definition given in Section 11 is recovered. From this new point of view the
property of preserving exterior products plays the key role.

We shall have occasion to use this extension result again in Chapter 7.

Summary of Chapter 4
A map VP R is said to be multilinear if it is linear in each argument. A
multilinear map is called alternating if interchange of any two arguments changes
the sign. An alternating multilinear map V° R is called an (exterior) p-form on
V. An alternating multilinear map V'P -. R is called a p-vector on V. The p-forms
comprise a vector space /gyp V' of dimension (P) (where n = dim V); likewise the

p-vectors comprise a vector space, of the same dimension; A° V' = R, A' V' = V
and Ap V' consists of just the zero vector for p > n.

The p-vector (7)' , q2, ... ,,7P) i--+ det((w,, 7)')) is denoted wl A W2 A ... A wp,
and the p-form (w1, W2, ... , wp) '-+ det((wo, qp)) is denoted o 7l A 172 A ... A q°. The
p-vector wl A w2 n . A wp is a characterising p-vector for the p-dimensional subspace
spanned by its constituent vectors; the p-form nl n n2 A A 71P is a characterising
form for the (n - p)-dimensional subspace for which its constituent covectors are
constraint forms.

The exterior product w A X of a p-form w and a q-form X is a (p + q)-form
defined by

(w A X)(v1,v2,...,Vp+9)

_
91

(2),...,V,r(p))Xlv,r(p+I),V*(p+2),...,vw(p+9))I
PI

1

the sum being over all permutations 7r of (1, 2, ... , p + q), the sign E(7r) of a per-
mutation 7r being +1 if 7r may be represented as a product of an even number of
transpositions, -1 otherwise. The exterior product is distributive and associative
but not commutative: X A w = (-1)P9w A X.

The inner product of a vector v and a 1-form w is the (p - 1)-form vJw such
that (v Jw)(vl,v2,...,vp_1) = w(v,vl,v2,...,vp_1). The set of vectors v such that
vJw = 0 is called the characteristic subspace of w, charw; if w 0 0 its dimension is
at most n - p, and w is decomposable when it is equal to n - p. Not every p-form
is decomposable, but every p-form may be expressed as the sum of decomposable
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p-forms. In fact if {9a} is a basis for V' then { 9aI n Bat n n Aa' I 1 < a, < a2 <
< a, < n } is a basis for A° V' each element of which is decomposable.
A non-zero n-form 11 on a vector space of dimension n defines a volume func-

tion on any affine space modelled on it: the volume of a parallelepiped with aides
v, , v2, ... , v is fl(v,, v2, ... , This vanishes if the parallelepiped is degenerate
because its sides are linearly dependent; otherwise, its sign determines the orienta-
tion of the sides of the parallelepiped, in the order given. The facts that f) is multi-
linear and alternating correspond to properties of volume, and this prescription gen-
eralises the determinant rule for the volume of a parallelepiped in Euclidean space;
in fact 11 is a basis-independent version of the determinant, and if {ea} is a basis for
V such that fl(et,e2i...,en) = 1 and if va = k;eb then fl(v,,v2,...,vn) = det(k;).
The exterior product of a decomposable p-form and a decomposable q-form, where
p + q = n, reproduces the principle "volume=base areaxheight". With respect to
a given volume form a 1 : 1 correspondence may be established between p-vectors
and (n - p)-forms.

If there is given any alternating p-fold multilinear map from the dual of one
vector space to another one then there is a unique linear map from the space of
p-forms on the first vector space to the second which agrees with the given map on
decomposable forms.

Notes to Chapter 4

1. The symmetric group. The group of permutations r of (1,2,... , n) with
composition of permutations as the group multiplication is called the symmetric
group on n objects. It has n! elements. A pair of numbers (i, j) is called an inversion
for the permutation r if i < j and r(i) > >r(j); the total number of inversions for
r is denoted #r, and the sign of r is E(r) _ (-1)#*. A permutation of sign +1
is called even and a permutation of sign -1 is called odd. The map r '-4 c(r) is
a homomorphism from the symmetric group to the multiplicative group with two
elements {+1,-1}.

A permutation which interchanges two numbers without other change is called a
transposition. Every transposition is odd, and every permutation may be expressed
as a product of transpositions--an even permutation as the product of an even
number of transpositions, an odd permutation as the product of an odd number.

See MacLane and flirkhoff 11967, pp 91-96, for proofs and further develop-
ments.

2. Determinants. Let A be an n x n square matrix, and let Ab denote the
element of A in the bth row and cth column. The determinant of A, denoted det A
or det(A6), is the number

det A - > c(r)A-111Az121 ... AR(n)

the sum being over all permutations r of (1, 2, ... , n). The determinant has the
following properties:

(1) if two columns of A are interchanged, det A is multiplied by -1
(2) if a column of A is multiplied by a number k, det A is multiplied by k
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(3) if a multiple of one column of A is added to another column, det A is
unaltered

(4) det AT = det A, where AT is the transpose of A, obtained by interchanging
its rows and columns

(5) det A 0 is a necessary and sufficient condition for the existence of an
inverse matrix A-1 such that AA -, = A - I A = !

(6) det AB = det A det B.
See MacLane and Birkhoff Chapter 9, pp 294ff, for proofs and further devel-

opments.

3. Two conventions for exterior algebra. As almost any excursion into the
literature will show, there are two different conventions for numerical coefficients in
exterior algebra. An author's choice of convention may be identified from his or her
definition of either the interior or the exterior product. All authors seem to agree
that the alternating part of a p-fold multilinear form T should be defined by the
formula

altT(v,,v2,...,vp) =
i

Yc(,r)T(v,,(j),u,(2),...,v*(p)).p

Any other numerical factor would lead to failure of the formula alt alt T = alt T.
The two conventions may then be established by setting either e = 0 or e = 1 in
the formula

e

WAX = (P + q)I l
P! 91

alt(w ®X)

for the exterior product of a p-form and a q-form. It is then necessary to define

(vJw)(v1,v2,...,vp-1) = Pt-`w(v,u1,v2,...,VP-1)

Further differences arise in exterior calculus (see Chapter 5). In this book we have
adopted the convention e = 1.

4. The isomorphism between AP V' and (AP V)' asserted in Section 8 is proved
in Sternberg 11964 Chapter 1, for example.



b. CALCULUS OF FORMS

We move now from the algebraic properties of forms to their differential properties.
The first step is similar to steps we have taken before: from affine lines, and affine
maps generally, to smooth curves and smooth maps, for example. In place of the
forms on vector spaces of Chapter 4 we now consider fields of forms, which, as
maps of tangent spaces, share the multilinearity properties of forms, but may vary
from point to point of the affine space. Next we exhibit the exterior derivative,
which is a generalisation from the operators curl and div of vector calculus. We go
on to discuss the relationships between the exterior, covariant and Lie derivatives.
Finally, we prove a generalisation of the result of vector calculus that if the curl of
a vector field is zero on a suitable domain then the vector field is a gradient.

1. Fields of Forms

The tangent space TsA at any point x of an n-dimensional affine space A is a
vector space. One may therefore construct the space of p-forms A"(T= A), for each
integer p between 0 and n. The elements of Ap(T; A) are alternating multilinear
maps (T=A)p -+ R, for p > 1; A°(T; A) = R, while A1(T= A) = T,, A. For each p,
Ap(TT A) is a vector space of dimension (p), and has a basis constructed by taking
exterior products of basis elements for T= A. As basis for T. A it is often convenient
to choose the coordinate differentials (dx°) where (x°) are coordinate functions for
some system of coordinates around x.

Exercise 1. Show that { dx°" n dx°2 n . A dx°'' I I < at < a7 < < ap < n } is a basis
for A (T- A). 0

A field of p-forms w on A is a choice of an element w,, of A (T= A) for each
point x E A. One tests a field of p-forms for smoothness by reducing the question to
another which one knows already how to deal with, as follows. If V1, Vz, ... , Vp are
vector fields and w a field of p-forms then w(V,, V2, ... , Vp) is a function on A whose
value at x is w=(V1 , V2..... Vp=). The field of p-forms w is said to be smooth if this
function is smooth for every choice of smooth vector field arguments. A smooth
p-form field on A is usually called, for brevity, a p-form on A.

Exercise 2. Show that a 0-form is a smooth function and that a 1-form is a smooth
covector field. O

In the case of a 1-form B, the value of B on a vector field V may be denoted
with angle brackets, thus: (V, B), as well as 9(V).

Two p-forms may be added, and a p-form may be multiplied by a smooth
function, to give in each case another p-form; these operations are carried out point
by point. Moreover, one may define the exterior product of a p-form and a q-form,
again on a point by point basis; the result is a (p + q)-form. Again, given a vector
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field and a p-form one may construct a (p - 1)-form by taking the interior product
point by point. Such operations are often referred to as pointwise operations.

As we noted in Chapter 3, Section 10, associated with any smooth function f
there is a 1-form, whose value at a point is the covector df at that point: we shall
denote this 1-form df also.

Exercise S. Show that for any vector field V, (V,df) = df(V) = Vf. o

Sometimes it will be necessary to deal with objects which behave like forms,
but which are not defined on the whole of A, only on some open subset of it. As
an example consider dz°, where x° is a coordinate function: if the coordinates in
question are global (affine, for example) then dxe is a 1-form; but in general for
curvilinear coordinates this will not be the case. We call such objects local forms.
Thus if the z° are coordinate functions of some (not necessarily global) coordinate
system we may build up p-forms (local if the coordinates are not global) by taking
exterior products of 1-forms chosen from the dx°, multiplying the results by smooth
functions (or smooth local functions, with domain containing the coordinate patch),
and taking sums. The operations concerned work as well for local forms as for
globally defined ones, but one has to bear in mind the possibility that the domain
may turn out to be significant.

The construction of forms from coordinate 1-forms indicated above generates
all (local) forms. As we have already pointed out, the coordinate covectors may be
used to define a basis for A "(T; A) at each point x; and so each p-form whose domain
includes the coordinate patch of the coordinates (x°) may be expressed uniquely
(on the patch) as a linear combination of the (local) p-forms dx°j Adx°3 A . Adx°p,
1 < ai < a2 < ... < ap < n, with coefficients which are local functions.

Let w be a p-form. The components of w relative to the given coordinate system
are defined by

wa, a,... a,. = w(aa,, ad,,..., aap).

They are smooth functions on the coordinate patch and satisfy wa,e,...ap =
wla, a, ...apl (the bracket notation for indices is explained in Chapter 4, Section 8).
The p-form w may be written out in terms of its components in two different ways,
as has already been indicated in Chapter 4 for the case of forms on a vector space.
If the summation convention is suspended, as one finds in many books, then w may
be written as a linear combination of basis p-forms, each occurring once:

w = E wa,a,...apdx°' A dxa2 h ... A dxa

the sum being over all (aI, as, ... , ap) with 1 < al < a2 < < ap < n. Restoring
the summation convention, and allowing each basis p-form to recur p! times with
its indices in all possible orders, one obtains

w = wa,a,...apdx°' A dx°, A ... A
P

Where this coordinate patch overlaps another one, with coordinates (14), the
change of components is given by

ate' a.b2 at,, ,
wa, a,...ap = axa. ax°. ... 57X-d, Wb, 62 ...b,,
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the Jacobians and the functions all being evaluated pointwise.
The definition of a p-form in tensor calculus begins with this last formula. One

specifies a set of smooth functions-the components-in one or more coordinate
patches, in such a way that the change of components is given by this formula in
any overlapping patches; one may then determine the p-form from its components by
multiplying by exterior products of coordinate differentials and adding, as explained
above.

Exercise 4. Show that a p-form (in the sense of Chapter 4) on a vector space V defines
a p-form (in the present sense) on an affine space A of which V is the underlying vector
space, whose coefficients with respect to affine coordinates are constants. CI

Exercise 6. Show that if, with respect to arbitrary coordinates,

a = z'dz' A dzs - x2dx' A dzs + zsdz' A dx2
and 6 = x'dx' + zsdz' + xsdxs
then a n'6 = ((r')r + (s3)2)dx' n dx2 n dzs. o

The algebra of forms on an affine space is like the algebra of forms on a vec-
tor space as described in Chapter 4, with the smooth functions replacing the real
numbers in the role of scalars. In fact a p-form w on A may be considered as an
alternating multilinear map of the 7(A)-module X(A)" to 3(A), where now multi-
linearity is over 3(A) rather than R: for any vector fields V; and V' and functions
f and f'

w(VI,V2i..., fV + f'V',...,VP)
= f'W(V1,Vy,...,Vs '..... Vs)'

and similarly for the other arguments. Conversely, any alternating, and in this sense
multilinear, map of the 3(A)-module X (A) to 7(A) is a form. We denote by A" A'
the space of p-forms on A.

We described in Section 11 of Chapter 4 the construction from a linear map
of vector spaces of an induced linear map of forms over those vector spaces, which
acts contragrediently to the initial linear map. Any smooth map 0: A - B of affine
spaces induces a linear map 0..:T=A - T#(z)B, and this may be used to induce a
further map of forms, which again acts contragrediently. This construction works as
follows. If w is a p-form on B define, for each z E A, an element (4'w), of A"(T= A)
by

(4"w)z(v1,v2,...,v,) =

where v1 i V2.... , v p E T=A. Then 4'w, the p-form field whose value at x is
is smooth; it is often called the pull-back of w by 0.

Exercise 6. Show that 4'(w1 + w=) = 4'wi + m'wr; that 4'(Jw) = (J o 4') 'w; that
4'(w A X) = (4'w) A (#'X); and that 4'(dJ) = d(f o 0), where wt, ws, w and X are forms
on B, w, and W2 having the same degree, and f E 3(B). 13

If (za) are the coordinate functions of a coordinate system on A and (ye) those
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of a coordinate system on B then

n dy n ... A dy°"I(iaia2...od°'

= (w°,°,... o 0)0'dy' A 0'dy°' A ... A

p'
P0102 ... Qp o 4')d4'°' A d.0°2 A ... A d4'°r

o,
80*P= 1 (w°, °,...°,. ° dx°1 n dz°' A ... A

8xa' 8x°j 8xar

where the 0° are the functions which represent 0 with respect to the two coordinate
systems. The calculation of 4'w in coordinates is therefore very straightforward:
one substitutes 4'° for y° wherever it appears in w, including those places where it
appears as dy°; in the latter case one evaluates dm°, regarding 0° as a function,
expressing the answer in terms of the ze; finally one carries out any necessary
algebra. Thus, for example, if

w = dy' Ady2 and ¢(x',x') = (x' coex2,x'sinx2)

then
O'w = d(x' cosx2) A d(x'sinx')

= (cos x'dz' - x' sin x2dx2) A (sin x'dx' + x' cue x'dx')

= z'(cos2 x2 + sin2 x2)dx' A dx2 = x'dx' A dx2.

Exercise 7. Show that if w = dy' A dy' A dy' and
Or1, z', z') _ (zl sin z' coo zS, zl sin z' sin za, z' coo z')

then #'w = (z')'sinz'dz' n ds' n dz'. O

Exercise S. Show that if 0 is a smooth map of A to itself and f1 = f dz' A dx' n .. A dz"
is an n-form on A (n = dim A) then

4'w = (f o4')(det4'.)dx' Adz' n Adx"
where the function det 0. on A has as its coordinate representation with respect to any
coordinate system for A the determinant of (O4), which is the Jacobian matrix of the
coordinate representation of 0. 0

2. The Exterior Derivative

We have already observed that given a function (or 0-form) f on an affine space we
may define a 1-form df, its differential. We also call df the exterior derivative of
f ; its expression in coordinates is df = (8, f )dx°, and so the operation of forming
the exterior derivative of a function is closely related to the operation of taking a
gradient in vector calculus. Our intention now is to show how the exterior derivative
may be extended so as to apply to a form of any degree. The exterior derivative
of a p-form will be a (p + 1)-form; in the case of 1- and 2-forms in a 3-dimensional
space the resulting operations will have very close affinities with curl and div of
vector calculus.
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Consider, first, a p-form w whose expression in terms of some affine coordinates
(x°) takes the simple form w = f dx°' A dxe2 A A dx°" for some function f. A
straightforward way of extending the exterior derivative of functions so as to apply
to such w suggests itself: construct the form

df A dx°' A dxa' A ... A dx°'' = (8a f )dx° A dx°' A dxaz A A dx°''.

This is a (p + 1)-form. Since every p-form is a sum of p-forms of this type it is easy
to extend the construction to an arbitrary p-form, to obtain from

w = 1 Wa, az...ar d2° j A dx°' A ... A dxar
P

the (p + 1)-form

dwa,a,...° A dx°' A dx°' A ... A dx°''.
P!

r

So far, the construction may appear to depend on a particular choice of affine
coordinates. Suppose, however, that i° = khxb + c° are new affine coordinates.
Then

f di°' A di°' A ... A dia,. = (k a: kb' ... kb" j)dxb' A dxb' A ... A dxb''

and

d(kba kb, ... kb°'' f) A dxb' A dxb' n ... A dxb''

= (kb' kb' ... kb'')d f n dxb' A dxb' A ... A dxb''

= d f n di°' nd1°' A .. A dt°''.

Thus carrying out the prescribed construction in any affine coordinate system gives
the same answer. We may therefore define the exterior derivative operator, d, as
follows: for any p-form w, whose expression in affine coordinates (xa) is

w = ndx°' A...Adx°'',
Pi

the exterior derivative dw is the (p + 1)-form defined by

dw = I-dwaaa,...a,. A dxa' A dxa2 A ... A dx°''.
P

Strictly speaking one should distinguish notationally between the exterior derivative
operators for forms of different degrees (by writing, say, dD for the operator on p-
forms), thus making it clear for example that the d on the left hand side of the
definition (since it operates on a p-form) is a different operator from those on the
right hand side (which all operate on functions, the case which is assumed already
known). However this distinction is rarely if ever enforced, and indeed the various
operators are so similar that the distinction is hardly necessary.
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Exercise 9. Show that, in dimension 2, if w = p,dx' + p,dx' then

dw = ap' - Op- dx' n dx'
ax' ax2) '

in dimension 3, if w = pldx' + p,dz' + pads then

( aPa -
app i ' aP'

-
aPa ' n dxa aP _ P= _

\ 4922
ass) dz n dr- (ars axl) dz + (ax' as° J

d n dz ,

while if w = p, dx' n drs + p=dx' n dz' + psds' n dx'

then dw = (ax'
+ 19X2 + 49x3)

ds' n dz' n drs. O

Exercise 10. Let
0 = x'rsx'dr' + r'x'r4dx' + z's'x'dz' + r'r'rsdx'

q = zsxdz' A dx' + z'z'dz' A dx'
S=z'dx'Adz'ndx'+z'dx'Adx'Adx'+zsdz'Adx'Adx'+s'dz'Adr'Adx'

W = z'dz' + x'dx' + z'dz' + i dr'.
Show that dO = 0; dq = S; df = 0; dw = 0 d(rq n q) = 0; d(0 A w n ,) = 0; and that
d(wn17)_ ((x')'-(r')'+(r')'-(z')')dxindx'ndz'ndzZ. 0
Exercise 11. Show that the exterior derivative of any n-form on an n-dimensional affine
space is zero. O

The results of Exercise 9 reveal the similarities between d and the operations
curl and div (the similarity between d operating on functions and grad has already
been remarked on several times). Thus up to a point vector calculus is subsumed in
exterior calculus. However, some caution is necessary, because here the operands are
not vector fields, nor are the results of carrying out the operations. To recover the
operations of vector calculus in their entirety one needs to use the metric structure
of Euclidean space.

We have so far dealt with the expressions for exterior derivatives of forms only in
terms of affine coordinates. Conveniently, and remarkably, the same expressions ap-
ply in any coordinate system (this fact lends emphasis to the cautionary comments
in the previous paragraph). For consider the p-form w = /d±°' A d9°' A ... A d1',
as before, except that the coordinates (f') are no longer assumed affine (and may
indeed be defined only locally). In terms of some affine coordinates (x') we have

w (a.i°' ai°' ... az''= ` faxb' axb2 axbr

In computing dw we must now (in contrast to the case of a coordinate transformation
between two sets of affine coordinates) take into account the partial derivatives of
the terms ai'/arb. The derivative of the first such term in the expression for w
contributes a term

a'i°j a=492

... aia' d? A dxb' n dzb' n ... A dzb
axbaxb, azb2 asb,

to dw; this term is actually zero, since the second partial derivative is symmetric in
b and b, and so

82 P,
axbaxb,

d? A dxb' = 0.
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Similarly, all the other contributions to dw arising in this way vanish, and all that
remains is

ax°' ax 'X
d f A dxb' A dxb' A ... A dxb'

axb' aTe,
... axbr

= df ndz°j ndI 2
as before. Thus the formula for the exterior derivative given previously for affine
coordinates applies in fact for any coordinates.

This calculation reveals what is perhaps the key factor behind the simplicity
and utility of exterior calculus, namely the way in which the alternating character
of forms eliminates second partial derivatives from consideration. The reader will
notice several occurrences of the same effect below.

3. Properties of the Exterior Derivative
We now display the most important properties of exterior differentiation.

From the definition it is clear that exterior differentiation is R-linear:

d(klwi -t k2w2) k1dw, + k2w2 kl,k2 E R.

It is not however 3(A)-linear: in fact

d(fw) --: fdw t df nw f E 3(A).

This follows from the rule for evaluating the differential of a product of functions,
d(f g) = f dg + (df ) g: for if w -- gdx.°j A dx" A A . . A dx°' then

d(fw) =d(fg)Adx5' ndx':! A ...ndx"r = fdw+df A w.
With respect to the exterior product the exterior derivative obeys a rule some-

thing like Leibniz's rule, except for some differences in matters of sign: if w is a
p-form, and x another form, whose degree is unimportant, then

d(wA X) = dwA X + (-1)'wAdx.

This again is a consequence of the Leibniz property of the differential, but now the
properties of the exterior product also come into play. If w - f dx°j ndx°, A . ndx°r
and x = gdxb' A dxb' A A then

w n X - fgdx" A dx'3 A .. n dxa" A dxb' n dxb' n ... A dxb,

and so
d(w n X)

((df)g i- fdg) A dx"' A dx" A A ... A dx"' A dxb' A dxb' A ... A dxb.

(df n dx"' A dx. A ... A A (gdxb' A dxb' A ... A dxb' )

+(-1)r(fdx" A dx" Adxb' A...Adxb')
dwAX+ (--1)P,Adx

since p interchanges are required to move dg into position. The full result follows,
again, by linearity. The exterior derivative is said to be an anti-derivation of the
algebra of forms.
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Finally, the exterior derivative enjoys an important property which generalises
the familiar facts that curl(grad f) = 0 and div(curlX) = 0: for any form w,
d(dw) = 0, or in short,

d2 = 0.

(This means, if dp represents the exterior derivative of p-forms, that dp+l o dp = 0.)
This is again a consequence of the symmetry of second partial derivatives: for if
w = f dx"' A dx"' A A

df A dx°' A dx°' A . . A dx"r = f dx"Adz" Adz"' A ... Adx"ra,

then

d(dw)=d(/)az AdxtAdz"' Adx'AAdz"_

a2

dz"Adz A dx°' A dx"' A . . . A dx = 0.
f7z"axb

A coordinate Independent expression for d. The exterior derivative has been
introduced in a coordinate-dependent form. For aesthetic reasons, and for many
theoretical purposes, it is desirable to have a definition which is independent of
coordinates. This we now explain.

Such a definition uses vector fields in a "catalytic" role, and uses the facts that
if w E ApA and V1,V2,...,V, are smooth vector fields, then w(VI,V2,...,Vp) is
a smooth function, that w is an alternating 3(A)-multilinear map from X(A)p to
3(A); and that any such map defines a p-form. The shape that the required formula
might take is suggested by the following exercises.

Exercise 12. Show that the components of dw are given by the following equivalent ex-
pressions:

o+1

,a",.,,) =

(dw)a,"_.- (p
(The caret indicates a term to be omitted.) O

Exercise 13. In the case of a 1-form w

dw(a",ab) = se(w(a"))

Show that direct transliteration of the right hand side of this expression, when the co-
ordinate vector fields are replaced by arbitrary vector fields V, W, namely V(-(W)) -
W (w(V )), fails to satisfy the correct rule for the effect of multiplying a vector field by a
function, and does not represent a 2-form. Show that X, given by

X(V,W) = V PM) - W PM) - w(IV,W J),
does satisfy the rules for a 2-form however. Conclude that since the bracket of coordinate
vector fields vanishes, X agrees with dw on coordinate vector fields, and that x = dw. 0
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The required formula for the exterior derivative of a p-form w is
p+I

dW(Vl,V2,...,Vp+1) _ E(-1)r+l Vr(w(VI,V2,...Vr...,Vy+l))
r-1

+ (_1)r+eW(I Vr, J,VI,...Vr...Vs...,Vp+1).
I<r<a<p+I `

This agrees with the first formula in Exercise 12 when the arguments are coordinate
vector fields; it agrees with the formula obtained in Exercise 13 when p = 1, and
reduces to the definition of the exterior derivative of a function when p = 0. To
complete the proof of the formula (that is, the confirmation that the expression on
the right hand side does indeed give the (p + 1)-form dw as defined previously) it
remains to show that the right hand side is 3(A)-multilinear and alternating and
so corresponds to a (p + 1)-form. This is more complicated, but no more difficult
in principle, than the particular case already tackled in Exercise 13. We therefore
leave it as a further exercise; the reader may find it helpful to consider the case
p = 2 first.
Exercise 14. Show that

dw(U,V,W) =U(w(V,W)) + V(w(W,U)) +W(w(U,V))
-w((U,III, W) -w(IV,WI,U) -w((W,UI,V)

for any 2-form w, by showing that the right hand side defines a 3-form, and then evaluating
this 3-form with coordinate vector fields for arguments. Then complete the proof of the
general formula for dw when w is a p-form. 0
Exercise 15. Use the coordinate-free definition of d to show that d2 = 0, first for p = 0,
1, and 2, and then in general. 0

The exterior derivative and smooth maps. Let 0: A -' B be a smooth map
of affine spaces and let w E A P B . We explained in Section 1 how to define and
calculate the pull-back c'w E A A. We now show that

V'(dw) = d(4'w);
in other words, that the pull-back operation commutes with exterior differentiation.
We may for simplicity assume, as before, that w = f dy°' A dy°' A . . . A dy°r; the
general case follows by linearity. Then

a°', ... 3i
ax ax°j 49x°r f o dx°' n dz°' n ... A dz_

and so
r

f o 46 n dx°' n dz°' n ... A dx°rd(m'w)
= d (ax°I as°- ... axa,

p a0°, a24j°.
(jo0)dx°ndx°' n ndx°''

r-1
am-'

I JJ m'(df) A dz°j A dz°' A ... A dz°
ax°j az°-i ax°r.

_ c'(df n dy°' A dy°' n ... A dyer)
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the terms under the summation sign contributing nothing because of the symmetry
of second partial derivatives.

4. Lie Derivatives of Forms

The definition of the Lie derivative of a covector field (in present terminology, a 1-
form) which was given in Chapter 3, Section 6 is easily adapted to apply to forms of
other degrees. The definition given in Chapter 3 was applied to a form defined along
an integral curve of a vector field, and then (in Section 10) by an obvious extension
to a form defined all over the affine space (or at least on some open subset of it). In
the present discussion we shall concentrate from the start on the latter situation; it
is easy to see how to recover the former, if necessary.

Let w be a p-form on an affine space and V a vector field which generates a
one-parameter group 0t. The Lie derivative of the p-form w with respect to V,
Cvw, is the p-form given by

'CV- = dt (mt w)t_v

The value of Cvw, at the point x is thus

d
(Cvw). = lin

This rather more complicated formula serves to define Cvw in the case that V
generates, not a one-parameter group, but only a flow.

The Lie derivative measures the rate of change of a form under the action of
the flow of a vector field: so, for example, if w is a p-form invariant under the flow

w. for all t) then Cvw = 0. The converse is true, as will be shown
below.

We now list the main properties of the Lie derivative of forms, most of which
are consequences of the definition or known properties of the induced map as given
in Exercise 6 and Section 3.

From the definition and from the linearity of induced maps it is clear that the
Lie derivative is R-linear in w:

Cv(ktwt + k2w2) = kiCvwt + k2Cvws kt,k2 E R.

It is not 3(A)-linear; rather,

Cv(fw) = fCvw+ (Vf)w f E 3(A).

This follows from the fact that fit' (f w) = (f o 0t)Ot'w. Unlike the exterior deriva-
tive, the Lie derivative is a derivation of the algebra of forms:

Cv(wAx) = (Cvw) A X + w A (Cvx).

This is a consequence of the fact that cbt'(w A X) = (0t'w) A ('t'X) From the
commutativity of pull-back and exterior derivative, d(4t'w) = gt'(dw), it follows
that Lie and exterior derivatives commute:

d(Cvw) = Cv(dw).
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This has already been pointed out, in the case where w is a 0-form, or function, in
Section 7 of Chapter 3, where we stated that Cv (df) = d(V f ); Lie derivative and
directional derivative coincide for functions.

With these rules at one's disposal, the calculation of Lie derivatives in
coordinates becomes quite straightforward. A p-form is a sum of terms like
f dx°' A dx°' A ... A dx°r; by linearity of the Lie derivative, it is permissible to
deal with each term separately and sum the results, as before. Now

Cv(fdx°j A dx°' A . . . A dx°r)

= fLv(dxa' A dx°j A ... A dx°r) + (Vf)dx°' A dx°' A ... A dx°r.

The second term on the right hand side may be computed as it stands; to simplify
the first, the derivation property is used:

Lv(dxaI A dx°' A ... A dx°r)

= Lv (dx"') A dx°' A ... A dx°'. + dx°' A Cv (dxa') A A dx°'' +

+ dxa, A dxa' A .. A Cv (dx°r ).

Now the commutativity of Lv and d comes into play:

Cv(dx°) = d(Vx°) = dVa

where V = V°8.. Thus

Cv(fdx°' A dx°' A ... A
P

(Vf)dx°' Adx°2 A AdV°'

Exercise 16. Show that if V = (x')'81+(x')'82+(x')'83 and w = z'xsdx'+x'xsdx'+
x'x'dx3 then

L'vw = x2x3(2x1 + x' + z3)dx' + x'x'(x' + 22 + z3)dxs + x1x'(x' + x' + 2x3)dx3
while if V = z20, - x'8= and w = ((x' )' + (x')')dx' n dx' then

Cvw=O. o
Exercise 17. Show that if fl = pdx' A dx2 n A dx" is an n-form on an n-dimensional
space and V = V 'a. then

Cvfl = (pB,V' + Vp)dxI n dx2 n n dx". D

Exercise 18. Show that if w = wa, a, dx°' A dx`3 A . . . A dz°r then
P

CVw = 81a,(Vawlal, ...arl)dx°j Adx'' A...Adx'r,
P

where the bars around the suffix a indicate that it is to be omitted from the skew sym-
metrisation. D

We next show how Cvw depends on V. This is not so straightforward to derive;
to obtain the required results we first generalise the formula for the Lie derivative
of a 1-forma given in Chapter 3, Exercise 47, which may be written

(Cvo)(W) = V (-(W)) - a((V,W().
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This throws V into more tractable positions, from which such a property as the
R-linearity of Cvcr in V becomes obvious. This result follows from the fact that
't. is the adjoint of ¢t', and so an expression involving 4it' acting on a 1-form may
be converted into one involving Ot. acting on a vector argument introduced for the
purpose. The same strategy works in the general case, and produces a somewhat
similar result. We show that for a p-form w and vector fields W1,W2,... ,W,

p

(Cvw)(W1,W2,...,Wp) = V (w(WI,W2,...,Wp)) - W(W...... jVV,W,j,...,Wp).
r=1

By definition,

1 1 ,/,
(Ot'W#,(=))(WI,W2i...,w,) =

where w1i w2, ... , wp are the values of W1,W2, ... ,Wp at a point x. But 4't.wr
is approximately the value of the vector field Wr - tCvW, at Ot(x), from which
the result follows. An alternative method of obtaining the same result is to adapt
the method used to obtain the cordinate-free definition of d in Section 3, as in the
following exercise.

Exercise 19. Show that if
p

8(W1,W2,...,Wp) =V(w(Wi,W2,...,Wp)) - IV,W,J,...,WP)

then 8 is 3(A)-multilinear and alternating and is therefore a p-form. By evaluating this
expression when W1, W2, ... , W, are coordinate vector fields, show that 8 = Cvw. o

It follows immediately from this formula that Cvw is R-linear in V:

C(k,v,+k., v.)w = k1Cv,w + k2CV,W.

Other properties may be deduced from the same formula.
It is convenient at this point to make use of the interior product of a form

by a vector field. As with all the other algebraic operations involving forms, this
involves nothing more than applying the corresponding vector space concept from
Chapter 4 pointwise. Thus, if w is a p-form and V a vector field, then V Jw is the
(p - 1)-form defined by (V Jw)= = V. Jws. For any vector fields W1,W2,... ,Wp_1

(V Jw)(W1,W2,...,Wp-1) = W(V, W1, W2,-.., Wp_1).

Exercise 20. Show that, for any smooth function /,
Crvw= fCvw+df A(VJw)

(use the formula for Cvw given in Exercise 19 and above).

Exercise 21. Show that
0

Cv(Cww) - Cw(Cvw) = Clv,wlw
and that Cv(W Jw) _ (CvW)Jw+W JCvw. o
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The significance of vanishing Lie derivative. We now consider the conse-
quences of the condition Cvw = 0. We pointed out above that if w is invariant
under the flow generated by V (in other words, if w is Lie transported by this flow)
then Cvw = 0; we seek now to prove the converse. In order to do so we first de-
rive a result concerning the behaviour of the Lie derivative under smooth invertible
transformations.

Let 4' be a smooth invertible map with smooth inverse. We wish to derive an
alternative expression for Cv(4'w). Now if V generates a one-parameter group 41t,
then

(4 o f.(toot of W,

from which the required formula will follow by differentiation with respect to t.
The reason for choosing this rearrangement of terms is that 0 o mt o $-i is also
a one-parameter group: its generator is the vector field V O defined (Chapter 3,
Exercise 28) by

(V"). = IV: (Vo--(=1)

Thus
Cv(O'w) = O'(Cv.w).

In particular, taking for 4' an element of the one-parameter group generated
by V, and using the fact that V is invariant by such a transformation, one obtains

'M-O"w) = Y's*(CVw).

If Cvw = 0 it then follows that Cv(Or'w) = 0 for all s and therefore that Ot'w is
independent of t. Thus in this case 't'w = 0o'w = w, and so w is left invariant
by the one-parameter group generated by V. (If V should generate only a flow the
result remains true though the argument must be modified.)

5. Volume Forms and the Divergence of a Vector Field

A volume form, in the terminology of Chapter 4, is simply an n-form on an n-
dimensional affine space arising from an n-form on its underlying vector space.
Such a form defines a volume element on the affine space (to use the appropriate
phrase from multiple integration) which is invariant under translations.
Exercise 22. Show that an n-form f7 on an n-dimensional affine space is invariant under
all translations if and only if its (single) component with respect to affine coordinates is
constant. O

In the present context it is appropriate to generalise this concept and to call
any nowhere vanishing n-form on an n-dimensional affine space a volume form. A
volume form determines an orientation of the affine space. Relative to positively
oriented affine coordinates it may be written pdxt n dx2 A ... A dx" where p is a
positive function. If one thinks of dxi n dx2 A . . . A dx" as determining a volume in
the usual geometric sense then it is natural to interpret p as (for example) a density
function.
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In Exercise 17 the following formula for the Lie derivative of an n-form was
obtained: if fl = Pdx' A dxs A -- n dx" and V = V °an then

n

Cvn= Pax°

If fl is a volume form, so that p never vanishes, this may be written
a

1
Cvn = az° +

PI

Vp
n =

p ay° (PV *)fl.

In the case p = 1 the coefficient on the right hand side is just the usual expression
for the divergence of the vector field V. More generally, if fl is invariant under the
one-parameter group generated by V, then

ax°
(PV') = 0,

which is the continuity equation of fluid dynamics. So much may be said under the
assumption that the coordinates are affine, but the formula holds for any coordi-
nates. In fact there are present here the basic ideas for a coordinate independent
definition of the divergence of a vector field.

Given a volume form n on an affine space A of dimension n any n-form on A
may be expressed uniquely as a multiple of n with a coefficient which will in general
be a smooth function on A. In other words fl will serve as a basis for the module
of n-forms on A over 3(A). In particular the n-form Cvfl, for any vector field V,
may be so expressed: the coefficient in this case is called the divergence of V with
respect to fl, written dive V. Thus

Cvn = (diva V)fl.

By its very definition, dive V describes how the volume form fl is changed under
the action of the flow of V; in particular, divn V = 0 is the necessary and sufficient
condition for the vector field to be volume-preserving.

Exercise 23. Prove that if [l is a volume form and V is a vector field whose flow is
volume-preserving, so that divn V = 0, and if W is a vector field whose flow consists of
symmetries of V, that is, transformations which leave V invariant, so that CwV = 0, then
divn W is constant along the integral curves of V, that is, V (divn W) = 0. 0

We now have two ways of constructing quantities which generalise the diver-
gence of vector calculus: this, and the exterior derivative of an (n - 1)-form, as
exemplified in Exercise 9. In fact a natural way of expressing an (n - 1)-form w is
as follows:

n

_1: (-1)'-'p,dx1 ...Adxn.

r=1

Then in the computation of dw the only derivative of p, which contributes is the
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one with respect to x and in fact

dw = (r ap') dx'
rr 1 8xr

The two constructions of the divergence are related as follows. The particular
expression for w used above is just what would be obtained as a result of taking the
interior product of the n-form dx' A dx2 A A dxn with a suitable vector field. In
fact, given a volume form fl, any vector field V determines an (n - 1)-form V if],
and it is easy to see, either directly or by considerations of dimension (compare
Chapter 4, Exercise 42), that every (n - 1)-form may be expressed uniquely in this
way. In the case in which the n-form is just dx' Adx2 A . . Adxn (and the coordinates
are taken to be affine) the (n - 1)-form corresponding to the vector field V = Vaaa
Is

n

1)`
r=1

As has already been shown, the exterior derivative of this (n - 1)-form is indeed the
divergence of V times dx' A dx2 A . . A dxn. Thus, with no = dx' A dx2 A . . . A dxn,
we may write

Cvflo = d(V Jflo).

In fact this formula holds with any volume form in place of flo. This result
may be obtained directly, or alternatively by the following argument. Let fl = pf1o,
where p is a non-vanishing smooth function. Then

Cvfl = Cv(Pflo) = (VP)no + PCvflo

while

d(V JO) = d(V Jpflo) = dp A (V Jno) + pd(V Jno).

The expression dp A (V Jflo) may now be simplified by the following trick. Since
1, is an n-form dp A 0o, being an (n + 1)-form on an n-dimensional space, is zero.
Thus

0 = V i(dp A (VP) no - dp A (V Jno).

On combining these various expressions we obtain

Cvfl = d(V JO) = (dive V)fl.

Exercise 24. By using similar arguments show that for any volume form 0 and any
non-vanishing function f

div fn V = 1 diva JV.t
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6. A Formula Relating Lie and Exterior Derivatives

The formula Cvfl = d(V ill) obtained above is the particular case (for n-forms) of a
simple and important general formula relating Lie and exterior derivatives and the
interior product. In order to derive it we consider the expression Cvw - d(V Jw),
where w is a p-form; we use the coordinate independent expressions for Lie and
exterior derivatives to evaluate this expression. For any vector fields W1 , W2 i ... , Wp
we have

Cvw(W1,W2,...,Wp) - d(V Jw)(W1, W2,..., Wp)
P

= V (w(W1,W2,...,Wp)) - >w(WI,...,IV,Wrl,...,Wp)
r=1

P
_ [2(_1)r+1Wr(w(V,Wi,...Wr...,Wp))

r=1

- > (_1)r+IW(V,IWr,W,I,...Wr...I IF, ...,WP)
1<r<.<p

P

= V (w(W1,W2,...,WP)) +
r=1

P
+ E(-1)r+2w(IV,WrJ,W1,...Wr...,WP)

r=11
+ [: (_1)r+s+2w(IWr,W,',V.... Wr ... W, ...,Wp).

I<r<a<p

Careful inspection of this final expression reveals that it is just an exterior derivative:
it is in fact dw(V,W1i...,Wp). Thus on elimination of the "catalytic" vector fields
W1, W2,..., Wp and rearranging one obtains

Cvw=d(VJw)+VJdw.

The final term is missing when w is an n-form on an n-dimensional space. Note
that in that case this formula slightly generalises the one obtained in the previous
section, because w is not restricted to be nowhere vanishing.
Exercise 25. Show that on evaluating the expression d(V Jw) + V Jdw with coordinate
vector fields for arguments one recovers the expression for the components of Cvw given
in Exercise 18. 0
Exercise 26. Repeat the calculations of Exercise 16 using this expression for the Lie
derivative. O

7. Exterior Derivative and Covariant Derivative

Among the properties of the covariant derivative operator there are two, namely

VJJ+,,W = V W + VyW
Vfv = fVvW,
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which show that, for a fixed vector field W and 1-form 0, the map V ,-- (VvW, B) is
a 1-form. We shall rewrite some of the theory of the covariant derivative in a way
which takes advantage of this observation.

Let {U,} be a basis of vector fields and {e°} the dual basis of 1-forms. Then
for each U. the map V (VVUb,e°) is, as we have remarked, a 1-form, which we
shall denote w*. The 1-forms wb are called the connection forms associated with
the basis of vector fields U,. For any vector field V,

VVUb = (V,WOU.

and therefore

VVW = (V (W °) + (V,W )W b)UQ

Also (Chapter 3, Section 11)

(Uc,Wb)Ua = VU.UD = IbcUa

and therefore

Wb = Ybcec

where W = W 'U..

Exercise 27. Show that if U. = UQab with respect to a basis of affine coordinate vector
fields then wb = (U-1)cdU` or in matrix notation w = U-1dU. o

Now the components Wb of the vector field W with respect to the basis {U,}
are given by Wb = (W,eb). Thus

(v(W,6°) + (V,Wb)(W,eb))U..

We may express the first order commutation relation VvW - VWV = (V, W ) as
follows:

V(W,e,) - W(V,B1) + (V,W4)(W,eb) - (W,w)(V,eb) _ ((v,Wl,e°)
which on rearrangement gives

de°(V,W) + (wa Aeb)(V,W) = 0.

It follows that
de° -} wb A eb = 0.

Exercise 28. The same result may derived in another way. Show from the relation Vv W -
VwV - [V,WJ = 0 that for any 1-form B, dO(V,W) = (W,Vve) - (V,VwO). Show that
(V,w;) = and deduce that dB° = -wj A eb. o

The second order commutation relation VvVw - VwVv - Vlv wl = 0 for an
affine space may be expressed as follows. For each basis vector field Ub

Vv(VwUb) = Vv((W,wb)U1)

= (V ((W,wb))Ua + (W,Wb)VVUa

_ (V ((W,W6)) + (V,Wc)(W,W6))Ua

which may be written

(VV (VW Ub), 0") = V ((W,Wb)) + (V,We)(W,W6)
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Subtraction of the similar term with V and W interchanged and of the term
(V(V,WIUb,e,) yields

V((W,wb)) + (V,w,*)(W,we) -W ((V,wg)) - (W,w:)(V,Wb) - (IV,W;) = 0.

This is to say
dwb (V, W) + (W, A W') (V, W) = 0.

Since this holds for every pair of vector field arguments

dwb +W' AWh = 0.

The equations d8° + wb A Bb = 0 and dw + w' A Wb = 0 are called the first and
second structure equations for the connection with respect to the local vector field
basis.

8. Closed and Exact Forms

A p-form given on an affine space is said to be closed if its exterior derivative is
zero, and to be exact if it is itself the exterior derivative of a (p - 1)-form. An exact
form is necessarily closed, since if w = dX then dw = d(dX) = 0. We shall show that
in an affine space an everywhere-defined closed form is necessarily exact.

Exercise 29. Show that with respect to any coordinates the condition for a 1-form a =
a,dx° to be closed is that a,ab = sea,. Show that for it to be exact there must be some
function f such that a, = a, f . 0

The general result includes, in a sense, the following results from vector calcu-
lus: that a vector field is a gradient if and only if its curl is zero, and that a vector
field is a curl if and only if its divergence is zero. However, we deal here only with
forms, whereas the classical results make implicit use of the metric of Euclidean
space to identify forms with vector fields. The classical results are developed in
Chapter 7.

In vector calculus, if curiX = 0, then a potential function m for which X =
grad 0 is constructed by setting

Pr
cb(P)= /

J P.

where PO is a conveniently chosen point and the line integral is taken along any
smooth curve from Po to P. It follows from Stokes's theorem that the function
so obtained is independent of the choice of path of integration. This method is
not directly applicable to exterior forms of degree greater than 1, but suitably
reformulated it yields a construction which can be generalised to treat such forms.

Expressing a closed 1-form as an exterior derivative. Consider, therefore,
on an affine space A a closed 1-form a. We shall construct a function f such that
a=df.

Choose any point x0 of A. This point may be joined to any other point x by
an affine line segment e : t '--+ xn + t(x - xo). In affine coordinates (xe) with xo as
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origin, one may write a -- a"dx", and the line 1, is t '-+ (tx°). We define a function
f by the formula

I

f"(x") _. ab(tx`)xbdt.
0

In the integration the x", which are the coordinates of the endpoint of the segment,
must be understood to be constants: only t is a variable of integration. In effect
we are computing the line integral of a along the line segment t=. The function f
is smooth, if a is, and its exterior derivative may be computed directly:

df = as dx" _ ( 1 ' I aa(tx`) + aaa (tx`)txb I dt
1

dx",
n \ I J

the second term being rearranged by change of dummy indices to yield dx" as
common factor. However, since a is closed, a1,a" = a"ab (Exercise 29), and so the
second term may be rewritten again to yield

(tx`) (tx`)txb) dt } dx".df = {f' (

But this integrand is the derivative with respect to t of the function t I. to"(tx`);
thus

ll

df = ( dt(ta"(tx`))dt1 dxa = a,(x`)dxa = a.

This establishes the construction for a 1-form.

Exercise 30. Show that the 1-form x'dz' + z'dx' is closed ; construct by the above
method a function f for which df = x'dz' + x'dx'. O

Exercise 31. Show that the 1-form -z'dz' 1- x'dx' is not closed; verify that the integral
defined above is zero for this form. o
Exercise 32. Show that the 1-form

-x'dx' + x'dx'
a = (x')z + (x2)2

on R' is smooth except at the origin, and closed wherever defined. Verify that, although
fo a,(tx')z"dt is not defined, lim._o f' a,(tx`)x°dt = 0. Show that, for x' > 0, a = df
where f = and show how to extend this function to one which is smooth
everywhere except for x = 0, z' < 0. o

There is in fact no smooth function f on R2, or even on R2 with the origin removed,
such that df is the 1-form a of Exercise 32, even though a is closed. Even so, one
frequently writes dfl for a, where t is the angle of plane polar coordinates! The
moral of Exercise 32 is that for locally defined forms closure does not necessarily
imply exactness.

Expressing a closed form of any degree as an exterior derivative. The
integral defined above is meaningful, and yields a smooth function f, whenever a
is an everywhere smooth 1-form, whether or not it is closed. Moreover, there is a
relation between df, a and da which suggests a way of generalising the construction



136 Chapter 5

to forms of higher degree. To discover this relation, compute d/ in affine coordinates,
as before, but no longer assuming that a is closed:

dJ = {
J

(aa (tx`) + 8aab(tx`)txb)dt } dx°,
111 0 1111

and add and subtract a 86aa term inside the round brackets:

( 1'(Q.dj (tz`) + 8baa(tz`)txb)dt dx°
1JJ

ll
- {I' (8baa(tx`) - 8aab(x`))txbdt)

111

= a - If (da)°b(tz`)tx°di dxb.
J

The final term on the right is constructed from da in much the same way as
f is constructed from a. On the route to generalisation, we define linear maps
hi:A`A-A°A andh2:A2A-A'Aby

I

(tx`)zadt where a = aadz°h, (a) = fo aa

h2(A) _{j'}
where Q =

2
pbdx° A dxb. Then

d(hl(a)) = a - h2(da),
so that d o h, + h2 o d is the identity map on 1-forms.

The key step in the generalisation is to construct a linear map hp: AP A
A P-1 A for each p = 1,2,... , n, similar to h, and her such that do hp + hp+l o d is
the identity map on p-forms. If this composite map is applied to a closed form w it
will yield d(hp(w)) = w, showing that w is exact, as required.

A clue to the construction of the maps hp is gained from an analysis of h, and
h2. Each of these maps is effected by carrying out the following steps: first, contract
the coefficients of the given form with x°; then change the argument to txc and
multiply by a suitable power of t; then integrate with respect to t. Now the process
of contracting the given form with x° is equivalent to taking its interior product
with the vector field A = z°8a. This vector field generates the one-parameter group
of dilations 6j: x -4 zo + e*(z - zo) or, in affine coordinates based on xo (as we have
been using), (x°) '' (etx°). The integral curve of A through x is (almost) the line
segment t. used in the construction, though differently parametrised. However, the
origin of affine coordinates xo does not lie on the integral curve of A through any
other point x, but is itself a (degenerate) integral curve. On the other hand, for
each point x, the limit of 6t(z) as t - -oo is zo. If we change the variable in the
integrals defining h, and h2 to et we obtain

0

hi(a) = aa(etx°)e1z°dt
00
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0

h2(a)
{juiab(ezc)e2tx0dt} dxb.

Now

6t'a = aa(etx`)etdxa

69*0 = zIab(etx`)c2tdxa A dxb.

On taking the interior products of these forms with A we recover the integrands of
the above integrals. We may therefore express hi and h2 as follows:

0

hi(a) (AJ6t'a)dt
JJ

h2(13) = J (A Jbt'p)dt.°

Integration here means integration with respect to the parameter t, the coordinates
xa being regarded for this purpose as constants. Therefore any operation which
affects only the coordinates may be interchanged with the integration. Using this
fact, and also the fact that the exterior derivative commutes with the pull-back, we
write the formula a = d(ht (a)) + h2(da) in the following way:

a= d (iJf°ota)dt) + A J J° (6tda)dt.
00

Compare this with the Lie derivative formula

Laa=d(AJa)+AJda.
It is apparent that, suitably formulated, the integration process is simply the inverse
of the Lie derivative along the generator of dilations.

A similar construction works for a form of arbitrary degree. If w is a p-form
then

6t'w = I Wa, a,...a, (etx`)ePtdxa' A dxa' A ... A dxa',

and so limt._,,. 6t'w = 0. Moreover, from the definition of the Lie derivative,

£ (6t'w) = da d (6t'w)

and so on the one hand

while on the other hand
o d o 0

J Wt (6t'w)dt = J Co(6t'w)dt = J (d(AJ6t'w) + AJd(6t'w))dt
!! oo co 00

r
= d(AJJ° (6t'w)dt) + A / ° (6t'(dw))dt,f 00 J 00
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again using the fact that integration here is with respect to t to interchange the
order of operations. Therefore

w = d(OJ f ° (be*w)dt) + OJ if
o

(be-(dw))dt.
CO

Dropping any notational reference to degree, as is customary also for d, we denote
the map w '- A J f °,(be'w)dt by h, and infer that for any p, d o h + h o d is the
identity on p-forms. Therefore if dw = 0 then w = d(h(w)) and every closed form
on an affine space is exact.

Note that for a given closed p-form w there are many (p - 1)-forms X such
that dX = w: the addition of a closed (p - 1)-form to any such form X will pro-
duce another with the same property. This operation is sometimes called a "gauge
transformation".

Exercise 33. Let A,, A2 and A3 be given functions, smooth everywhere on a 3-
dimensional affine space. Show that the necessary and sufficient condition for there to
exist functions f1, f2 and fs such that (in affine coordinates)

aft af, af, af, af, aftA, =as -
a=2

A2 - a=, - azs As = az2 - az,

8A, dA2 aA, _is that azi + az2 + azs - 0. o

Exercise 34. An open subset of an affine space is said to be star-shaped with respect to
a point zo in it if for each point z which lies in the subset the line segment joining zo to
z also lies in it. Show that any local form, defined on a star-shaped set, which is closed is
necessarily exact. 0
Exercise 35. Show that the Lie derivative with respect to the dilation field is an iso-
morphism of forms: that is to say, if Caw = 0 then w = 0; and if w is a form specified
everywhere then there is a form X of the same degree such that w = C,X. Show by exam-
ple that this is not true if the form w is undefined at some point (consider the form a of
Exercise 32). o

Summary of Chapter 5

A p-form on an affine apace is a choice of element of A'(T= A), the vector space
of alternating R-multilinear forms of degree p on T=A, for each point z E A. If w
is a p-form and V1, V2,..., Vp are smooth vector fields then w(V1, V2,..., Vp) is a
function on A, and w is smooth for all choices of arguments. Alternatively a p-form
is an 3(A)-multilinear alternating map X (A)p 3(A). The operations of exterior
algebra (including the exterior and interior products) are carried out on forms
pointwise. A p-form w may be expressed in terms of coordinates in the following
way: w = F wa, a2...a, dxa A dza' A ... A where the functions satisfy
Wa, e2...4 = Wla, a,...o,l A smooth map O induces a map of forms by w r-. 4'w where
('O'W)=(V1,V2i...,Vp) = W#(Z)(#.Vi,m.V2,...,41.Vp); this map is contragredient to
0, is R-linear, and satisfies qS'(wt Awe) = (41'wt) A (4'w2).

The exterior derivative of a p-form w is the (p + 1)-form dw given by dw =
dl A dza' A dial A ... A dxap if w = f dza' A dza' A ... A dx*,, and extended to
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arbitrary forms by linearity. A coordinate-free definition is
p+1

dw(Vl,V2,...,Vp+1) = E(-1)r+Vr(w(V1,...V1...,Vp+1))

r=1

s+ (-1) r + W(IVr,VeI,VI,...
I<r<e<p+l

The exterior derivative generalises the operations of vector calculus. It has the
following important properties:

d(klwl + k2w2) = kldwl + k2w2 d(fw) = fdw + df A w
d(wnX)=dwAX+(-1)PwAdX ifwisap-form

d 2 = 0 4'(dw) = d(4'w).

The Lie derivative of a p-form w by a vector field V is the p-form Cvw given
by d/dt(,1'w)1=o where V generates the flow 0. Alternatively,

1

P

(CVw)(W1,W2,...,Wp) = V (w(WI,W2,...,WP)) - Yw(Wi,...,IV,WrJ,...,Wp).
r= 1

The Lie derivative measures the rate of change of w under the action of the flow of
V. It has the following important properties: it is R-linear in both w and V; Cv
commutes with d;

Cv(fw) = fCvw+(Vf)w Cv(w1 Awe) = (Cowl)AW2+wl A(Cvw2)
Cfvw = fCvw + df n (V Jw) Cv(Cwo) - Cw(Cvw) = C(V,wIW

Cv (W Jw) _ (CvW) Jw = W JCvw.

The Lie and exterior derivatives are related via the interior product by

Cvw = d(V Jw) + V idw.

The connection 1-forms w; associated with a basis of vector fields (U.) are
defined by (V,wQ) = where {B°} is the basis of 1-forms dual to {U,}.
The connection forms satisfy dB° + wb A 06 = 0, dwb + W" A Wb = 0, the structure
equations for the vector field basis.

A form w is closed if dw = 0 and is exact if w = dX for some X of degree one less.
Every exact form is necessarily closed; for forms globally defined on an affine space
the converse is true, as may be shown by constructing a family of linear operators
h such that d o h + h o d is the identity on p-forms for each p. However, a local form
may be closed without being exact.



6. FROBENIUS'S THEOREM

If m: B A is a smooth map of affine spaces then, for any y E B, the set of vectors
{ 0.w I w E TyB } is a linear subspace of Tm(y)A. It would be natural to think of
this vector subspace as consisting of those vectors in Te(y)A which are tangent to
the image 0(8) of 8 under 0. In general this idea presents difficulties, which will be
explained in later chapters; but one case of particular interest, in which the notion
is a sensible one, arises when 4.,, is an injective map for all y E 8, so that the
space { m.w I W E TyB } has the same dimension as B for all y. In this case we call
the image O(B) a submanifold of A (this terminology anticipates developments in
Chapter 10 and is used somewhat informally in the present chapter). Since it has
an m-dimensional tangent space at each point (where m = dim B) the submanifold
45(B) is regarded as an m-dimensional object. Our assumption of injectivity entails
that m< n = dim A.

A curve (other than one which degenerates to a point) defines a submanifold
of dimension 1, the injectivity of the tangent map corresponding in this case to
the assumption that the tangent vector to the curve never vanishes. We regard
R, for this purpose, as a 1-dimensional affine space. In the present context the
image of the curve will play a more important role than the curve (as map) itself.
A congruence of curves on an affine space A defines a vector field on A; if the
parametrisation of the curves is disregarded, then one obtains a collection of 1-
dimensional submanifolds of A, exactly one through each point, and associated
with it there is a field, not of vectors, but of 1-dimensional subspaces of the tangent
spaces to A. Again, degenerate curves are not allowed.

An obvious, and as it turns out, important, generalisation of this idea is to
consider collections of submanifolds of A, exactly one through each point of A, and
all of the same dimension m, but with this common dimension not necessarily being
1. Such a collection of submanifolds defines on A a field of m-dimensional subspaces
of the tangent spaces to A, which we call a distribution of dimension m. The m-
dimensional subspace of T=A determined by the distribution is just the subspace
consisting of vectors tangent to the submanifold through x. So in this way, starting
with a suitable collection of submanifolds one may construct a distribution. But one
may imagine a distribution to have been defined initially without reference to any
submanifolds; the question then arises, is there even so a collection of submanifolds
whose spaces of tangent vectors coincide with the given distribution? When m = 1
there will be such a collection of submanifolds, as follows from (though it is not
quite equivalent to) the theorem on the existence of integral curves of a vector field.
But in the more general case the answer to the question is: not necessarily. A
certain condition must be satisfied by the distribution to ensure the existence of
submanifolds with the required property-integral submanifolds we shall call them,
in a natural extension of the terminology for vector fields and curves.
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In this chapter we describe the geometry of distributions, state the condition
for the existence of integral submanifolds, prove its sufficiency, a result known as
Frobenius's Theorem, and make some applications.

1. Distributions and Integral Submanifolds

Distributions. An m-dimensional distribution D on an affine space A is an as-
signment, to each point x E A, of an m-dimensional subspace D. of T.A. Naturally,
we shall be concerned only with distributions in which D. varies smoothly, in some
appropriate sense, from place to place. Before making this precise, however, we
consider the various ways in which a distribution may be specified, making use of
geometric objects already defined.

Since we are concerned with subspaces of vector spaces, the methods of Chap-
ter 4 suggest themselves. Thus for each x we may specify D. simply by giving a
basis for it (consisting of elements of T=A), or by giving a suitable m-vector at x.
Alternatively we may use a dual approach, and specify Dz by giving n - m linearly
independent constraint 1-forms at x for it, or by giving a characterising (n - m)-
form at x for it. Each of these methods is useful in an appropriate context. For the
present we concentrate on the specification of a distribution using forms.

Given a distribution D, we call any local 1-form 9 which vanishes on P (in the
sense that at each point x, 9Z vanishes when restricted to D=) a constraint 1-form
for D. An m-dimensional distribution on an n-dimensional affine space is smooth if
one can find n - m smooth local 1-forms 9P (where p = m + 1, m + 2, ... , n) such
that, for each x, the 91 constitute a basis for the constraint 1-forms for D at x.
Given n - m smooth constraint 1-forms 9P as described in this definition, one can
express any other smooth constraint 1-form 9 uniquely in the form 9 = f,9P with
smooth local functions f, for coefficients. Because of this we shall call such a set of
constraint 1-forms {9P} a basis for the constraint 1-forms for D. Bases of constraint
1-forms for distributions are not uniquely determined: if {9P} is one basis and if
(n - m)2 smooth local functions As are given, such that for each x the matrix
(AP (x)) is non-singular, then {APO°} is another basis for the constraint 1-forms for
the same distribution, and any two bases are related in this way on their common
domain.

Almost all of the indeterminacy inherent in the use of 1-forms to specify a
distribution may be avoided by using instead a characterising (n - m)-form. A
smooth local (n - m)-form w is called a characterising form for a smooth distribution
D if w= is characterising for D., for all x. Any basis {OP} for the constraint 1-forms for
D defines a characterising (n - m)-form w = 9'"+1 n 9"'+2 n . . . A On. Conversely, any
characterising form must be decomposable, in the sense that it may be expressed
as an exterior product of 1-forms, and these are then constraint 1-forms for the
distribution.

Exercise 1. Consider the 1-form B = -x2dx' + x'dx2 + dx' in a 3-dimensional affine
space. Show that 9 is a constraint 1-form for a 2-dimensional distribution D, and that the
vectors a, + x2a3, a, - x'a3 constitute at each point x a basis for D,,. o
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Exercise 2. Consider the two 1-forms 94 = -x2dx' + x'dz2 + dxs, 9 = -x4dxs +
xsdx4 + dzs in a 5-dimensional affine space. Show that they constitute a constraint basis
for a distribution D, and find a characterising form for it. Find a vector basis for D. in
terms of coordinate vectors. O

Exercise S. Find a basis for the constraint 1-forms for the distribution (on a 4-
dimensional affine space with affine coordinates (x',x2,xs,x4)) which has the (decom-
posable) 2-form dx' n dx2 + x3dz' A dzs - z2xsdz2 A dx3 as a characterising form. 0
Exercise 4. The 1-forms dx' + x2dx3, dx' + x3dx2 do not, as constraint 1-forms, define
a distribution: why not? 0
Exercise b. Suppose that w is an (n - m)-form on an n-dimensional affine apace, which
is nowhere vanishing and is decomposable (in the sense explained above). Show that if,
for each point x, D. is the characteristic subspace of ws then the D. constitute a smooth
m-dimensional distribution. O

Exercise 6. Show that two (n - m)-forms, both decomposable, determine one and the
same m-dimensional distribution if and only if one is a multiple of the other by a nowhere
vanishing smooth function. O

Constraint forms and characterising forms for the same m-dimensional distri-
bution are related as follows: if w is a characterising (n - m)-form, and therefore
decomposable, then 9 is a constraint 1-form if and only if 8 A w = 0 (Exercise 46
of Chapter 4); again, w is a characterising form if and only if 9 A w = 0 for every
constraint 1-form 0 (Exercise 47 of Chapter 4). This can be taken somewhat fur-
ther. We shall say that the distribution D is isotropic for a p-form X if, for every
point x, X,, is zero when restricted to D. (that is, X=(v,, v2.... , vp) = 0 when all
of the p arguments vi, v2i ... , vp lie in D.). Thus in particular D is isotropic for all
its constraint 1-forms and for any linear combinations of p-fold exterior products
of them, including its characterising (n - m)-forms; but more generally than this,
D is isotropic (for example) for a A 0 where 0 is a constraint 1-form and a is any
form whatsoever. The case of a characterising form is rather special: it gives zero
when just one of its arguments is taken from D. The forms for which D is isotropic
have a significant role to play in the argument. They may be specified as follows:
D is isotropic for X if and only if X A w = 0, where w is a characterising form for D
(Exercise 48 of Chapter 4).
Exercise 7. Let {9"} be a basis for the constraint 1-forms for a distribution D, and let
X be a p-form for which D is isotropic. Show that there are (p - 1)-forms A, such that
X = X, n P. O

A set of forms (of differing degrees) is called an ideal if it has the property that
for every form X it contains, it also contains A A X for every form A (this includes
the possibility of A being a 0-form, that is, a function). Every set of forms, even a
finite set, is contained in some ideal, though possibly the only ideal containing it is
the whole algebra of forms. The smallest ideal containing a given finite set of forms
is said to be generated by it.
Exercise 8. Let (90) be a basis for the constraint 1-forms for a distribution D: show
that the ideal generated by this finite set of forms consists of all the forms for which D is
isotropic. O

Integral submanifolds of a distribution. We have introduced above the idea
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of a submanifold, and pointed out its relation to the idea of a curve. Just as it
is desirable to allow the domain of a curve to be an open interval of R and not
necessarily the whole of it, so it is desirable to allow the domain of a map defining
a submanifold to be an open subset of an affine space and not necessarily the whole
of it. Allowing for this, we define a submanifold of an afne space A as follows. Let
S be a subset of A. We call S a submanifold of A if there is another affine space 8,
an open subset 0 of B, and a smooth map 0: 0 -+ A such that S is the image of 0
under 0 and that for every y c- 0 the linear map 4.: Ty8 --+ T#(y) A is injective.

The map (k in the definition is not unique. In particular, if I':0 --' P is a
smooth map of the open set 0 to an open set P in B which is bijective and has a
smooth inverse, then q5: 0 -+ A and 0 = 0 o 1 ': P -. A determine the same sub-
manifold. We call any map with the properties of the definition a parametrisation
of the submanifold S, and any map >G as just described a reparametrisation of 41.

If (0: 0 - . A is a parametrisation of a submanifold S of A then, for any y E 0,
0. maps Ty8 linearly and injectively into To(v)A, and so 0. (TyB) is a subspace
of T=A which is isomorphic to TyB. Moreover, if tj is a reparametrisation of 0,
then 0 and' determine, in this manner, the same subspace of T=A at each point
x of S. We call this subspace of TA the tangent space to the submanifold S at
the point x E S. All of the tangent spaces to S have the same dimension, namely
m = dim B, so we say that S has dimension m. The tangent space to S at x will
be denoted T.S.

Fig. 1 Tangent spaces to a submanifold.

Exercise 9. Show that the map given by (y',y2) (cos yt sin y2,sin y' sin y2, cos y2) for
0 < y2 < s is a parametrisation of a submanifold, but that it is not so on any larger
domain. o
Exercise 10. Show that if R is regarded as a 1-dimensional affine space then any curve
with non-vanishing tangent vector is a parametrisation of a 1-dimensional submanifold,
and that its tangent space at any point is the 1-dimensional space spanned by the tangent
vector to the curve at that point. 0
Exercise 11. Show that any affine p-plane in an affine space is a p-dimensional subman-
ifold of it. a
Exercise 12. Show that the tangent space at r to a submanifold S of A, through Z,
consists of the tangent vectors at z to all curves in A which lie in S. 0
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Exercise 13. Let 0: 0 -. A be a parametrisation of a submanifold S of A (where 0 is an
open subset of B) and let y E 0. Define an affine map 0: B -+ A in terms of the linear
map 4.:T5B -. T,(,)A as follows. For each z E B regard z - y as an element of T,8
and set $(z) _ 4(y)+4.(z - y), where 4.(z - y) E T,(,) A is to be identified with an
element of the vector space on which A is modelled. Show that 41' attaches 8 at 4(y) as
an m-dimensional affine subspace of A, and that this affine m-plane touches S at 4(y) in
the sense that its tangent space there coincides with T#(,) S. O

We call this m-plane the tangent plane to S at 4'(y).
Suppose now that there is given, on an n-dimensional affine space A, an m-

dimensional smooth distribution D. An m-dimensional submanifold S of A is called
an integral submanifold of D if at each point x E S, T=S = D.. Thus S is an integral
submanifold of D if at each point x through which it passes its tangent space is just
the subspace DZ of TA already given there by D.

It is not necessarily the case that a distribution admits integral submanifolds:
our aim is to give a necessary and sufficient condition for it to do so. A distribution
D such that through every point of A there is an integral submanifold of D is said
to be integrable.

A simple example of an integrable distribution is the one defined on a 3-
dimensional affine space by the single constraint 1-form given in affine coordinates
by dx3. Its integral submanifolds may be parametrised by (y1, y2) p-+ (y', y2, c),
where c is a constant, different integral submanifolds being obtained for different
values of c. The integral submanifolds are simply the 2-planes parallel to the x'x2-
plane. There is one and only one integral submanifold through each point of the
3-dimensional affine space: since the x3-axis cuts each integral submanifold just
once it is convenient to distinguish the integral submanifolds from each other (in
this example) by using the points on that axis, and in fact the constant c in the
parametrisation given above is just the x3 coordinate of the point in which the
integral submanifold intersects the x3-axis.

On the other hand, the distribution (on the same space and with the same
coordinates) defined by the constraint 1-form -x2dxl + x'dx2 + dx3 (Exercise 1) is
not integrable. We may indicate why by assuming that it has an integral submani-
fold through some point and deriving a contradiction. This is particularly easy to
do when the point in question is the coordinate origin. As in the previous example,
the constraint 1-form at that point is just dx3, and so the tangent plane to the
integral submanifold through the coordinate origin (supposing one to exist) would
have to be the xlx2-plane. Accordingly it would be possible to use for parameters
on the integral submanifold the first two coordinates of the points on it-at least for
points close enough to the origin. In other words it would be possible to regard the
integral submanifold as the graph of some function f on R2, and having therefore
the parametrisation 0:(y1,y2) (y',y2, f(y1,y2)). The function f is required to
satisfy f(0,0) = 0, a, f(0,0) = 0, a, f(0,0) = 0. Now

a _ a a a
1 1 1 30' 49Y Xax + ay ax

a a of a
m' aye ax= + aye ax3
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and these vectors belong to the distribution at (b(y) (as they must if .0 is to be a
parametrisation of an integral submanifold) if and only if

--y2+ell f =0, y'+a2f =o.
Cross-differentiating makes it clear that there is no smooth function f satisfying
both these equations simultaneously. The distribution cannot be integrable.

Before turning to the question of the necessary and sufficient conditions for
integrability, we point out that when they do exist integral submanifolds of a dis-
tribution share one property with integral curves of a vector field: there is one, and
only one, integral submanifold passing through each point of the space. If one has
found a parametrisation 0 for the integral submanifold through a point x1, and
x2 is some other point or it, then a parametrisation for the integral submanifold
through xz can differ from 0 only by being a reparametrisation of it. In the case
of integral curves of a vector field one is able to go further and say that such a
reparametrisation can be no more than a change of origin, but this depends on the
fact that one is dealing with a vector field rather than a 1-dimensional distribution,
and there is no analogue of that particular aspect of the congruence property of
integral curves which applies to integral submanifolds of a distribution.

2. Necessary Conditions for Integrability

The task now is to find conditions on a distribution necessary and sufficient for the
spaces that make it up to fit together to form the tangent spaces to a collection of
submanifolds, in other words, for it to be integrable.

It is easy to derive a necessary condition, as follows. Suppose that D is an
integrable distribution, and that m: 0 -+ A (where 0 is an open subset of an affine
space B) is a parametrisation of one of its integral submanifolds, so that for any
y E 0, 4,.(TyB) = Dofyl. Then if 9 is any constraint 1-form for D, and w any
element of TyB, we have 0; from which it follows that (4'9)y = 0.
This holds for all y, so that 0'9 = 0. Since the exterior derivative commutes with
the pull-back, it follows that 4, d9 = 0. Then for any y E 0 and any wl, W2 E TyB,
d9#fyl(4,.wl,4,.w2) = 0, which means that the restriction of dO#(v) to Defyl is zero.
Since by assumption there is an integral submanifold through every point of A, this
property holds at every point of A. Thus if D is integrable, and 9 is any one of its
constraint 1-forms, then D is isotropic for d9. Using the results of Section 1 this
conclusion may be equivalently expressed in several different ways: if D is integrable
then

(1) if w is a characterising form for D and 9 a constraint 1-form then

dOAw=0

(2) if {90} is a basis for the constraint 1-forms for D then
d9° n 9m+' n e.n+s n ... n gn =0

(3) if {90} is a basis for the constraint 1-forms for D then there are 1-forms AP
such that

d9° = A°, A O.
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This gives, in various forms, a necessary condition for the integrability of D: it is
known as the Frobeniua integrability condition.
Exercise 14. Show that the distribution defined by the 1-form -z2dzl + x'dx3 + dz3
(Exercise 1) fails to meet the Frobenius integrability condition in any of its forms. 0
Exercise 15. Show that the Frobenius integrability condition for the distribution defined
on a 3-dimensional affine space with affine coordinates (xl, z2, x') by the constraint 1-form
P1dx'+P,dx'+Psdz' (where the coefficient functions P. do not all vanish simultaneously)
amounts to the condition

P,(193P2-8:8)+P2(31P,-33P,)+P3(19:PI -81P3)=0. o

(In more classical language, with the P. identified as components of a vector field
P, this would be written P curl P = 0, and regarded as a necessary condition for
the family of 2-planes orthogonal to P to be integrable.)
Exercise 18. Show that the three conditions given above are indeed equivalent to each
other and to the condition that D be isotropic for dB. a
Exercise 17. Show that the Frobenius integrability condition is automatically satisfied
for any 1-dimensional distribution. 0
Exercise 18. The 1-forms A; in condition (3) above are not uniquely determined. Verify
that this is so by showing that if µe = A; + L ."X, where the functions L.O. satisfy
L; = L,",, then dO' = µ; n 9° also. Show that conversely, if dB' = A; A Be = µ; A 0°,
then A; and p; must be related in the way just described. 0
Exercise 19. Show that if do' = A° A 0°, and B' = Ao6°, where the functions A; are the
elements of a non-singular matrix (so that (9P) is another basis for constraint 1-forms)
then

d9° = a; n 9° where a; = dA;(A ')o + A;A; (A-1);
(up to multiples of i' as in Exercise 18), (A 1)°° being the elements of the matrix inverse
to (A;). 0
Exercise 20. Show that if D is integrable and X is any form for which it is isotropic then
D is also isotropic for dX. Deduce that if D is integrable then the ideal of forms generated
by any basis for its constraint 1-forms contains the exterior derivative of every form in
it. 0

3. Sufficient Conditions for Integrability

As it turns out, the Frobenius integrability condition (in any of its equivalent forms)
is sufficient, as well as necessary, for the distribution to be integrable. This result
is known as Frobenius's theorem. We now embark on the proof of sufficiency.

It should be stated at the outset that several steps in the proof work only
locally: that is to say, they involve assumptions or known results which may hold
only in a neighbourhood of a point and not all over the ambient space. The result is
therefore also local: it guarantees the existence of an integral submanifold through
every point, but only in a neighbourhood of the point.

We deal with an m-dimensional distribution D on an n-dimensional affine space
A. It will be convenient to use affine coordinates throughout, and to employ indices

o, 0 in the range 1, 2, ... , m
p, or in the range m + I ,
a, bin the range 1, 2, ... , n.
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The distribution D is assumed to satisfy the Frobenius integrability condition:
its most convenient expression for our purposes is the one given under (3) in the last
section. The aim is to show that through every point of A there passes an integral
submanifold of D. The strategy of the proof is to construct an integral submanifold
of D through an arbitrary point x0 of A, starting off rather in the manner proposed
for the 1-form 8 = -x2dx' + x'dx2 -1 dx3 towards the end of Section 1 (though
in that case the construction turned out to be unsuccessful for reasons now clear).
That method depended rather heavily on a particular property of 8, namely that
it contains a coordinate 1-form with coefficient 1, to which 0 reduces at the origin.
The first step in the general construction is to take advantage of the freedom of
choice of a basis for constraint 1-forms (underlined by Exercise 19) to pick a basis
with an analogous property.

Let {Bo} be any basis of constraint 1-forms for D, with P = 9ndxo. The fact
that the B" are linearly independent implies that at each point x E A the matrix of
coefficients (0 (x)) has rank n - m, that is, has n - m linearly independent columns.
After renumbering the coordinates if necessary, it may be arranged that at x0 the
last n rn columns of this matrix are linearly independent; the same will remain
true in some neighbourhood of xo. Then the (n - m) x (n - m) matrix (80) will
be non-singular on this neighbourhood. Let AP be functions such that the matrix
(As) is inverse to (80): then the 1-forms 8P = Ao9°, which also constitute a basis
for constraint forms, have the expression

8° = 8,°,dx° + dx°

for certain functions Ba. Furthermore, it may be arranged, by an affine transforma-
tion of coordinates, that xo is at the origin of coordinates, and that each constraint
1-form Bo actually reduces to dxo there.

Exercise 21. Show that, supposing the origin already to have been fixed, the affine co-
ordinate transformation i° = x", P = z° + 8Q(xo)r" has the required effect. o

After these adjustments to constraint 1-forms and coordinates have been made
we are left with a basis of constraint 1-forms {8P} such that Bo = 8adx° + dxo with
Ba(xo) = 0 and with xo as origin of coordinates. It is required to find an integral
submanifold S of D through xo. As a consequence of our choice of (OP) the tangent
plane to S at x0 must consist of the coordinate m-plane spanned by the x°, and
given by x" = 0. In constructing the integral submanifold S we shall use the x° as
parameters: that is to say, we shall give a parametrisation of S in the coordinate
form

(Y',Y...... Ym)'-+ (Y1,Y2,...,Ym,C'"1(Y0) `m+2(y°),..

for certain functions ke. Represented in this way,

the`

integral submanifold may be
thought of as a graph: it is the graph of the map R' -- R"-m whose components
are the functions Co.

We denote by B the coordinate rn-plane x° = 0, considered as an affine space;
we denote by x the projection map A B which maps each point of A to the point
with the same first m coordinates in B; we denote by N the neighbourhood of xo in
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A on which the constraint 1-forms 8p are defined. Observe that at any point x E A,
a vector v = v°8° + v'8, belongs to Ds if and only if

(x)v°,v° = -90
and that v°8° = r.v E T,r(,,)B. Conversely, given any vector v°a° E T*I:IB there
is a unique vector v E D. such that ir.v = v°a°, namely

v = v°a° - 8 (x)v°ap.
We call this vector the lift of v° E T,r(s)B to x. Given any point y E x(N) C B, one
may construct the lifts of a vector at y to all the points z in N such that x(x) = y.
The "lift" of a vector from the coordinate origin of B to the coordinate origin, xo,
of A coincides with the vector itself.

This lifting construction is the basis for our construction of an integral sub-
manifold. First, we show how it may be extended to curves in B. The aim, given a
curve -y in 8, is to find a curve r in A which projects onto ry Or o 1 = ry) and which
is tangent to D (F(t) E Dr(t)). But then the tangent vectors to r must be lifts of
tangent vectors to ry. Thus the coordinate functions for r must satisfy

r°(t) = ry°(t)

The latter equations constitute a system of n - m first order ordinary differential
equations for the functions rp, and therefore admit a unique solution with specified
initial conditions. Thus given a curve ry in r(N), a number to in the domain of ry,
and a point x in N such that r(x) = ry(to), there is a unique curve r in N such that
ror = -y, r(t) E Dr(t), and r(to) = x. We call r the lift of ry through x. One further
useful property of the lift of a curve stems from the fact that the defining system
of differential equations is linear in 7°. It follows from this that if ry" = ry o h is a
reparametrisation of ry, its lift r is obtained by applying the same reparametrisation
to the lift of ry: r = r o h.

We now use this lifting construction for curves to construct a parametrisation
46 of a submanifold of A, as follows. Let (y°) be the coordinates of a point y in
r(N) C B and let ry be the curve given by -y°(t) = ty°, that is, the radial line joining
the origin to the given point. The idea is to take for 0(y°) E A that point on the
lift of -y through xo which projects onto y, that is, the point r(1). To investigate
the validity of this process, we must look more closely at the properties of r in this
context.

We shall denote by t +--. r(t, ys) the lift through xo of the radial line t -+ (ty°)
in B, to make clear its dependence on (y°). Its component functions satisfy the
equations

r°(t,yp) = ty°

asp (t, yo) _ -Ba(ty0, r°)y°

ra(o,y°) = o.
The differential equations are to be regarded as ordinary differential equations, as
before, in which the y° are regarded as parameters. The existence of a solution
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B

Fig. 2 Lifting a radial line.

is guaranteed, for each (y°), for t in some open interval containing 0. Moreover,
the right hand sides of these differential equations are assumed to depend smoothly
on the y°; the solutions of a system of differential equations depending smoothly
on parameters will themselves depend smoothly on those parameters, so that the
r may be regarded as smooth functions of the y°. Furthermore, because of the
reparametrisation property mentioned above,

I (t,kyp) = I'(kt,yo) for any k E R.

As suggested above, we wish to define 0 by 0(y°) = t(1, y°); but there remains
one technicality to be dealt with before we can do so, which is concerned with the
domain of 0. The problem arises that for arbitrary (y°) there is no guarantee that
I'(t,y°) is defined for t = 1: we know only that it is defined for -e < t < e for
some positive e. But here the reparametrisation property for lifted curves comes to
the rescue, for although I'(I,y°) may not be defined, it is true that (for example)
r(1, ley°) is defined: in fact, I'(1, ley°) = I'(ze,y°). Thus there are points y in

2 2

each direction from the coordinate origin in B for which I'(1, y°) is defined, and
in fact there is an open neighbourhood 0 of the origin in B such that I'(1,y°) is
defined when y E 0.

We may accordingly define a map 0:0 A by O(y°) = I'(1,y°). The map
is smooth; it is given in coordinates by

(y°)'-' (y°,r°(l,y°))
and is therefore the graph of a map F:R- where f'(y°) = I'(1,y°). It
follows that 0. is necessarily injective at each point, so that 0 is a parametrisation
of a submanifold S of A. The submanifold S certainly passes through the coordinate
origin xo. At each point x on it, its tangent space T=S has at least a 1-dimensional
subspace in common with D., namely that spanned by the lift of the radial vector
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at ir(x); while its tangent space at xo actually coincides with the space determined
there by D. It remains to show that S is actually an integral submanifoli of D.

For this purpose we shall take a point x E S and a vector v E TsS and show
that v is annihilated by the constraint 1-forms 8=. To do so we consider how these
1-forms vary along the lifts of radial curves which were used to define S. It is
therefore desirable to introduce a vector field tangent to these curves. Now the
dilation field A = y°8° on 8 has for its integral curves the radial lines in B, albeit
reparametrised exponentially (apart from the origin, which is itself a degenerate
integral curve). Let A be the lift of A to W C A: the integral curve S. of A through
a point x = 0(y°) E S is given by 6=(t) = O(e'y°). This curve again degenerates
to a point, namely xo, when y° = 0; otherwise, it does not pass through xo, but
6z(t) xo as t - -oo. At each point x of S other than xo, O= spans the known
common 1-dimensional subspace of T2S and P.

For any v E T=S, we define a vector field V along d= by Lie transporting v by
O: thus V (O) = v, and CoV = 0. The curve bz lies in S, A is tangent to S, and
so is v: it follows that V (t) is tangent to S at b=(t) for all t. Thus limr._ V(t)
is tangent to S at xo. Since the tangent space to S and the space determined by
D coincide at xo, it follows that = 0. We consider next how
(V,OP) varies along 6=, using the Frobenius integrability condition d8P = Ao A Oe:

dt(V,0-0) ((V,eo))

= (V, COOP) since CoV = 0

= (V,d(AJBP) + OJdOP)

(V, A J(AP A 8°)) since (,&, OP) = 0

_ (D,A°°)(V,e°).

The functions (V, 8P) therefore satisfy a set of linear ordinary differential equations.
Furthermore, 0 enters linearly on the right hand sides of the equations, and there-
fore a reparametrisation s = et of 6z will not change the form of the equations. The
reparametrised curve is just s " - as(sy°) = I (s,y°), with tangent vector r: thus

ds(V,e") _ (r,A")(V,e°).

Now s 0 as t -. -oo, and therefore (V, 8P) = 0 at s = 0. But the uniqueness of
solutions of systems of ordinary differential equations implies, for linear equations,
that a solution which vanishes anywhere vanishes everywhere. Thus (V,9P) = 0 all
along the curve, and in particular (v,8P) = 0.

We have shown that any vector at x tangent to S lies in D=, and so T=S
coincides with D. Thus S is indeed an integral submanifold of D, and the proof is
complete.

Exercise 22. Show that the single 1-form 0 on a 3-dimensional affine space given in affine
coordinates by 0 = x3dx' + z3dx' - dz3 satisfies the Frobenius integrability condition.
Use the construction given in the proof in the text to show that the integral submanifold
through the point with coordinates (0, 0, c) is given by #(y', y') = (y', yr, c exp(y'+y')). 13
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Exercise 23. In the above proof of Frobenius's theorem the integrability condition is
not used in the construction of the submanifold S, only in showing that S is an integral
submanifold. Carry out the construction of the submanifold through the origin of coordi-
nates for the distribution defined by the 1-form -x2dx' + z'dx2 + dzs of Exercise 1, and
investigate why it fails to be an integral submanifold. E3

A vector field version of the integrability condition. So far we have worked
entirely with the specification of a distribution using forms. Dually, one may specify
a distribution using vector fields, and the Frobenius integrability conditions may
also be stated conveniently in terms of vector fields.

A vector field V on A is said to belong to a distribution D if for every x E A,
V, E P. The distribution being smooth, one can find (at least locally) a set of m
vector fields V1,V2....,V,,, which serve as a basis for the distribution, in the sense
that the vectors Va= form a basis for D. at each point x. This follows from the
fact that any basis for the constraint 1-forms (OP) may be extended to a basis of
1-forms on A; the first m members of the dual basis of vector fields will serve the
purpose. One says also that such vector fields span the distribution. Any vector
field belonging to the distribution may be uniquely expressed as a linear combination
(with variable coefficients) of basis vector fields.

Exercise 24. Find a vector field basis for each of the distributions of Exercises 2 and 3. o
Exercise 25. Show that the following is an alternative definition of the smoothness of a
distribution: D is smooth if it has everywhere a basis of smooth local vector fields. o

Now let V, W be vector fields belonging to a distribution 0 and let a be any
constraint 1-form for it. Then (V, B) -_ (W, B) = 0 because B is a constraint form for
D: it follows that

dO(V,W) _ -((V,Wj,0).

Thus if D is integrable, so that it is isotropic for dB, then (IV,WI,8) = 0; since this
holds for any constraint I-form 0, it follows that (V,W) belongs to D. So if D is
integrable, the bracket of any pair of vector fields belonging to D also belongs to D.
Conversely, if this condition is satisfied, it follows that D is isotropic for every one of
its constraint 1-forms, and so D is integrable. The Frobenius integrability condition
may therefore be stated in the following way: a distribution D is integrable if and
only if the bracket of every pair of vector fields belonging to D also belongs to it.

When D is integrable the vector fields belonging to it are tangent to its integral
submanifolds.

Exercise 26. Show that this vector field version of the Frobenius integrability condition
is equivalent to the following (more operational) one: D is integrable if and only if, given
a basis (V,,) for it, there are functions lap such that IV.,Vp) = f V.,. Investigate how
these functions are affected by a change of basis for D. o
Exercise 27. Confirm the integrability or otherwise of the distributions in Exercises 1, 2,
3 and 22 by using the vector field criterion of Exercise 26. o
Exercise 28. Derive the necessity of the bracket condition for integrability in another
way, as follows. Suppose that 0: 0 A defines an integral submanifold of D. Let V, W be
vector fields belonging to D: deduce from the injectivity of 0. that there are vector fields
V', W' on 0 to which V, W are 0-related (Chapter 3, Section 9). Conclude that IV,W
must also belong to D, at least on the image of 0. 13
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The two versions of Frobenius's theorem which have been presented here link
up with different parts of the book. The vector field version is related to the ideas
of Chapter 3, as the last exercise shows. Again, it will be recalled that it was
shown in that chapter that the bracket of two vector fields may be interpreted as
the (second-order) tangent vector to a curve built out of the flows generated by
the vector fields. This result is closely related to the present discussion: for if two
vector fields are tangent to a submanifold, then their integral curves through points
of the submanifold lie in it, and so their bracket at any point of it is also tangent to
it. Frobenius's theorem shows in effect that a converse to this assertion holds true.
The form version of Frobenius's theorem, on the other hand, is related to material
on connections to be found in Chapter 11 and beyond.

4. Special Coordinate Systems

In this section we shall show how to construct special curvilinear coordinate systems
adapted to distributions.

We consider first of all a 1-dimensional distribution, and show that curvilinear
coordinates may be introduced such that the first coordinate vector field 81 spans
the distribution.

There will be locally a non-vanishing vector field V which spans the distri-
bution. Local coordinates are constructed as follows. A point xo is chosen, and
through it a hyperplane 8 such that V= is not tangent to B. It will remain true
that V is not tangent to B in some neighbourhood of xo: we say that 8 is transverse
to V. Affine coordinates (i°) are now chosen in such a way that xo is the origin, B
is the coordinate hyperplane i1 = 0, and V,, coincides with a1. A map 4 of some
open subset of R' to R" is defined by setting (4°(e, ... , e")) equal to the affine
coordinates of the point Of, (i) where 0 is the flow of V, and i is the point with
affine coordinates (0, c") and is therefore a point of B. The Jacobian matrix
of $ at the origin is easily seen to be the identity, and ib therefore defines a coor-
dinate transformation to local curvilinear coordinates, say (x°). In terms of these
coordinates V is the generator of the flow (t, x 1, xs, ... , x") '--+ (x 1 + t, X2). .. , x"):
thus V = 81 everywhere on the coordinate patch.

Note that as a result of this construction we may assert that, given a point
xo, there is an open set 0 containing xo and a hyperplane 8 through xo such that
each integral submanifold of the 1-dimensional distribution spanned by V intersects
B in 0 once and once only. The special coordinates we have constructed may be
described as follows: for any x E 0 let i be the point of 0 n B on whose orbit under
the flow of V the point x lies; then (X2'. .. , x") are the affine coordinates off and
XI is the parameter distance from i to x.
Exercise 29. Show that if (02,03'.. _9") are constraint 1-forms for a 1-dimensional
distribution then it is possible to find functions A; forming the entries of a non-singular
matrix, and coordinates (x°), such that the 1-forms 9 = A;B° are given by 61' = dx'
(p = 2, 3, ... , n). O

The straightening-out lemma. A 1-dimensional distribution is not quite the
same thing as a vector field, since at each point it determines, not a single vector,
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but a 1-dimensional subspace of the tangent space. However, the result given above
applies equally well to a single vector field provided that the vector field is nowhere
zero. In other words, given a vector field V and a point x such that V. 54 0 there is
a neighbourhood of x (on which V remains non-zero) and a coordinate system for
this neighbourhood with respect to which V = 8t.

It follows that two vector fields, on affine spaces of the same dimension, are
locally equivalent, near points at which they are non-zero, in the following sense:
if A and B are affine spaces of the same dimension, if V and W are vector fields
on A and 8 respectively, and if x and y are points at which V and W are non-zero
respectively, then there are neighbourhoods 0 and P of x and y and a smooth,
bijective map ,G: 0 P with smooth inverse such that 0. VV = Woz(=) at each point
x of 0. In fact V and W are each locally equivalent to the generator of translations
parallel to the xi-axis in an affine coordinate system. This result is therefore often
called the "straightening out lemma".

In passing, we point out that the distinctive local features of a vector field are
therefore to be found in its behaviour near its zeros, in other words the points at
which it vanishes; these are the fixed points of its flow. At a zero x of a vector field V
with flow 0, for each t the induced map qt. is a linear transformation of the tangent
space T7A to itself: in fact mt. is a one-parameter group of linear transformations.
It is thus the exponential of the linear transformation given by Study
of this map will give information about the behaviour of V near x. Note that, in
terms of any local coordinate system, d/dt(O,.)t-o is represented by the matrix
((36V0)(x), where V = V°8..

Exercise 30. Use the straightening out lemma for the vector field V to show that CYW =
IV, W) at points at which V .76 0, and use the remark immediately preceding this exercise
to complete a new proof of this important result. 0

Coordinates adapted to an integrable distribution. We next extend the
straightening out lemma to obtain a special coordinate system in a given region
adapted to a number of linearly independent vector fields. By virtue of their linear
independence, none of the vector fields can vanish anywhere in the region. We
seek a curvilinear coordinate system in which these vector fields are coordinate
vector fields. Now any two coordinate vector fields commute (have zero bracket);
we must therefore assume the same holds for the given vector fields. So suppose that
V1, V2,... , V,,, are linearly independent vector fields on an open subset of an affine
space A, such that IV0,, VpI = 0 for all a, 0 = 1, 2,... , m. It follows that the flows
generated by any pair of these vector fields commute (Section 12 of Chapter 3): if
4Sa is the flow generated by V then o mp,t = (kp,t o 0,,,, for all s, t E R for which
both transformations are defined. It also follows that the distribution generated
by the V. is integrable. It is easy to identify its integral submanifolds in terms
of the flows f,,: the integral submanifold through a point x consists of all points
01,0 o 02,0 o o Om,t- (x) for ( t ' , 1 2 , .. , t'") E R'". For the map R' -i A by

(t t, t2, ,tm) `-' ml,ti 0 02,0 0 ... 0 01,t- (Z)
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certainly defines a submanifold; and if
lli = -0l,t 0 02.t 0 ... 0 Wm,t'^ (x)

lies in it then so does

Oa..(i) = 01,0 0 02,0 0 ... 0 Wa,.+e.. o ... 0 0m4'^ (x)

for any a = It 2, ... , rn, from the commutativity of the flows, and so the vector field
Va is tangent to the submanifold for each a. To construct the required coordinate
system one chooses a point x0 and an (n - m)-plane B through xo transverse to the
distribution in the sense that the subspace of defined by B is complementary
to that defined by the distribution. This complementarity will persist at points of
B in some neighbourhood of x0. Choose affine coordinates (ia) such that xo is the
origin, B is the coordinate (n - m)-plane i = 12 + = i- = 0, and ai, t72, ... , a,"
coincide with the given vector fields at x0. Define a map 4' of some open subset
of R" to R" by setting (q equal to the affine coordinates of the
point 01,f, 0 402 f2 0 ... 0 0,4- (i) where i is the point with affine coordinates
(0,. . . to, i;"'+ l , ... , " ), which is therefore a point of B. Then the Jacobian matrix
of 4s at the origin is the identity, so that 4' defines a coordinate transformation to
local curvilinear coordinates (x°). In terms of these coordinates V. = as eveywhere
on the coordinate patch, and the integral submanifolds of the distribution spanned
by the Va are given by xm+ 1 = constant, 1m+2 = constant,... , x" = constant.

Exercise 31. Let W1iW2,...,Wm be linearly independent, not necessarily commuting,
vector fields which satisfy the Frobenius integrability conditions. Show that local functions
A; can be found, forming the elements of a nowhere singular matrix, so that (possibly
after renumbering) the vector fields W. = AoW,, which span the same distribution, take
the form W. = 8a + 0 8,. Show that by virtue of the integrability conditions the W.
commute pairwise. Hence give a new proof of Frobenius's theorem, using vector fields. O
Exercise 32. Let (8°), p = m + 1, m + 2, ... , n, be a system of 1-forms satisfying the
Frobenius integrability conditions. Show that there are functions A;, such that on some
neighbourhood (A;) is a non-singular matrix, and coordinates (zn), such that the 1-forms
Ae9°, which generate the same system, are given by As9' = ds'. Deduce that the
integrable submanifolds of any m-dimensional integrable distribution may be expressed in
the form z'"+ I = constant, x"'+2 = constant,.. . , x" = constant. O

Coordinates adapted to a smooth map. Let ty: A 8 be a smooth map, not
necessarily satisfying the submanifold property: thus tp.= is not necessarily injective
for x E A. Instead, let the dimension of the kernel of this linear map be the same at
all points x, or at least at all points x in some open subset of A. We show how local
coordinates may be constructed on A and B in terms of which 0 takes a particularly
simple form.

We set D,, _ (v E T=A I'.,.,v = 0). The condition on constancy of dimension
ensures that this defines a distribution. The smoothness of 0 ensures that it is
smooth. Furthermore, it is integrable, as the following simple argument shows: any
local vector field belonging to D is >G-related to the zero vector field on B, and
therefore the bracket of two such vector fields is also tb-related to the zero vector
field on B, which implies that the bracket belongs to D.
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Exercise 33. Confirm this result by a coordinate argument. o

It follows that there are coordinates (xa) on A such that the coordinate fields
ap, p = m + 1, m + 2, ... , n, form a basis for D, whose dimension is therefore n - in.
But then a\Aaoi a

o=>G. J
8xp axo ay'

where (y') are coordinates on 8, i = 1,2,. .. , p =dim B. Thus a1'/axo = 0, and so
the components of 0 are functions only of (x°), a = 1, 2, ... , m. In terms of these
coordinates we may therefore express >(' in the form S o TI where Il is the projection
R" R'" onto the first m factors and i is an m-dimensional submanifold map.

We now turn our attention to the image of ip in B. We have shown that it is a
submanifold of dimension m. We introduce new coordinates on B as follows. Choose
a point xo in the domain of i t and make it the origin of the adapted coordinates
in A. Choose a subspace 1V of T,.(0)8 complementary to the tangent space to the
image of i/', with basis {w, }, r = m + 1, m + 2, ... , p. Define a map 'Y: RP --. B by
setting W(z') = O(z°)+z'wr. Thus the first m entries in (z') are used to determine
a point on the image of >Ii and the remaining ones are the components of a vector
which translates that point off the image. The Jacobian matrix of 'P at the origin
is easily seen to be non-singular because of the fact that {0.(8Q),wr} is a basis for

Thus P determines a local coordinate system about i/i(xo) for B. With
respect to the new coordinates the map i(/ is given by

,W I,1 (xa) = x1 t(i2(a) = x2 ... ,im(xa) = xm
om+l(xa) _

e
,r ,m+2(xa) _ ... = on(xa) = 0.

These are the required coordinates.

5. Applications: Partial Differential Equations

In this section and the two following we continue the development of the ideas
of this chapter by applying them in three specific contexts: the theory of partial
differential equations, Darboux's theorem, and Hamilton-Jacobi theory.

Integrability conditions for systems of first order partial differential equa-
tions. As a first application of Frobenius's theorem to the theory of partial dif-
ferential equations we consider systems of first order partial differential equations
of the form

al p
ax° =

eo(1O, c)

for the unknown functions a (x°). The functions ea are given functions of n
variables, there are m independent variables x°, and n - m dependent variables
{p. As before, we shall use indices a,# with the range 1,2,... , m and P, v with the
range m+ 1,m+ 2,...,n.

There are m(n - m) equations in all, and so the number of equations exceeds
the number of unknowns except when m = 1. In the latter case the equations
reduce to a system of ordinary differential equations, and are always soluble as a
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consequence of the existence theorem for solutions of such a system. Otherwise, the
equations form what is known as an overdetermined system, and will not in general
be soluble unless some integrability conditions on the eQ are satisfied. A necessary
condition is easily found, by differentiating the equations and using the symmetry
of second partial derivatives: there results the condition

ao ae °p+io0=aeu+aoJ
ax

a

It is a consequence of Frobenius's theorem that these are also sufficient condi-
tions for the system of equations to be soluble. The connection with Frobenius's
theorem is achieved by consideration of the 1-forms (on an n-dimensional affine
space A with affine coordinates (x°), a = 1, 2,... , n)

8° = Oa(xp,x°)dx° - dx°.

A solution (f°) of the system of partial differential equations may be regarded as
defining a submanifold of A, in the form of its graph (x°) (x°, °(x°)). The
pull-back of B° by this map is just

t 01'(x0, C°) - a{° dx°,
\ ax°

and so (f°) is a solution of the system of partial differential equations if and only
if the submanifold is an integral submanifold of the distribution defined by the
1-forms B° as constraint forms. These 1-forms have (apart from the sign of dx°)
just the same structure as those used in the proof of sufficiency of the Frobenius
integrability condition in Section 3. The integrability condition for these 1-forms is
derived as follows:

dB° set dx° A dx'3 - aeo dx° A dx°

ae°dxa
A dxp -

aeQ dx° A (O dxp - 9°)
axp

/
ax'

\- aoedx°AB°- 1 a e + aeveAl dx°ndxp

and therefore d9° = aP A B° (with a1' = (aeg/ax')dx°) if

ae° ae° \

axp
+ axo ep I dx° A dxp = 0.

But this is precisely the same as the condition obtained by cross-differentiation.
That condition is therefore necessary and sufficient for the solubility of the system
of partial differential equations.

Exercise 34. Show that if vector fields W. = 8,. + *-.'a. commute pairwise then the
functions *' satisfy the condition that ensures the solubility of the system of partial
differential equations 8 f'/ax° = $ (x0, f°). 0
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Characteristics of first order partial differential equations. One is very
often confronted with the problem of finding submanifolds to which a given vector
field is tangent. Thus baldly stated, the problem leads to a partial differential
equation. Let V be a vector field given on an affine space A, and let f = constant
be the equation of a submanifold (of codimension 1) to which it is tangent. Then
V f = 0 at each point. This equation has the coordinate presentation V °8° f = 0
and may thus be considered to be a partial differential equation for the function f.

Very often, the partial differential equation is the starting point, and the geo-
metrical problem is more-or-less disguised. In the theory of such partial differential
equations the integral curves of V are called the characteristics of the partial dif-
ferential equation. A standard method for solving the partial differential equation
begins with the construction of the characteristics, which is to say, the solution of
the system of ordinary differential equations d7°/dt = V° for the integral curves 7
of V

Importance is often attached to some functions, known or unknown, which are
constant along the integral curves of a given vector field. In the physical context,
these functions would represent conserved quantities, or constants of the motion,
which are independent of the time (if the parameter t is so interpreted). Any
conserved quantity f must satisfy the equation V f = 0, which is the equation from
which we started. Sometimes it is easier to solve the equations of characteristics
first, sometimes the partial differential equation.

From the geometrical point of view, it is easy to see why such partial differential
equations have "so many" solutions. For example, let A be a 3-dimensional affine
space, V a given vector field in A, and a any curve transverse to V. Now transport a
along V : as parameter time t elapses, or (a wisp of smoke) moves along the integral
curves of V (the wind). This generates a 2-dimensional submanifold to which V is
tangent, made up of a one-parameter family of integral curves of V, each of which
intersects a. If this 2-submanifold has the equation f = constant then f satisfies
the equation Vf = 0. All this will be true, whatever the initial choice of the curve o.

In an n-dimensional space, or has to be (n - 2)-dimensional, and again V must
not be tangent to it. Transport of or along V generates a submanifold of dimension
n - 1 whose equation f = constant again determines f such that Vf = 0. Care has
to be taken about smoothness, but the present argument is anyhow only intended
to be heuristic.

The specification of a appears in the physical context as tl,e specification of
initial data for the physical problem. It might happen, say in the 3-dimensional
case, that the initial data were such that a was an integral curve of V-that V
was everywhere tangent to it. Then a would no longer determine a unique one-
parameter family of integral curves, and any one-parameter family including it
would yield a solution of the equation Vf = 0 consistent with the initial data. In
this case the problem to be solved is called a characteristic initial value problem.
Evidently intermediate cases are possible, in which V is tangent to a at some points
but not at others. Some more general characteristic initial value problems are of
great physical importance.
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8. Application: Darboux's Theorem
In this section we describe how coordinates may be chosen so that a closed 2-form
takes a particularly simple form.

The characteristic subspace of a 2-form w on a vector space (Section 12 of
Chapter 4) is the space of vectors v satisfying v Jw = 0. (This use of the word
"characteristic" is not to be confused with its use at the end of the immediately
preceding section.) A 2-form on an affine space determines at each point a char-
acteristic subspace of the tangent space at that point. We shall suppose that the
dimension of this subspace does not vary from point to point, for the given 2-form
w. We do not, however, assume that w is decomposable.

We show first that when w is closed the distribution defined by its characteristic
subspaces satisfies the Frobenius integrability conditions. Thus we must show that
if V and W are vector fields such that V Jw = W Jw = 0 then IV, WI JU = 0 also.
Observe that since w is closed

Cvw=d(VJw)+VJdw=0.
Using a result from Exercise 21 of Chapter 5 we obtain

Lv(WJw) =0= IV,WIJw+WJCvw=(V,WIJw

as required. Coordinates (y', y2'. .. , yp) may therefore be introduced so that the co-
ordinate vectors 091, a,, ... , ap span the distribution of characteristic vectors (where
p is the dimension of the characteristic subspaces).
Exercise 35. Show that, with respect to these coordinates, w depends only on the remain-
ing coordinates: that is to say, if (x',x2,...,xm) complete the set of coordinates (so that
m + p = n, the dimension of the space) then w = A dxo, where a,# = 1, 2, ... , m,
the wap being functions of (x'). Deduce that m must be even, from the fact that there
are no non-zero characteristic vectors of w in the space spanned by the 8/ax°. o

We may as well suppose, then, for the rest of the argument, that we are dealing
with a 2-form, on a space A of even dimension m = 2k, which has no non-zero
characteristic vectors. At each point x E A one may define a linear map T=A -' T= A,
by means of the 2-form w, by v H v Jw. Since (as we now assume) w has no non-zero
characteristic vectors, this map is injective; and therefore, since TA and T. *A have
the same dimension, it is an isomorphism. Thus, given any 1-form 0 on A, there is
a vector field V such that V Jw = 6.
Exercise 36. Show that if 8 = df is exact and V Jw = df then Cvw = 0 and Vf = 0. O

We now begin the construction of the required coordinate system. Choose
some function f such that df is nowhere zero (or at least such that df 36 0 at some
point x; the argument then provides suitable coordinates in a neighbourhood of
x, which is the most that can be expected anyway), and let V be the vector field
determined in this way by df. Then V is nowhere zero, and so coordinates (y°) may
be found, about any point, such that V = a/ay'. With respect to these coordinates,
a f/ay' = 0, and since Cvw = 0, both f and the coefficients of w are independent
of y'. Let W be the vector field defined by W Jw = -dy'. Then Wy' = 0,

Wf = (W,df) _ (W,a,Jw) = -(aI,WJw) = (01,dy') = 1,
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and

Jat, W) Jw = Ca, (W Jw) - W JCa, w = -Ca, (dy') = 0,

so that [8i, W) = 0 since w has no non-zero characteristic vectors. Thus W contains
no term in 8i, and its coefficients are also independent of y'. It is therefore possible
to make a further change of coordinates, without affecting y', such that W = 8/8y2.
Moreover, by choosing the coordinate hypersurface y2 = 0 to be a level surface of
J, it can be ensured that the coordinate expression for f is just y2.

Consider now the 2-form w = w - dy' A dye. It is closed. The vector fields
a/ay' and 8/8y2 are characteristic for w, and every characterstic vector field is
a linear combination of these two: for if V Jw = 0 then V Jw is a linear combi-
nation of dy' and dy2. Moreover, Ca,W = Ca,w = 0. Thus w depends only on
y3, y4, . , y2k and has no non-zero characteristic vector fields among the vector
fields spanned by 83i a4, ... , a2k. We may therefore repeat the argument to find
coordinates such that w - dy' A dy2 - dy3 A dy4 depends only on y, y6, ... , y2k and
has no characteristic vector fields, other than zero, among the vector fields spanned
by 85,86,... , 82k. Continuing in this way, we may at each stage make coordinate
transformations which do not affect the coordinates already fixed so as to eliminate
two more coordinates from consideration. Eventually all the coordinates will be
used up, and so coordinates will have been found such that

w = dy1 A dye + dy3 A dy4 + ... + dy2k_ 1 Ad y2k

This result is known as Darboux's theorem: stated in full, it says that if w is a closed
2-form on an affine space, such that the codimension of the space of characteristic
vectors of w, necessarily even, does not vary from point to point, and takes the
value 2k, then locally coordinates may be found such that w takes the form given
above. The number 2k, the codimension of the space of characteristic vectors, is
the rank of w, introduced (in the vector space context) in Chapter 4, Section 12:
see in particular Exercise 45 there, which is a parallel to the present result. Note
that a 2-form which has no non-zero characteristic vectors must have rank equal to
the dimension of the space on which it resides; and this dimension must therefore
be even. So given a closed 2-form w of maximal rank on a 2n-dimensional space,
coordinates may be found such that

w = dy' A dy2 + dy3 A dy4 + ... + dy2k-1 A dy2n

It is more convenient to separate the even and odd coordinates: if one uses
PI , P2, , p,, for the odd coordinates, and q' , q2, ... , q" for the even ones, then

w=dpaAdq°
(the positions of the indices are chosen to make the use of the summation conven-
tion possible; there are also other, more compelling, reasons for the choice which
will become apparent in a later chapter). Notice that in terms of these special coor-
dinates it is simple to give a 1-form 6 whose exterior derivative is the closed 2-form
w: if B = padq° then dO = dpa A dq° = w.

Exercise 37. Using the argument in the text, show that a closed 2-form of rank 2 on a
2-dimensional space may be expressed in the form dp n dq (that is, give the final stage in
the proof of Darboux's theorem). 0
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Exercise 38. Show that given any function h, the integral curves of the vector field V,,
defined by V,, Jw = -dh, where w has maximal rank, satisfy Hamilton's equations

8h 8h4 = spa Po aq, ,

when expressed in terms of coordinates (q°,p,) such that w = dp, A dq°. 0
Exercise 39. If B is a 1-form such that dO has rank 2n, on a space of dimension greater
than 2n, then coordinates may be found such that 0 = p,dga+df for some function f. Show
that df is dependent on, or linearly independent of, dp,,dpi,... , dp,,, dq', dq. , ... , dq^
according as 0 A dB A . A d9 (with n factors dB) is or is not zero. Show that in the latter
case f may be chosen as one of the coordinates ga,pa with a > n; in the former case the
coordinates (q°,p,) may be chosen such that 0 = p,dq°. 0

7. Application: Hamilton-Jacobi Theory

In this section we draw together the considerations of the previous two in the
study of a particular kind of partial differential equation, well known in classical
mechanics, known generically as the Hamilton-Jacobi equation. We begin, however,
with a special case of the result of the last section.

Suppose there is given, on a 2n-dimensional affine space A, a 1-form 6 whose
exterior derivative w = d9 = dpa A dqa is already in the Darboux form with respect
to affine coordinates (ga,pa). Consider A as an affine product Q x P where (qa)
are coordinates on Q and (pa) on P, both spaces being n-dimensional. We shall
be concerned with smooth maps 4,:Q --+ P. As in the discussion of Frobenius's
theorem, such a map defines a submanifold of A = Q x P, namely its graph,
parametrised by the map .: Q - A given by

(9) = (9, -0(9)).

One way of constructing such a map is to take a function f on Q and set
a = 8f/8qa. In this case, ¢'8 = df, and therefore 4'w = 0. Conversely, if
4'w = 0 then 4'9 = df for some function f on Q and 0 is constructed from f in
the manner described.

Suppose further that there is given a smooth function h on A. The coordinate
expression of this function with respect to (qa, pa) may be used to define a first
order partial differential equation, in general non-linear, by

h \qa, 8f
/

= 0.aqa

This equation (an equation for the unknown function f) is the Hamilton-Jacobi
equation for h. Note that the function f on Q will be a solution of this differential
equation if the graph map 4, generated by f maps Q into the level surface h = 0.
Conversely, any graph map 4 which maps Q into the level surface h = 0 of h and
satisfies 4'w = 0 will generate a solution to the differential equation.

We shall assume that dh i4 0 where h = 0. The vector field Vh defined by
Vh Jw = -dh is called the characteristic vector field of the partial differential equa-
tion defined by h. Since Vhh = 0 this vector field is tangent to the level surfaces of
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h, and its flow maps each level surface into itself. Furthermore, it maps the graph
of any solution of the differential equation into itself. For by Exercise 38

ah a A a
Vh

apa aq4 aqa apa

and on the solution graph pa = 10a(gb) where a4a/aqb = aOb/aqa. Thus

ah ah d a ah ah amb
Vh(pa - ma) + __ + --- -

aqa apb aqb aV apb aga
a

aqa (h(gb,.Ob)) == 0

since h(qb, Ob) is constant.
Conversely, the characteristic vector fields may be used to generate full solu-

tions of the partial differential equation from partial solutions, as follows. Take an
(n - 1)-dimensional submanifold S in A which lies in the level surface h = 0 of h, on
which w vanishes, which projects down onto an (n - 1)-dimensional submanifold of
A under projection onto the first factor, and which is transverse to the vector field
Vh. Define an n-dimensional submanifold is S x I -. A, where I C R is an open
interval, by 4(x,t) = tht(x) where 0 is the flow generated by Vh. Then from the
fact that Vhh = 0 it follows that q also lies in the level surface h = 0 of h; and from
the fact that Cv w = 0 it follows that g'w = 0. It will be true that 4 is actually
a graph for small enough values of 1, provided that Vh is nowhere tangent to the
P factor on S; but it may not be possible to extend to a graph all over Q even
though S and Vh are perfectly well behaved: this corresponds to the occurrence of
singularities in the solution of the partial differential equation.

In practice, solution of the ordinary differential equations to find the integral
curves of the characteristic vector field may be no easier than solution of the partial
differential equation itself. In Hamiltonian mechanics, in fact, the process may be re-
versed: the Hamilton-Jacobi equation may be used as a means of solving Hamilton's
equations, which are the differential equations for the integral curves of the charac-
teristic vector field. In fact, knowing a so-called complete solution of the Hamilton-
Jacobi equation is equivalent to knowing a coordinate system on A in which the
characteristic vector field is straightened out. The method involves exploiting the
fact that if f is a solution of the Hamilton-Jacobi equation h(ga,af/aqa) - 0 then
Vh is tangent to the submanifold pa = of/aqa. By finding sufficiently many such
submanifolds one is able to tie Vh down completely. First, though, the notion of a
Hamilton-Jacobi equation must be generalised slightly. It is clearly not desirable
to have to restrict attention only to the level surface h = 0; nor is it necessary, for
if f is a solution of the equation h(ga,af/aqa) = c for any constant c, then Vh
is tangent also to the submanifold pa = of/aqa (the argument given earlier still
applies). Every point of A lies on a level surface of h, and Vh is tangent to the
level surfaces. We shall therefore deal with all partial differential equations of the
form h(ga,af/aqa) = c, calling them collectively the Hamilton-Jacobi equations.
We shall now, however, have to make the restriction that dh is never zero.
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A complete solution of the Hamilton-Jacobi equations is a collection of smooth
submanifolds, of dimension n, one through each point of A, non-intersecting, such
that each submanifold is the graph of a map 0: Q -+ P, lying in a level surface of h,
and satisfying the "integrability condition" that w vanishes when restricted to it.
Then each such submanifold is generated by a function f on Q which is a solution
of the Hamilton-Jacobi equation h(ga,af/aqa) = c for the appropriate constant c.
Suppose now that new coordinates are introduced into A, say (ga,ka), such that
the coordinate n-submanifolds ka = constant are the submanifolds of a complete
solution of the Hamilton-Jacobi equations (the qa being, as before, coordinates
on Q). For each fixed (k") there is a function on Q which is the solution of the
Hamilton-Jacobi equation giving the corresponding submanifold. There is thus a
function on A whose coordinate expression with respect to the new coordinates,
say F, has the property that for each fixed (ka) the function (qa) - F(ga,ka) is
the solution of the Hamilton-Jacobi equation giving the corresponding submanifold.
This function is called the generating function of the complete solution.

Since Vh is tangent to the submanifold corresponding to a solution of a
Hamilton-Jacobi equation the coordinates ka will be constant along any integral
curve of Vh. We may go further. The 2-form w will not take the Darboux form
when expressed in terms of (qa) and (ka). It is possible, however, to make a further
change of coordinates, this time leaving the ka unchanged, so that w does take the
Darboux form with respect to the new coordinates; and this new coordinate system
is the one we want. It is defined by

49F
9a=ak pa=ka.

a

This does not define qa and pa explicitly in terms of qa and pa, since we do not
(and cannot) have an explicit expression for ka in terms of the qa and pa. However,
the definition of the ka defines them implicitly in terms of the qa and pa: the sub-
manifold ka = constant is given, in terms of qa and pa, by pa = (aF/aqa) (qb, kb),
and these are the required relations. Now

b dkb) A dqa
F

dpa n dqa = l aqa Qh dqA + aqa
kF

gaakh dpb n dqa
=

dpb n (d(ak ) - akaakb d¢aa

= dpb n d4b

as required. Finally, note that one may choose h as one of the coordinates pa (so
long as dh 0 0): suppose we set h = Pl, then in terms of (qa, pa),

VhJW = VhJ(dpa Ad4") = -dh = dog,

from which it follows that Vh = a/aqa.

Summary of Chapter 6
A smooth m-dimensional distribution D on an n-dimensional affine space A is a
choice of subspace D,, of T.A at each x E A, of dimension in, which varies smoothly
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from point to point of A. A distribution may be specified in a number of ways: by
giving n - m independent 1-forms {9P} which are constraint forms for it; by giving
a nowhere zero decomposable (n - m)-form w which is a characterising form for
it; or by giving m independent vector fields {V,} which span it. Smoothness of D
corresponds to smoothness of the geometric object used to specify it.

A submanifold S of A is the image of a smooth map 0 of some open subset 0
of an affine space B into A, for which 0.:TyB -. Toi,iA is injective for all y E 0.
Such a 0 is a parametrisation of S; 4).(TyB) = Tm(y)S is the tangent space to S
at 4)(y); the dimension of S is the dimension of each of the tangent spaces, namely
dim B.

A submanifold S of dimension m is an integral submanifold of a distribution D
of the same dimension if for each x E S, Tz S = D.. A given distribution need not
have integral submanifolds. A necessary and sufficient condition for the existence
of integral submanifolds, one through each point of A, is the Frobenius integrability
condition, which may be equivalently stated in several different ways: for a basis
for constraint 1-forms, d9P = AP A 9° for some 1-forms AP; for a characterising form,
d9 A w = 0 for any constraint 1-form; for a vector field basis, IV.,Vp) = f 0V7
for some functions f.",9. When the integrability condition is satisfied, an integral
submanifold may be constructed through a given point x in the form of a graph,
defined over the affine m-plane through x defined by the distribution at that point.
The construction is based on a method of lifting vectors tangent to the m-plane
into vectors in A tangent to the distribution. The theorem which establishes the
sufficiency of the integrability condition is Frobenius's theorem.

Given a vector field V there is, in a neighbourhood of any point at which it is
non-zero, a coordinate system (x°) such that V = 81. Further, given m vector fields
V1, V2,... , V,,, which are linearly independent and commute pairwise there is locally
a coordinate system in which Va = 8a. Since it may be shown that for a distribution
satisfying the Frobenius integrability condition one may always find a basis for the
distribution consisting of pairwise commuting local vector fields this gives another
proof of Frobenius's theorem: the integral submanifolds are given by xP = constant.
Furthermore, if constraint 1-forms 9P satisfy the Frobenius integrability conditions,
then there are functions AP such that the matrix (AP) is everywhere non-singular,
and coordinates (x°), such that Ag8" = dxP (so that, in particular, the 1-forms
APO' are exact).

Coordinates (yo) may be found so that a given closed 2-form w of constant
rank 2r takes the form w = dy' A dys + dy3 A dy4 + ... + dye'-1 A dys'. This
result is Darboux's theorem. The 2-form dpa A dq° on an even dimensional space
A = Q x P, which is closed and has rank 2n, plays a key role in Hamiltonian
mechanics and in the solution of the Hamilton-Jacobi equation for a function h,
which is the partial differential equation h(q°,8f/8q°) = 0. The vector field Vh
determined by Vh Jw = -dh defines Hamilton's equations of mechanics, and is also
the characteristic vector field of the Hamilton-Jacobi equation.



7. METRICS ON AFFINE SPACES

The ordinary scalar product of vectors which one encounters in elementary mechan-
ics and geometry may be generalised to affine spaces of dimension other than 3. In
elementary Euclidean geometry one is concerned mostly with the use of the scalar
product to measure lengths of, and angles between, displacements; in mechanics one
is also concerned with magnitudes of, and angles between, velocity vectors. In either
case the scalar product comes from an operation in a vector space V, which may
be transferred to an affine space A modelled on it. The realisation of V as tangent
space to A at each point generalises to manifolds, as will be explained in Chapters 9
and, especially, 10, but the realisation as space of displacements does not. We shall
therefore give preference to the tangent space realisation in this chapter.

The structure on A determined in this way by a scalar product on V is usually
called a metric. It is unfortunate, but now irremediable, that the word is used
in a different sense in topology. In the case of Euclidean space the two meanings
are closely related; however, as well as the generalisation to arbitrary dimension, we
shall also consider the generalisation of the concept of a scalar product in a different
direction, which includes the space-time of special relativity, and in this case the
relation between the two meanings of the word metric is not close.

When an affine space is equipped with a metric it becomes possible to establish
a 1 : 1 correspondence between vectors and covectors, which we have been at pains
to keep separate until now. As a result, in Euclidean 3-dimensional space the various
operations of the exterior derivative may be made to assume the familiar forms of
vector calculus in their entirety.

We begin the chapter by discussing the algebraic properties of scalar products.

1. Scalar Products on Vector Spaces
The ordinary scalar product a b of vectors in Euclidean 3-dimensional space may
be defined in either of two ways: trigonometrically, as the perpendicular projection
of a on b, multiplied by the magnitude of b; or algebraically, as albs + a263 + albs,
where a = (a,, a2,43), b = (bl,bz,b3). It is convenient to start with the algebraic
definition, to identify its main properties as a basis for generalisation, and to derive
the trigonometrical constructions afterwards.

The ordinary scalar product of two vectors a, b is a real number, and has these
properties:

(1) bilinearity:

(2) symmetry:

(k1al + ksa2) b = ki(ai b) + k2(a2 b)
a- (k1b1 + k2b2) = k, (a bl) +k2(ab3)

ba=ab
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(3) non-degeneracy:

for all b then a = 0

(4) positive-definiteness:

There is nothing characteristically 3-dimensional about these properties, and so
they may be used to generalise the notion of a scalar product to affine spaces of other
dimensions. Note that the "vectors" appearing in the definition are displacement
vectors or tangent vectors, that is, elements of the underlying vector space, which
we may take in this case to be R3.

In applications to special relativity both the physical interpretation of the scalar
product, and the mathematical formulation which reflects it, make it appropriate to
give up the requirement of positive-definiteness. There are occasions when even the
requirement of non-degeneracy has to be given up. One is led, therefore, to consider
a construction like the scalar product but satisfying the conditions of symmetry and
bilinearity only.

Bilinear and quadratic forms. We therefore define a symmetric bilinear form
on a vector space V as a map g: V x V -, R such that

(1)
g(kivi + ksvs,w) = kig(vi,w) + ksg(vs,w)

g(v,kiw, + ksws) kig(v,wi) + ksg(v,ws)

(2) 9(w,v) = 9(v, w)

for all v,w,v1,vs,w1,ws E V and k1,k2 E R. Thus g is multilinear in just the
same way as the forms considered in Chapter 4 are, but differs from them in being
symmetric instead of alternating.

The components of g with respect to a basis {ea} for V are the numbers

gab = 9(ea,eb).

Note that the symmetry condition implies that gba = gab, while from the bilinearity
it follows that the gab determine g: if v = vaea and w = waea then

9(v,w) = 9abvawb

In dealing with bilinear forms it is often convenient to employ matrix notation:
this last formula may be written

g(v,w) = vTGw

where on the right G denotes the square matrix, necessarily symmetric, with entries
gab, v and w denote the column vectors with entries va and wa respectively, and
the superscript r denotes the transpose. Thus CT = G.
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Exercise 1. Show that if k. = he, are the elements of a new basis then the components
of g with respect to the k. are given by !,6 = h;hsgca, or = HrGH. O

The function v " g(v, v) is called a quadratic form on V. If the quadratic form
is given, then the bilinear form may be recovered with the help of the identity

g(v, w) = z (g (v + w, v + w) - g(v, v) - g(w, w)).

Thus the specification of a symmetric bilinear form and of a quadratic form are
entirely equivalent, and the theory of these objects is often developed in the language
of quadratic forms. It is known from the theory of quadratic forms that if g is given
then there is a basis for V, which we call a standard basis, with respect to which

g(v,w) = vlwI + v2w2 + ... + vrwr - ur+lwr+l - ... - yr+swr+.

The corresponding matrix C has on the main diagonal first r ones, then s minus
ones, then n - (r + s) zeros, where n = dim V, and it has zeros everywhere else. The
choice of standard basis in which g takes this form is by no means unique; however,
Sylvester's theorem of inertia asserts that the numbers of diagonal ones, minus ones
and zeros are independent of the choice of standard basis.

A symmetric bilinear form g on V is called non-degenerate if

(3) g(v, w) = 0 for all w implies that v = 0.

If g is non-degenerate then there are no zeros on the diagonal in its expression with
respect to a standard basis, r + s = n, and g is characterised by r, the number of
ones (the dimension n of V having been fixed).
Exercise 2. Show that g is a non-degenerate symmetric bilinear form if and only if G is
non-singular; in such a case, the matrix H relating two bases (as defined in Exercise 1)
satisfies (det H) ' = det 6/ det G. O

We shall call a non-degenerate symmetric bilinear form a scalar product; some-
times a symmetric bilinear form is called a scalar product even if it is degenerate,
but in this book we maintain the distinction. A scalar product g is given with
respect to a standard basis by

g(v, w) = vlwl + v2w2 + ... + vrwr - yr+lwr+l - ... - v"w".

It is said to have signature (r, n - r), or simply signature r.

2. Euclidean and Pseudo-Euclidean Spaces

Euclidean space. The standard scalar product on R", given by

g(v,w) = vlwl + v2w2 + . . + v"w",

has signature n. Any scalar product of signature n is called Euclidean, and a vector
space with Euclidean scalar product is called a Euclidean (vector) space. A scalar
product is called positive-definite if

(4) g(v, v) > 0 for all v, and g(v, v) = 0 only if v = 0.

It is clear that g is positive-definite if and only if it is Euclidean.



Section 2 167

Exercise 3. Let g be a Euclidean scalar product. Show that for any vectors v, w, and
any real number t,

g(tv 4 w,tv + w) = t2g(v,v) + 21g(v,w) + g(w,w).
Deduce from the positive-definiteness of g that the discriminant of the right hand side,
considered as a quadratic in t, cannot be positive for v # 0, and deduce the Schwartz
inequality

Ig(v.w)I < V'_9(v1v) g(w1w),
with equality if and only if v and w are linearly dependent. Show that if v and w are both
non-zero then Ig(v, w) I/ g(v, v) Vf-g(-W-, w) is the cosine of exactly one angled such that
0 < d < jr (this angle is then defined to be the angle between v and w). Show further that

g(v + w,v 4 w) < V/-g-(v,v) + g(w,w)
(the "triangle inequality"). a

Orthonormality. Generalising from the Euclidean case, one says, for any scalar
product g, that vectors v and w are orthogonal if g(v, w) = 0, and a vector v is a unit
vector if lg(v, v)i = 1. Notice that v is called a unit vector whether g(v,v) = 1 or
g(v, v) = -- 1. A basis is called orthogonal if the vectors in it are mutually orthogonal,
and orthonormal if they are also unit vectors. Thus a basis in which g takes the
standard form (appropriate to its signature) is orthonormal, and conversely.
Exercise 4. Infer from Exercises I and 2 that the matrix H of a change of orthonormal
basis for a Euclidean space must be orthogonal, which is to say that HT H = I,,, and
deduce that det H = +1. O

Exercise 5. Show that for any symmetric bilinear form g, if a vector v is orthogonal to
vectors wt, wp,... , w,,,, then it is orthogonal to every vector in the subspace spanned by
wt, W2,. - ., w,,,. 0

Vectors VI , V2, ... , V. form an orthogonal set if they are mutually orthogonal
and an orthonormal set if they are, in addition, unit vectors.
Exercise 6. Show that vectors of an orthogonal set are necessarily linearly independent. o
Exercise 7. Let V be an n-dimensional vector space with Euclidean scalar product g and
let W be a p-dimensional subspace of V. Let W1 denote the set of vectors orthogonal
to every vector in w. Show that lU 1 is a subspace of V of dimension n - p. Show that
(Wl ) 1 -- W. Show that V is a direct sum V = lU ® 1V1. o

The subspace lU 1 is called the orthogonal complement to V in V.

Lorentzian scalar products. A scalar product which is non-degenerate, but not
necessarily positive-definite, is said to he pseudo-Euclidean. The case of greatest
interest is the scalar product in the Minkowski space of special relativity theory,
which is generally rearranged, still with signature (1,3), to

g(v,w) - -v1w1 .- v2ws - v3w3 + v4wn4,

although in a standard basis it should be written v1w1 - vzw2 - v3w3 - v4w4. It
is sometimes reversed to the signature (3, 1) form vtwt + v2ws + v3w3 - v4w4, and
in older books is found in the form vowo -- vIwt - v2w2 - v3w3. In this book we
shall adhere to the first form displayed above.

It is in most respects as easy to discuss the scalar product of signature (1, n-1)
or (n - 1, 1) on an n-dimensional vector space as the 4-dimensional example. For any
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n, a scalar product with this signature is said to be hyperbolic normal or Lorentsian.
There is a conventional choice of sign to be made when dealing with Lorentzian
scalar products: we shall choose always the signature (1,n - 1).

In a space with pseudo- Euclidean, but not Euclidean, scalar product one can
find a non-zero vector v for which g(v, v) has any chosen real value, positive, negative
or zero. With our choice of signature a non-zero vector v in a space with Lorentzian
scalar product is called

timelike g(v, v) > 0
null or lightlike if g(v, v) = 0
spacelike g(v,v) < 0

These names arise from the physical interpretation in the 4-dimensional (Lorentzian
or Minkowskian) case of special relativity theory: a timelike vector is a possible 4-
momentum vector for a massive particle; a lightlike vector is a possible 4-momentum
vector for a massless particle such as a photon; a spacelike vector will lie in the
instantaneous rest space of any timelike vector to which it is orthogonal. Although
this physical interpretation cannot be maintained in a space with Lorentzian scalar
product if the dimension of the space is greater than 4, nevertheless the image is
very convenient.

The vectors orthogonal, with respect to a Lore.ntzian scalar product, to a given
non-zero vector form a subspace of codimension 1, called its orthogonal subspace.
The orthogonal subspace is called

spacelike timelike
null if the given vector is null
timelike spacelike

The Lorentzian scalar product induces a symmetric bilinear form on a sub-
space, by restriction: if a subspace of codimension I is spacelike, then the induced
bilinear form, with the sign reversed, is a Euclidean scalar product; if the subspace
is null then the bilinear form is degenerate, while if the subspace is timelike and
of dimension greater than I then the induced bilinear form is again a Lorentzian
scalar product.
Exercise 8. Show that in an n-dimensional vector space with Lorentzian scalar product
the timelike vectors are separated into two disjoint sets by the set of null vectors (the null
cone), while in a vector space with pseudo- Euclidean scalar product of signature (p, n - p)
where 1 < p < n - I there is no such separation for vectors v with g(v, v) > 0. 0

The disjunction in the Lorentzian case corresponds to the distinction between past
and future.
Exercise 9. Let V be an n-dimensional vector space with Lorentzian scalar product g.
Show that if v and w are timelike vectors both pointing to the future or both pointing to
the past then g(v,w) > 0, whereas if one points to the future and one to the past then
g(v, w) < 0. Show that in no case can two timelike vectors be orthogonal; show that a
non-zero vector orthogonal to a timelike vector must be spacelike. E3

Exercise 10. Show that all vectors in a spacelike subspace of codimension 1 of a vector
space with Lorentsian scalar product are spacelike. Show that if a vector is null then it
lies in its own orthogonal subspace, while all vectors in that subspace which are linearly



Section 3 169

independent of it are spacelike. Show that provided its dimension is greater than I a
timelike subspace contains vectors of all three types. O

Exercise 11. Let V be an n-dimensional vector space with Lorentzian scalar product and
lV a 2-dimensional subspace of V. Show that if 1V contains two linearly independent null
vectors then it has an orthogonal basis consisting of a timelike and a spacelike vector; if
1V contains a non-zero null vector and no other null vector linearly independent of that
one, then it has an orthogonal basis consisting of a null and a spacelike vector; while if 1V
contains no non-zero null vectors then it has an orthogonal basis consisting of two spacelike
vectors. O

3. Scalar Products and Dual Spaces
We have been careful, in earlier chapters, to draw a sharp distinction between vector
spaces and their duals. The need for this distinction is clear, for example, in the
case of a tangent space and its dual, a cotangent space: elements of the two spaces
play quite different geometric roles. However, specification of a bilinear form on a
vector space allows one to define a linear map from the vector space to its dual, and
if the bilinear form is non-degenerate, whatever its signature, this linear map is a
bijection and may he used to identify the two spaces in a manner which does not
depend on a particular choice of basis.

Suppose, first of all, that g is a symmetric bilinear form on a vector space V.
For any fixed v F V the map V R by w - g(v, w) is linear, because g is bilinear,
and therefore defines an element of V'. This element of V' will be denoted g(v),
so that

(w, g(v)) -- g(v, w)

for all w C V. Here g is used in two different senses: on the left, with one argument,
to denote a linear map from V to V'; on the right, with two arguments, to denote
a bilinear form on V. No confusion need arise from this.

If {ea} is a basis for V, and (Ba) the dual basis for V', then g(ea) = gobgb
where gab are the components of the bilinear form g, and so if v = vaea then
g(v) = gabva6b; which is to say that the components of g(v) are gabva. It is usual,
when a bilinear form g has been fixed once for all, to write vb for gab Va. The position
of the index is important: except in special cases va i4 va.

Because of the relation between the components, this process of constructing
an element of V' from an element of V with the help of g is called lowering the
index. In matrix notation, the map from components of elements of V, expressed
as column vectors, to components of elements of V-, expressed as row vectors, is
given by v ,. J G - (Gv)T.

If the bilinear form g is non-degenerate an inverse map g-':'V -. V may be
defined such that, for any a E V' and any v e V,

(v, a) = g(g-,(a),v).

In matrix notation, with respect to the same bases as before, if now a is the row
vector of components of an element of V' then the corresponding element of V
has components G - ' OT = (aG ')T , where G-' is the matrix inverse to the (non-
singular) matrix G. As is customary, we denote by gab the entries in G-t. The
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components a° of g-'(a) are given by a° = abgb°. The g°b and g°b are related by

g°`gcb = gbcg`° = bb

The matrix G- is symmetric; that is, gb' = 9 °b (see Exercise 16).
The map g 1: V' --+ V is called raising the index.

Exercise 12. Show that in R3, with standard basis and standard Euclidean scalar prod-
uct, the map v '-- g(v) is given by

(VI,V2 Vs)T
(VI V3, VS)

but that if the Lorentzian scalar product g(v,w) = -Owl - v2w2+vsw3 is used then the
map v g(v) is given by

(v', v2 Vs)T'- . (-v',- v2, v3). 0
Exercise 13. Show that if {e,} is a basis for V with scalar product g and {e°} the set
of elements of V" given by e° = g(e,), then (e°) is a basis for V. Show that the matrix
of the map v g(v) with respect to these bases is the identity matrix. Show that in
contrast the matrix of the same map with respect to (e,) and (9°), the dual basis for V',
is (g,.). Show that if g is Euclidean then (e,} and (e') are dual if and only if {e,} is
orthonormal. 0
Exercise 14. A bilinear form B, which is not symmetric, on a vector space V determines
two linear maps V -- V', since for fixed v E V the two linear forms w - B(v,w) and
w .-. B(w,v) may be distinct. Find the components of the image of v, and the matrix
representation of the map with respect to dual bases, in the two cases. 0
Exercise 15. Confirm that the linear map v -- g(v) is bijective if and only if g is non-
degenerate. 0
Exercise 16. If g is a scalar product then a bilinear form g' may be defined on V' by
g'(a,8) = g(g 1(a),g '(B)). Show that g' is symmetric and non-degenerate and of the
same signature as g. Show that if (e,) and (9°) are dual bases then g'(9°,9b) = g°5 as
defined above. Conclude that g6" = g°°. Show that G' = G - '. 0
Exercise 17. Let T be any p-multilinear form on V'. Show that a multilinear form g(T)
may be defined on V by

g(T)(vj, v2i ... , vv) = T(g(v1), g(v2), ... , 9(vr))
Show in particular that if T is a p-vector then g(T) is an exterior p-form. Show similarly
that if g is non-degenerate and if S is any p-multilinear form on V then g-'(S) defined by

g- 1(S)(a1,a2,...,ap) = S(9 I(a1).g-I(a2)e...,g-1(a°))
is a p-multilinear form on V' and that if S is an exterior p-form then g-1(S) is a p-vector. 0

4. The Star Operator
The ordinary space of classical mechanics is an affine space modelled on R3 with
a Euclidean scalar product. In this context one encounters such formulae as, for
example,

a - (b x c) is the volume of the parallepiped with edges a, b and c
(a x b) (c x d) _ (a c)(b d) - (a d)(b c).

We shall show how to establish corresponding formulae in any vector space or affine
space with a scalar product.

The construction of the vector a x b from the vectors a and b may be under-
stood, in terms of the results of this chapter and of Chapter 4, as follows:
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(1) construct 1-forms g(a) and g(b)
(2) take their exterior product, obtaining the 2-form g(a) A g(b)
(3) define the vector a x b by the rule

(a x b) if) = g(a) A g(b)

where f) is the volume form which assigns unit volume to a parallepiped with or-
thonormal edges and the usual orientation. Thus the vector a x b is a characterising
vector for a line which has the 2-form g(a) A g(b) as characterising form.

Exercise 18. Confirm that the effect of carrying out these operations is indeed to produce
the vector product. 0

The fact that the result of this sequence of operations is a vector depends crucially
on the dimension of the space being 3: in no other case will the final operation
produce a vector. It is not to be expected, therefore, that the vector product
generalises as such to spaces of other dimension.

The construction of a characterising p-vector from a characterising (n -p)-form,
as in step (3) above, becomes possible when a scalar product has been chosen,
because (as we shall show) a scalar product fixes a volume form, up to a sign.
Moreover, the availability of a scalar product makes possible new constructions
which cannot be achieved with a volume form alone, such as the formation of a
scalar product of two p-forms, for any p. This formation generalises the formula for
the scalar product of two vector products, displayed above.

Volume forms related to a scalar product. Again let V be an n-dimensional
vector space with Euclidean scalar product g. The matrix relating any two orthog-
onal bases of V is orthogonal, and therefore has determinant ±1 (Exercise 4). Now
let fl be a volume form, which is to say, a non-zero n-form, on V. It follows that
the value of fl can at most change sign under a change of orthonormal basis: if {e,}
and {e,} are orthonormal bases then

12(eI,e2,...,1.) -

Given a particular orthonormal basis {c,} there is just one volume form fl such
that 11(eI,e29...,e,) = 1; then A and --fl take the values ±1 on every orthonormal
basis, and are the only two volume forms to do so. There are therefore exactly
two volume forms which take the values ±1 on every orthonormal basis. These are
the volume forms determined by the scalar product, in which the volume of a unit
hypercube has absolute value 1. Choosing between them amounts to deciding which
orthonormal bases are positively oriented. We assume now that this has been done.

Recall one motive for the definition of the exterior product: to generalise the
elementary geometrical idea that

volume = area of basexheight.
In a Euclidean space of any dimension one may extend this by establishing a formula
which is in effect a generalisation of

area of base = volume= height.
The construction is a combination of the linear map g, extended to forms and
multivectors, and the dual map between forms and multivectors, introduced in
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Section 5 of Chapter 4. However, it may be introduced in a more overtly geometrical
way, which we now describe.

First, we show how to specialise to Euclidean spaces a construction of a vol-
ume form on a vector space which we described in Chapter 4, Section 7. In this
construction one takes the exterior product of characterising forms for a pair of com-
plementary subspaces. Consider a p-dimensional subspace W of the n-dimensional
space V (which is supposed equipped with a Euclidean scalar product), and its
orthogonal complement W1, a subspace of dimension n - p. The scalar product on
V induces Euclidean scalar products on 1V and 1V 1, by restriction. Any charac-
terising p-form for w1 defines a volume p-form on 1V, by restriction, and so there
are two characterising p-forms for V1 whose restrictions to 1V coincide with the
volume p-forms defined on that space by its Euclidean scalar product: we denote
them ±f1w. Likewise, there are two characterising (n - p)-forms for W, say f11w1,
whose restrictions to V J- coincide with the volume (n - p)-forms defined there by
its Euclidean scalar product. The exterior products of these p- and (n - p)-forms,

(±f)w) A (f11w.) = ±(flu, n flw.) = ±f1

say, are volume forms on V: in fact they are just the two volume forms determined
by the Euclidean scalar product on V, as may easily be seen by evaluating f1 or -fl
on any orthonormal basis for V, p of whose members lie in 1V and n - p in W1.

Secondly, we point out that this construction may be reversed, in a sense,
again by making use of the Euclidean scalar product. The forms flw and flw1 are
decomposable. Suppose now that there is given a decomposable p.form w on V.
Let 1V be the orthogonal complement of the characteristic subspace of w: it is a
p-dimensional subspace of V, and the restriction of w to 1V is a volume p-form on V.
We shall suppose for the present that the restriction of w to 1V actually coincides
with one of the volume p-forms defined by its scalar product (also obtained by
restriction, as before). We seek to construct an (n - p)-form on V, which we shall
denote *w, such that

wn*w=11,

where fl is the volume n-form on V defined by the Euclidean scalar product and
the orientation, supposed already chosen. The form *w may be determined up to
sign by taking it to be a characterising (n - p)-form for 1V, whose restriction to W1
(the characteristic subspace of w) is one of the volume (n - p)-forms defined there
by the scalar product.To complete its definition we have merely to choose its sign
so that w A *w = fl rather than -1t. Note that *w, like w, is decomposable.

To sum up: V is an oriented vector space with Euclidean scalar product, and w
is a decomposable p-form on V, which coincides with a volume form, determined by
restriction of the scalar product, on the orthogonal complement of its characteristic
subspace. Then *w is a decomposable (n - p)-form determined by w such that the
exterior product w A *m is the volume form on V determined by the scalar product
and the given orientation, and that the characteristic subspaces of the two forms
are orthogonal complements of each other. The construction of *w from w, with
the interpretation in terms of volume forms, is the analogue of the formula area of
base = volume-height from which we started.
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This construction determines a map from certain p-forms to (n - p)-forma,
though so far the forms concerned are of a rather special type. We shall explain
shortly how it may be extended to give a linear map /1P V' -4 A"-' V'. The
construction, and therefore the resulting map, depends heavily on the use of the
scalar product, both through the direct sum decomposition of V into orthogonal
complementary subspaces and through the repeated use of volume forms defined by
scalar products.

Exercise 19. Show that if (e,) is a positively oriented orthonormal basis for V then
the volume form determined by the metric is e' A e2 A A e", where e* = 9(e.), as in
Exercise 13. Show that if If.) is an arbitrary positively oriented basis then the volume
form is det(g,*)9' A 92 A ... A 9", where {9°} is the basis of V' dual to (f.) and
Sae = 9(f., fb). 0
Exercise 20. Show that in a 2-dimensional Euclidean space with orthonormal basis
{el,e2} and volume 2-form e' A e2,

*el = e2 and * e2 = e'.
Show that in a 3-dimensional Euclidean space with orthonormal basis {e,,e2,es} and
volume 3-form e' A e2 A e3

*e' = e2 A e3, e2 = -e' A e3, *e3 = e' A e2,
*(e' A e2) = e3, *(e' Ae3) = -e2, *(e2 A e3) = e'.

Show that in the 2-dimensional case *sw - -w for every form w considered, while in the
3-dimensional case **w = w. o
Exercise 21. Show that choice of the opposite orientation in the definition of *w changes
its sign. 0
Exercise 22. In an n-dimensional Euclidean space V with Euclidean volume form fl, let
w be a decomposable p-form whose value on any set of p orthonormal vectors is ±1 or 0.
Show that an orthonormal basis {e,} may be chosen for V such that fl(el,e2,...,e") = 1,
w(el,e2,.. ,ep) = I and {ep+j,ep+2,.. ,e"} is a basis for the characteristic subspace of
w. Show that w - e' n e2 A'' n ep and that *w = eP+' n eP}2 n . . A e", or alternatively
*w = ep J(ep- I J(... J(et Jfl)...)). o

The star operator in general. The final result of the preceding exercise may
suggest how the process of associating *w with w could be extended from decom-
posable exterior forms to arbitrary ones. What is needed is the extension principle
introduced in Chapter 4, Section 13.

Recall the maps g: V -+ V * and g - ': VV determined by the scalar product,
which were introduced in Section 3. The map V'P -+ A"-" V' given by

(17', r l , ... , 11 P) - 9 (17P) J(9 (r7P ) J(... J(g- (9) 1fl) ...))

is multilinear and alternating, and therefore by the extension principle may be
extended to a linear map AP V - -+ A" - " V '. This map is denoted by w '-+ *w for
arbitrary forms w, not only for decomposable ones, and is called the star operator.
Note that for any decomposable p-form 771 A rye A ... A r7P

*(n' A 72 n ... A r!P) = 9-'(r1P)J(g-'(OP-') J(...J(g-'(q')Jfl) ...

The extended definition subsumes the original one, by Exercise 22.
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Exercise 23. Let (e,.} be a positively oriented orthonormal basis for V and let {0°} be
the basis for V' given by e° = g(ea). Show that for each a,, a2, ... , ap with 1 < al < az <
...<ap<n

*(e" A e12 A ... A ce6' A e6, A ... A eb^-r

where is the subset of (1,2,...,n) complementary to (a,,a2,...ap),
1 < b, < 62 < - < n, and c is the sign of the permutation taking (1,2,...,n) to
(al,az,...,ap,b,,b2,...bn-p). a
It follows from Exercise 23 that the star operation is a linear isomorphism of the
spaces AP V' and A"-P V' (which have the same dimension) since it maps a basis
of one to a basis of the other.

If a decomposable p-form w defines a volume p-form compatible with the scalar
product on restriction to the orthogonal complement of its characteristic subspace,
then w n w = f1, as follows from the preceding subsection, but in general this is
not the case: for example if X = kw for some k E R then by linearity X A 5X = k2f2.
In general, if w and X are any two p-forms, then w n X is an n-form and therefore
a multiple of fl. We set

w A *X = g(w, X)n;

then g is a bilinear form on ' V. We shall show that it is a Euclidean scalar
product, and reduces to g' on Al V' = V'.

If (e°) is a positively oriented orthonormal basis for V then {e°} is a basis for
V' orthonormal with respect to g', and { Cal n e°2 n A ear I 1 < a1 < a2 <

< ap < n } is a basis for / ' V' . Now if w is any one of these basis p-forms
then g(w,w) = 1, while if w and X are distinct basis p-forms then *X has at least
one of the e, in common with w (by Exercise 23), and so w n X = 0, which means
that g(w, X) = 0. Thus the bilinear form g takes the standard Euclidean form with
respect to this basis and is therefore a Euclidean scalar product on /1P V' for each
p, with the given basis as an orthonormal basis. In the case p = 1 the basis {e°}
is thus an orthonormal basis for g, as it is for g', and the two therefore coincide.
We shall therefore use g henceforth to denote the scalar product on V' as well as
V and all the other exterior product spaces.

Exercise 24. Show that in a 3-dimensional vector space V, with Euclidean scalar product
and the usual orientation, the map V x V -. V by (v,w) .-+ g-'(e(g(v) A g(w))) is the
vector product. Show that the vector product of two vectors is an axial vector, that is,
changes sign under a change of orientation of V. a
Exercise 26. Show that in a 3-dimensional Euclidean space

g(sw,.X) = Ow, X)

for all p-forms w, X, where p = 1 or 2, and that for any two decomposable 2-forms qi A qz,
tI nc',

g(9' A riz,S' A S') = g(7l'Sz)g(7z,S1)

Hence show that for any vectors vf,v2,wl,w2,

(vi x v,) . (w, x w2) = (v1 w3)(v2 . wz) - (v, . w3)(v2 . w,). a
Exercise 26. Show that for fixed linear forms S', Sz, ... , sp the map V'p -+ R by
(q', 1, ... ,, P) - det(g(7°, fp)), a,# = 1,2,... , p, is multilinear and alternating and
therefore extends to a linear form on ^p V'. Deduce that there is a unique symmetric
bilinear form on np V' whose value on the decomposable p-forms q1 A qz n A qp and
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S' A S2 A "' A 5° is det(g(q°,s")), and by considering its values when q° and S" are cho-
sen from the 1-forms {e'} of an orthogonal basis for V. show that this bilinear form is
actually g. O

The star operator for indefinite signature. The star operator may also be
defined for a scalar product with indefinite signature. In this case intuition is not so
reliable a guide to results, so we follow the algebra developed for the Euclidean case
in order to arrive at the definitions. The number of minus signs in the signature of
the scalar product will play an important role; we denote it a. It is convenient in
the course of the construction to choose bases such that the spacelike vectors (those
of negative "squared length") take the first a places. The details of the construction
are left to the reader, in the following exercises. After the second of these one of
the two volume forms determined by the scalar product, and thus an orientation,
is chosen for the remainder of the construction.

Exercise 27. Let V be an n-dimensional vector space with scalar product g. Let {e,} be
an orthonormal basis for V such that g(e,, ea) = - I for I < a < a. Show that {e'}, where
e' = g(e,), is an orthonormal basis for V' such that g(e',e') = -1 for 1 < a < e, and
that {B') = {-e',-e2,...,-e',e'+1,... ,e"} is the basis dual to (e,). 0
Exercise 28. There are two volume forms on V determined by g. Show that they are
given by +fl where fl = B1 A B2 n n B" = (-1)'e' n e2 n n e", {e,} being a chosen
orthonormal basis and (B') the dual basis. Let (I,,) be an arbitrary basis for V with dual
basis {c'}. Show that 1] = ±\/(- I)- det(g,b)t' A L2 n A e" where g, = g(Ja, fe) O

Exercise 29. Show that for each p there is a unique symmetric bilinear form g on AP V'
such that if w = q' n q2 n n qP and X = S' n c2 n ... A S° are decomposable
then g(w,X) = det(g(, ',S")). Show that the standard basis for A' V' constructed out of
an orthonormal basis for V' is orthonormal with respect to g, and infer that g is a scalar
product on A' V'. Show that on V' = A 1 V', g = g', and that g(f),fl) = (-1)'. 0
Exercise 30. Let w be any chosen element of A' V' and X any chosen element of
A"-P V': then w n X is a multiple of 11. Writing W A X = -y .(X)0, show that 'y is a
linear form on A"-P V' and from the fact that g is a scalar product infer that there is an
element w of A"-P V' such that X). Show that the map AP V' - A"-P V'
by w - :w is a linear map. O

Exercise 31. Let {ea} be a positively oriented orthonormal basis for V such that
g(ea, ea) _ - I for 1 < a < s. Show that if e' = g(e,) then for I < al < a2 < ... < ap < n

(e°i A e,o A ... A e'") = fee' A ee' A ... nee--"
where is chosen to be an even permutation of (1,2,...,n),
and c = +1 if there is an even number of a's not exceeding 8 and -1 otherwise. o
Exercise 32. Let w E AP V'. Show that ssw = (-I)P("-P)+.w. 0
Exercise 33. Show that 1)'g(w,X), for any two forms of the same de-
gree. O

Exercise 34. Let V be a 4-dimensional vector space with Lorentzian scalar product g
and positively oriented orthonormal basis {ea} such that g(el,el) = g(e2,e,) = 9(e3, e3) _
-g(e4,e4) =- 1. Show that

(e2 A e3) = e' A e4 (es A e') = e2 A c4 (e' A e2) = e3 A c4
*(Cl A e4) _ -e2 A e' +(e2 A e4) -e3 A e' s(es A e4) = .--Cl n e2
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while
*(92 A93)=-9'A94 *(03 AB')_- 8'A04 :(0'A#')=_OS AO4
*(9' A 94) = 9' A B' *(92 A 94) = B' A g' (93 A g4) = B' A B'

for the dual basis (0°). a
Exercise 36. Let V be a 4-dimensional vector space with Lorentsian scalar product. Find
the signature of the induced scalar product on A3 V'. Let w be a decomposable 2-form.
Find out how the sign of g(w,w) depends on the nature of the characteristic 2-space of w,
as set out in Exercise 11. 0

b. Metrics on Affine Spaces

The length of a curve in ordinary 3-dimensional Euclidean space is given by the
integral (between appropriate limits) of the length of its tangent vector. Thus the
computation of length of a curve uses the Euclidean scalar product in the underlying
vector space via its identification with the tangent space at each point. One may
use the same method to transfer a scalar product on any vector space to an affine
space modelled on it. One obtains in this way a scalar product on each tangent
space to the affine space. Such a field of scalar products is called a metric on the
affine space (whatever its signature). The metric constructed in this way is of a
rather special kind, being in a sense constant; however we shall be concerned only
with such metrics in this chapter, and call them (where distinction is necessary)
affine metrics. An affine space with affine metric is called an affine metric space
and denoted er,"-r, where (r, n - r) is the signature of the scalar product defining
the metric. An affine metric space with positive definite metric is called a Euclidean
space, whatever its dimension n, and is denoted V. We shall write g for the metric
as for the scalar product on which it is based.

In an affine coordinate system the components of g with respect to the coordi-
nate vectors, given by

gab = 9(aa,496),

are constants; they satisfy the symmetry condition gba = gab. If the afflne coordi-
nates are based on an orthonormal basis for the underlying vector space then (gab)
takes the standard form appropriate to the signature. If, however, the coordinate
system is not alf'ine the components of the metric will not be constants, but in
general will be functions on the coordinate patch. It is usual to express the metric
in the form

g = 9aedxadxb:

this should be taken to mean that for any vectors v, w,

g(v,w) = 9b(v,dxa)(w,dxe) = 9abvawe,

where v = v°aa, w = waaa.
Exercise 36. Show that the components g*e, §°e of g with respect to two systems of
coordinates (xe),(t°) are related by

at, aid
gas aZ° a=e

9cd.
o
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Exercise 37. Show that if (U,) is any (local) basis of vector fields, with dual basis of
1-forms (9°), then g = ga69496 where gab = g(U5,Uo): this means that for any vector
fields V, W, g(V,W) = gab(V,9')(W,96). a
The result of Exercise 36 could be written in the form 4abdtadtb = gabdxadxb. In
order to find out how to express g in terms of curvilinear coordinates, therefore, it
is enough to express the differentials of the orthonormal affine coordinates (xe) in
terms of those of the curvilinear coordinates, which may easily be done from the
coordinate transformation equations, and substitute them in the expression

(dx')2 4- (dx2)2 4... -i (dr')2 - (dr'+ t)2 - ... -- (dx")2 = gabdxndxb,
employing ordinary algebra to simplify the result (which is valid because of the
symmetry of g,b). Thus if (in (2)

x' = rcosl9 x2 rsint9

(polar coordinates) then
(dr' ) 2 + (dx2 ) 2 = (cos t9dr -- r sin iMi9)2 + (sin t9dr + r cos tidt9)2

dr2 f r2dt92.

Exercise 38. Show that if
r' = rsint9cosV x2 = rsint9sindo x3 = rcost9

(spherical polar coordinates in Es) then
(dr' )' + (dr2)' + (drs)s = dr2 + r'dt92 + r2 sin2 t9dV2. a

From such an expression for g one reads off the lengths of, and angles between,
the coordinate vector fields of the curvilinear coordinate system. Thus, in polar
coordinates in (2, g(a/ar,a/ar) = 1, g(a/at9,a/at9) = r2, g(a/ar,a/ad) = 0.
Coordinate systems like this in which the coordinate vector fields are orthogonal but
not necessarily unit vector fields (and so (g,b) is diagonal but does not necessarily
have ± I for its diagonal elements) are called orthogonal coordinates.
Exercise 39. Show that in spherical polar coordinates the 1-forms (dr, rd, , rain t9dIp}
constitute an orthonormal basis for T. Es at each point z. o
Exercise 40. Generalised spherical polar coordinates for 6" are defined in terms of or-
thonormal affine coordinates by

r' = r cos t9'

x' = r sin d' cos t9'

73 = r sin t9' sin t92 rost9s

x" ' = r sin t9' sin 02 ... sin 4" cos 0"

x" - rsint9'sint92 sint9"-2 sin 0' 1.
Show that generalised spherical polars are orthogonal and that 8/ar is a unit vector field. a

Lengths of curves. The length of a curve or, between a(ti) and a(t2) (where
t2 > t,), in a Euclidean space £", is defined to be

4
t2

g(o(t),6(t))dt.
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Exercise 41. Show that length is independent of parametrisation, and is unaffected by a
change of parameter which reverses the orientation of the curve. D

Thus length is really a function of the path rather than the curve. Provided that
t2 > tl and that a is not a constant curve its length is strictly positive. Moreover,
if t3 > t2 > t1,

rep
g(o(t),o(t))dt =

riz
g(o(t),o(t))dt +

rlo
g(6(t),6(t))dt

.it V
1, 92

so that length is additive in the expected way. If one defines s: R - R by

g(6(t),6(t))dt
s(t) =

f
-f'" g(6(t),6(t))dt for t < to

then s is a smooth increasing function, called the arc length function of the curve,
with initial point a(to).
Exercise 42. Show that the arc length functions (of the same curve) with different initial
points differ only by a change of origin. O

Reparametrisation of the curve by means of its arc-length function yields a
curve with the property that its tangent vector is always a unit vector, since it now
satisfies

1

a

g(o(s),6(s))ds ='s for all s.
0

This relation between the metric and arc length is the reason for the use of the
expression ds2 = gbdx4dx° for a metric which is often found in tensor calculus
books.

The concept of length extends easily to a curve with a finite number of corners,
or piecewise-smooth curve: a curve a is piecewise-smooth on a closed interval (a, b(
of its domain if it is continuous, and if la, bJ can be subdivided into a finite number
of consecutive subintervals (a, t 1 J, (t 1, is (, (t2, t3J, ... , (t"_ 1 , t"J, It., b], on each of
which it is smooth. The length of a over (a, b( is just the sum of its lengths over the
subintervals.

A unit tangent vector u at xo determines a line, parametrised by arc length,
by s - xo + su. Suppose that xo, xl and xy are the vertices of a triangle, and that
X1 = x,,+31U1i xy = xo+su = x1 +s2u2, where u, ul and u2 are unit vectors. Then
by the triangle inequality (Exercise 3) applied to s01i ssus and su = slut +82U2,
8 <_ 81 + 82 with equality only when xo, xl and x2 are collinear with xl between xo
and X2-

This familiar result about the shortest distance between two points generalises
to cover curves, not just broken line segments. Given a point xo in E", the function
r defined as the Euclidean length of the displacement from xo to x, or the length of
the line joining xo to x, is smooth except at xo. It is the first coordinate function
of generalised spherical polar coordinates based on xo. If a is any smooth curve
parametrised by arc length joining xo to x, with a(0) = xo and a(S) = z, so that
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S is the length of the segment of a from xo to x, then by the Schwartz inequality
(Exercise 3)

V_g (.'(s) a(s)) Ig ar)
since g(a/ar, a/ar) = 1. But

> g (v(s), )

g (s), dr)

since generalised spherical polars are ort/hogonal and a/ar is unit. Thus

S = /
s

(o(s),ci(s))ds > J S(b(s),dr)ds - /
s d (r oo)de = r(v(S)) = r(x).

! o JJl o .l o ds

That is to say, the length S of a smooth curve joining xo to x cannot be less than
the length r(x) of the straight line joining xo to x. Moreover, since equality holds
in the Schwartz inequality only if the arguments are linearly dependent, the curve
a can have length r(x) only if it coincides with the straight line. Thus of all smooth
curves joining two points it is the straight line which has the shortest length.

We have devoted space to this well-known fact because the corresponding result
in Lorentzian geometry, to which we now turn, may be a little unexpected.

Tangent vectors v, and displacements, in Cl,", n-dimensional affine space
equipped with a metric of Lorentzian signature, are called timelike, null or spacelike
according as g(v, v) > 0, = 0 or < 0. Two points have timelike, null or spacelike
separation according as the displacement vector between them is timelike, null or
spacelike. At each point one may construct the null cone, which consists of all points
whose separations from the given one (the vertex) are null. It is a hypersurface,
smooth except at the vertex, containing all the lines through the vertex with null
tangent vectors. It divides the space into three parts, two of which are the disjoint
components of the set of points having timelike separation from the vertex, the
other consisting of the points having spacelike separation from the vertex. A choice
of component of the timelike-separated points to represent the future of the vertex,
made for one point, may be consistently imposed all over the Lorentzian affine space
by the rule that parallel displacement vectors, if timelike, are all future or all past
pointing. A curve is called timelike, null or spacelike at a point according as its
tangent vector there is timelike, null or spacelike.

The definition of arc length in Euclidean space does not carry over directly to
a Lorentzian space. The most useful analogous concept is that of proper time along
an everywhere timelike curve. Let a be an everywhere timelike curve: proper time
along a from o(to) is the parameter r defined by

rg(a(t),a(t))dt for t > to
T(t) =

I

ill

- J g(6, (t),o(t)) dt for t < to.
e

Evidently to attempt a similar definition for an everywhere null curve would be
pointless, since the integrals involved would be always zero.
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Fig. 1 A null cone.

Exercise 43. Show that in E'-3 with orthonormal affine coordinates, so that g =
- (dz' )' - (dx')' - (dz')' + (dz' )', the helix a(t) = (a cos cvt, a sin wt, 0, bt) will be timelike
if w < b/a, null if w = b/a and spacelike if w > b/a. O

Exercise 44. Coordinates (rc, t9, gyp, Q) are defined with respect to orthonormal affine co-
ordinates (x', r', z', z4) for £'.' by

' = Q sinhacost9 x'X = QsinhresinicooV
z' = esinhresin>9sinfp r4 = go cosh sc.

Show that they provide, for Q > 0, coordinates for the future of the origin of the affine
coordinates; and that Q(x) is the proper time of the point x from the origin along the
straight line joining them. Show that

-(dx')' - (dz')' - (dr')' + (dr4)'

= -Q'dsc' - Q'sinh',cdt9' - p'sinh' asin't9dV' + di'. o

If a is an everywhere timelike curve which is parametrised by proper time,
such that o(0) = xo and o(T) = x (so that T is the proper time from xo to x
measured along the curve) then by using the coordinates introduced in Exercise 44
and adapting the argument given earlier for Euclidean arc length it is easy to show
that T < e(x), with equality only if a is actually the straight line joining xo and X.
Thus for timelike curves in Lorentzian geometry, the straight line joining two points
with timelike separation is the longest (in the sense of proper time) of all timelike
curves joining the two points. The reason for this reversal from the Euclidean case
is that by introducing more wiggles into a timelike curve one tends to make it more
nearly null and therefore to decrease the proper time along it.

Exercise 46. Show that there is a piecewise linear null curve joining two points of timelike
separation (two pieces suffice) . Show that one may therefore construct a timelike curve
(even a smooth one) of arbitrarily small proper time joining the two points. G

Exercise 46. Show that if xo, rt, xz are points in E''' with zt lying to the future of
zo and xl to the future of x, (and therefore also to the future of zo), and if r(z x1)
represents the proper time from z, to x, along the straight line joining them, then

r(zo,r,) > r(ro,x,) + r(xt,z2),

with equality only if the points are collinear. 13
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8. Parallelism in Affine Metric Space

As we explained in Chapter 2, the notion of parallelism of tangent vectors at dif-
ferent points in an affine space is independent of any metric structure. However,
parallelism does respect any affine metric on the space in the sense that lengths of,
and angles between (or more generally, scalar products of) parallel vectors are the
same. It follows that if V and W are parallel vector fields along a curve a then the
function g(V,W) (on the domain of a) is constant:

d ))
dt

(g(V,W = 0.

More generally, if V and W are any vector fields on a, not necessarily parallel, then

g(V (t + h),W (t + h)) - g(V (t),W (t))

= g(V (t + h)11,W(t + h) 11) - g(V (t),W (t))

= g(V (t + h)jI - V (t),W (t + h)(I) + g(V(t),W (t + h)II - W(t))

where V (t + h)
II

is the vector at a(t) parallel to the vector V (i + h). It follows that

dt(g(V,W))=g(Dt'W/ +gI V, DW .

Exercise 47. Show that if U, V, W are vector fields (not restricted to a curve) then

U(g(V,W)) =g(VuV,W)+g(V,VuW). a
We defined the connection components I', for a (curvilinear) coordinate system

by

rbcaa = Va,ab

We can derive from the result of Exercise 47 an important relationship between
the connection coefficients and the components of the metric with respect to the
coordinate vector fields: taking for U, V, W in the formula in the exercise the
coordinate fields a., at, ac we obtain

199(19619)= agbc
a c 19x19

= 9 (Va.196, ac) + g(a6, Da. a0

= g(rs 19d,19c) + g(ab, r .ad)

= gcdrba + gbdr..

Two similar formulae are obtained by cyclically permuting the indices a, b, c:

49 a
atcb = gadr 6 + gcdr b

199.6 d d
axc = 96drac + gadr6c

Notice that in view of the symmetry of ree in its lower two indices, each term
appearing on the right hand side of one of these equations has a matching term in
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one of the others. By adding the first two and subtracting the last, therefore, they
may be solved for 9,dI b:

d aGbc a9ac _ a9ab
9cdrab -

2 8x4 + axb axC

and therefore, pre-multiplying by gC°, using g0°gcd = 6d, and relabelling indices, one
obtains

_ 1 a9bd a9ad a9abc°b _ cd

r 29 8x° + 8xb axd

Thus Tab is determined by gab and its derivatives.
Exercise 48. Compute the connection coefficients in polar and spherical polar coordi-
nates. 0
Exercise 49. Show that rab = =aa(logldet(gcd)I). 0
Exercise 50. By writing down the two other equations obtained from the one in Exer-
cise 47 by cyclic permutation of U, V, W, show that for any three vector fields

2g(VUV,W) = U(g(V,W)) + V(g(U,W)) - W(g(U,V))

+9(IU.III, W) - 9(IU,WI,V) - 9(U,IV,WI). o
Exercise 51. Given any (local) basis {V,} of vector fields, not necessarily coordinate
fields, so that IV,, Vb) is not necessarily zero, one may define 9.6 = and -1,6V,
Vv6Va. Show that

1746 = 19 `d(V.96d +V69.d - Vd9.6 - /.'d 9b, - fbe9.. - 169d.)
where IV.,Vb) = f,;V,. In particular, if {V,} is orthonormal and the space is Euclidean,
then

746 = - fbed 6.. + f.ebd.)

where is the unit matrix; and if y,6c = 7 bbcd (so that ry,bc and -y4 have the same
values for each a, b, c) and if, likewise, fabc = f d 6,,,, theft -1.6c = -; (foot + f.c + O

Exercise 52. Show that the connection forms w; for an orthonormal basis {V.} of vector
fields on a Euclidean space can be thought of as elements of a skew-symmetric matrix of
1-forms, in the sense that w;66c + w6'6.c = 0. O

7. Vector Calculus

In the presence of an affine metric the operations of the exterior calculus may be
applied to vector fields through the medium of raising and lowering indices; the
result in £3 is to give the familiar operations grad, div and curl.

The gradient. The gradient of a function f is the vector field obtained by using
the metric to raise the index on df : thus

gradf = 9-`(df)

Exercise 53. Show that g(grad f, V) = Vf for every vector field V. Deduce that, in
particular, if V is tangent to the level surfaces of f, then gradf is orthogonal to V ; thus
grad f is orthogonal to the level surfaces of f . 0

In coordinates,

grad f = gab a f a
ax° axb
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Thus in orthonormal affine coordinates in t n the components of grad f are equal to
those of df, and consequently the distinction between grad f and df is rarely made
in ordinary vector calculus. The distinction becomes necessary, however, even using
orthonormal affine coordinates, if the affine metric is non-Euclidean: in £ t,3, for
example,

_af a of _a of a of a
grad f =

axI ax' axe 0x2 -- 8x3 ax3 + ax4 ax+.
In curvilinear coordinates the components of grad f look quite different from those
of df because of the effect of the g°b. Thus in polar coordinates in £2

df = /dr + ad dt9

while
afa lafa

grad f = ar ar + r2.30 a19

Exercise 54. Compute the coefficients of grad f in spherical polar coordinates (the metric
is given in Exercise 38). 0
Exercise 55. Show that with respect to an orthogonal coordinate system (grad f
(g°°)-a° f (no sum).

In the case of a pseudo- Euclidean affine metric space the restriction of the tan-
gent space scalar product to the tangent hyperplane of a surface may be positive
or negative definite, indefinite but non-degenerate, or even degenerate. In the case
of a Lorentzian affine metric space a tangent hyperplane will be called spacelike,
timelike or null according as the restriction of the scalar product is negative def-
inite, Lorentzian, or degenerate, as in Section 2. A surface all of whose tangent
hyperplanes are of the same type will be said to be of that type: thus a null sur-
face is one whose tangent hyperplanes are all null. The type of a level surface
of a function f may be deduced from that of its normal grad f (considered as a
vector field over the level surface), and since g(grad f, grad f) = g(df,df) the type
of the level surface is given by the scalar product of df with itself. Furthermore,
g(grad f, grad f) = (grad f, df) = grad f (f), so that in particular a level surface of
f is null if and only if grad f is everywhere tangent to it.

The divergence. In Chapter 5 we defined the divergence of a vector field V with
respect to a volume n-form f1 by

Cvfl = (diva V )fl,

using the fact that the Lie derivative of fl, being an n-form, must be a multiple
of 1l. In the case of an affine metric space the divergence is fixed by the choice of
11 to be a volume form derived from the metric. It does not matter which of the
two is chosen, as is clear from the defining equation: thus divergence is unaffected
by a change of orientation. With respect to orthonormal affine coordinates 11 =
±dxt n dx2 A A dx", and from the relationCvfl = d(V Jtl) one finds that if
V = V °a° then div V = aV °/ax° (summation intended). Since we now deal with
a standard volume (strictly speaking, one or other of the two standard volumes) we
drop the practice of subscripting the symbol div to show which volume is in use.



184 Chapter 7

Exercise 56. Using the fact that in curvilinear coordinates (Exercise 28)

fl = f (-1)' det(g°s)dx' n dx' n n dx"
show that

divV = I
a

( (-1)'det(gee)V°) D\
(-1)'det(ge,)ax°

The divergence may also be expressed in terms of the star operator. Given any
vector field V, the metric may be used to construct a 1-form g(V) by lowering the
index; then sg(V) is an (n - 1)-form, whose exterior derivative dsg(V) is an n-form
and therefore a multiple of fl (we assume now that one particular volume form is
chosen).

Exercise 57. Show that *g(V) = V Jfl and thus that dsg(V) = (div V)fl.

If we extend the star map to maps A V' - An V' and A" V' - A V' by
s1 = (-1)"fl and *11 = 1 (the occurrence of the factor (-1)' is required by the fact
that g(fl,fl) (-1)": Exercise 29) then

div V = sdsg(V).

(Note that choosing the opposite orientation changes the sign of the star map, but
not that of div V, which confirms an earlier remark).

The divergence of a vector field may also be expressed in terms of its covariant
derivative. Given a vector field V, the map of tangent spaces defined by w '-- VWV
is a linear one, which we write VV. In affine coordinates the matrix of VV with
respect to the coordinate vectors is just ((9bV °) and so div V is its trace.

Exercise 58. Show that in general curvilinear coordinates the matrix representation of
VV has entries aeV ° + Q1,11' and so by using the formula Q. = ;ae(log I det(g,a)l) (Ex-
ercise 49) confirm that the trace of VV is given by the formula for div V in Exercise 66. D
Exercise 69. Let (e°) be a fixed orthonormal basis for the underlying vector space of an
affine metric space and let {E°} be the corresponding orthonormal basis of parallel vector
fields on the affine space. Show that for any vector field V

n

Cvn(E1,E2,...,E.) fl(Ei,E2,...,Vg,V,...,En)

and establish the connection between the Lie derivative and covariant derivative definitions
of div. (Exercise 13 of Chapter 4 is relevant.) 0

The curl. Unlike grad and div, curl in its usual form can be defined only in £3.
We gave the definition of the vector product of two vectors in C3 in terms of

the star operator, the raising and lowering of indices, and the exterior product, in
Exercise 24. The definition of curl follows the same route. Given a vector field V
in £3 one constructs the 1-form g(V); then dg(V) is a 2-form; sdg(V) is a 1-form;
and g - I (sdg(V)) is a vector field.

Exercise 60. Show that g-'(sdg(V)) = curl V by evaluating it in orthonormal affine
coordinates. (The rules for the star operation on orthonormal basis vectors in Es are
given in Exercise 20.) 0

Since curl V involves the star operation once only, it is an axial vector field: it
changes sign when the orientation is reversed.



Section 7 185

The special feature of £3--the fact that I = 3 - 2 !-enables one to define
curl V as a vector field. However, in any dimension, for any vector field V, one
may construct the 2-form dg(V), which serves as a generalised curl. This may be
expressed in terms of VV as follows. We have defined VV as a linear map of tangent
vectors. By composing this map with g, which lowers indices, we obtain a map of
tangent to cotangent vectors, which may in turn be regarded as a bilinear form.
This bilinear form is given by

(W1, W2) ,-. 9(Vw,V,W2)

for any pair of vector fields W1, W2. It will not he symmetric, in general, but will
have an alternating part given by

(WI,W2) - s{9(Vw,V,W2) - 9(Wi,Vw3V))
Now

9(Vw,V,W2) - 9(WI,Vw,V)
= Wi(9(V,W2)) 9(V,Vw,W2) -W2(9(WI,V)) +9(Vw3W1,V)
= W, (9(V,W2)) - W2(9(V,W1)) - 9(V,IW,, W21)

= I''1(W2,9(V)) W2(Wi,9(V)) - (11"V1,W21,9(V))

= d9(V)(Wi,W2)
Thus dg(V) is twice the alternating part of the bilinear form (Wi,W2) -+
9(Vw, V, W2)

Orthogonal coordinate systems. In vector calculus in £3, frequent use is made
of coordinate systems, such as cylindrical or spherical polars, which are orthogonal
without being orthonormal. It is very convenient to have expressions for grad,
div and curl with respect to such coordinates; we shall derive these expressions,
probably already familiar to the reader, by using the methods developed in this
section.

When using orthogonal coordinates (x") it is usual to employ an orthonor-
mal basis of vector fields {V"} derived by normalising the coordinate fields. Thus
positive functions h" are defined by

then

g(O",8")

V" = e"

(no summation)

(no summation)

and
h"
h"dx" (no summation).

To avoid having to continually repeat the phrase "no summation", we shall suspend
the summation convention for the rest of this section.

Given any function f, we have
gradf -g '(df)

g
,

(\hI Of
l dX )hidx' + h2 8x )h2dx2 + \h3 8- )h3dx3/

I Of
, -Of(h,c3z )V'4 ()v2-)v3.(
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The divergence of a vector field W is calculated as follows. The volume form
fi is given by

fl = 9(V1) A 9(V2) A 9(V3) = hlhzh3dx' A dx2 A dx3.

Then if W = WaVa,

W ail = hzh3W'dx2 A dx3 - h1h3W2dx1 A dx3 + h,h2W3dx1 A dxs

and so

d(W in)

_ ( 1 (hzh3W 1) + /-(h1h3W2) + dx3 (hIh2w3)) dx' A dx2 n dx3

hjh 2h3
(-h2h3w1 )

+ 8x2 (h1h3W
s)

+ 8x3 (hih2W3))

and div W is the coefficient of fl in this last expression.
Exercise 61. Show that for any vector field W on E3, curl W is given in terms of orthog-
onal coordinates by

curl W = ( I l a(h3W3) _ a(h=W=)
\ h, h-3 / ax= 49X3 ) V i

+ (
i

)
(a(h,W')

- a(h3W3)) V=hlhs ax3 az1

+ ( i ) (a(h=W2) - a(h1W1) V3.
hjh= ax, ax= ) O

Differential identities. Many differential identities involving the operators grad,
div and curl are known in vector calculus: they are often consequences of the facts
that d2 = 0 and ** = (-1)Pl"-p). Clearly

curl(gradf) = 9-'*d99-1(df) = 9-1*d2f = 0
div(curlV) _ *d*gg-'*dg(V) = *d2g(V) = 0.

It is also easy to establish, for example, that

div(fV) = f div V + gradf V

as follows:

div(fV) = *d*9(fV) = *d*f9(V)
= f*d*9(V) + *(df n *9(V))
= f div V + *g(df,g(V))fi
= f divV + g(g-'(df),V) = fdivV+gradf -V.

Exercise 62. Prove the following identities:
curl(fV) = (curl y+grad f x V

div(V x W) = W curl V - V curl W.
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Summary of Chapter 7
An affine metric on an affine space A derives from a scalar product on the vector
space V on which it is modelled. A scalar product on a vector space is a bilinear
form (that is, a map V x V - * R linear in each argument) which is symmetric
(unchanged in value on interchange of its arguments) and non-degenerate (the ma-
trix representing it with respect to any basis of V is non-singular). A basis may
he found for V with respect to which the matrix of the scalar product is diagonal
and has r ones and s = n - r minus ones along the diagonal (n = dim V): in this
case the scalar product has signature (r,n - r). When r = it the scalar product is
Euclidean; when r = I it is Lorentzian. Any basis for V in which the scalar product
takes its standard form is orthonormal. In the case of a Lorentzian scalar product,
vectors of positive "squared length" are timelike, of zero "squared length" null, and
of negative "squared length" spacelike.

A scalar product g on V allows one to identify V and V' by associating with a
vector v the covector w ,-+ g(w, v). There is also a volume form fl, determined up to
sign by the condition that the volume of a parallelepiped spanned by an orthonormal
basis is +1. With these objects one may construct a linear isomorphism of A V'
with A"-° V' for each p, called the star operator, and a scalar product on A "'V*
such that if w, X E A° V', w n *X = g(w, X)f2.

A scalar product on V may be transferred to each tangent space of an affine
space A modelled on V, and then defines a metric on A. The length of a curve o,
between a(ti) and a(t2), in E" (n-dimensional affine space with Euclidean metric)
is fe.' g(o(t),o(t)dt; for a timelike curve in e ',"-' (affine space with Lorentzian
metric) the corresponding quantity is proper time. Straight lines minimise Eu-
clidean length in Euclidean space, but timelike straight lines maximise proper time
in a space with Lorentzian metric.

Parallel displacement in an affine space with affine metric preserves scalar prod-
ucts. It follows that for any vector fields U, V, W, U(g(V,W)) = g(Vr,V,W) +
g(V, VtrW ). The connection coefficients are related to the components of the met-
ric, in an arbitrary coordinate system, by rab = 19`d(aa9bd + abgad - adgab)

The operations associated with a metric provide the final link between vector
calculus and exterior calculus. The vector product of two vectors v, w in Es is
given by g-'(*(g(v) A g(w))), the gradient of a function f on any affine metric
space by g-'(df); the divergence of a vector field V on any affine metric space by
*d*g(V); and the curl of a vector field V on e3 by g--'(*dg(V)). These coordinate-
independent definitions may he used at will to give coordinate expressions for these
objects with respect to any coordinate system.



8. ISOMETRIES

In Chapter 1 we introduced the group of affine transformations, which consists
of those transformations of an affine space which preserve its affine structure. In
Chapter 4 we discussed the idea of volume, and picked out from among all affine
transformations the subgroup of those which preserve the volume form, namely
those with unimodular linear part. In Chapter 7 we introduced another structure
on affine space: a metric. We now examine the transformations which preserve this
structure. They are called isometries.

An isometry of an affine space is necessarily an affine transformation. This may
be deduced from the precise definition, as we shall show, and need not be imposed
as part of it. Isometrics form a group. Particular examples of isometry groups
which are important and may be familiar are the Euclidean group, the group of
isometries of Euclidean space £3; and the Poincarg group, which is the group of
isometries of Minkowski space £I-3. Each of these groups is intimately linked to a
group of linear transformations of the underlying vector space, namely the group
preserving its scalar product. Such groups are called orthogonal groups (though in
the case of £ 1,3 the appropriate group is more frequently called the Lorentz group).

Any one-parameter group of isometrics induces a vector field on the affine
metric space on which it acts. This vector field is called an infinitesimal isometry.
The infinitesimal isometries of a given affine metric space A form a finite-dimensional
vector space (which is different from the vector space underlying A). Furthermore,
the bracket of any two infinitesimal isometries is again an infinitesimal isometry.
The space of infinitesimal isometries, equipped with the bracket operation, is an
example of what is known as a Lie algebra. It is an infinitesimal, linear counterpart
of the isometry group itself, and its study is important for this reason. We shall
devote considerable attention to the Lie algebra of infinitesimal isometries here,
especially in Sections 2 and 3. In later sections we shall describe some special
features of the Euclidean and Poincare groups, concentrating especially on their
linear parts.

1. Isometries Defined

Let A be an affine metric space. A smooth map 0: A - A is said to be an isometry
of A if it preserves the metric g, in the sense that for every pair of vectors u, v
tangent to A at any point of it

g(4.u,4.v) = 9(u,v)

Thus, in the case of a Euclidean space, m is an isometry if 0. preserves the lengths
of tangent vectors and the angles between them.

If 0 is an isometry and a is any curve then the "length" of any segment of the
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image curve 0 o a is the same as the "length" of the corresponding segment of a:

f tz

Ig(0.&(t),0.Q(t))Idt =
f'2

Ig(a(t),v(t))Idt.

(We write "length" so as to include the pseudo- Euclidean case.) In fact this property
is equivalent to the condition g((k.v,4i.v) = g(v, v) for all tangent vectors v, which in
turn is equivalent to the isometry condition. In particular this means that isometries
preserve the "lengths" of straight line segments, and therefore of displacements.
This implies the equivalent definition: an isometry of an affine metric space is
a smooth map which preserves "lengths" or "distances". However, the original
definition is the more useful of the two, since it is given in a form which may be
readily generalised, while this equivalent one is not.

Any translation of an affine metric space is clearly an isometry. More generally,
an affine transformation is an (affine) isometry if and only if its linear part u satisfies

g(µ(v),µ(w)) = g(v,w) for all v,w.

Here g should properly be interpreted as the scalar product on the underlying
vector space, of which v and w are arbitrary elements. Note that µ is necessarily
non-singular, since if µ(v) = 0 then g(v,w) = 0 for all w, whence v = 0 since g is
non-degenerate. It follows that every affine isometry is invertible. Moreover, since

g(µ-'(v),µ-'(w)) = g(p(l+ t (v),u(µ-t (w))) = g(v,w),
the inverse transformation is also an isometry.
Exercise 1. Show that the composition of any two affine isometries is also an isometry. o

It follows that the set of affine isometries is a group under composition.
We show next that an isometry io is necessarily an affine transformation. Sup-

pose that, with respect to affine coordinates, O(2b) = (0a(2b)). Then the condition
for 0 to be an isometry is

ama ajb
gab ate a-d = gcd, where gab = 9(aa,

Differentiating this equation gives

a240a (706
aura

a2mb

gab (a2ca2e a2d
+ 52c a2da2e) = 0.

Two further equations may be obtained by cyclic interchange of c, d and e:

a20a a0b a0a a2,0b
9a6 (a2daxe ate + axd a2a2c)

0

a,6b 4940. a2mb _
gab

(__a20a

axeaxd axe + ate a2ca2d) = 0.

On adding these two and subtracting the first, and using the symmetry of gab, one
finds that

a2oa sob
gab a- °'a2ca2d xe
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But (gab) and (e,bI8xe) are non-singular matrices (the latter by the same argument
as was used for the linear part of an affine isometry) and therefore

a2 a
zd-- 0V

as required.
The study of the isometries of an affine metric space is therefore reduced to the

study of its affine isometry group. Furthermore, the main point of interest about
an isometry concerns its linear part p, which must satisfy the condition

g(µ(v),P (rv)) = g(v,w)

for all v,w E V, the underlying vector space. The set of linear transformations µ
satisfying this condition (for a given scalar product g) forms a group, a subgroup
of GL(V ). The matrix M of u with respect to an orthonormal basis for V must
satisfy

MT GM = C

where G is the diagonal matrix with diagonal entries ±1 of the appropriate signa-
ture. We call the group of matrices satisfying this condition, and by extension the
group of linear transformations of V preserving g, the orthogonal group of G (or
g), and denote it O(p, n - p) where (p, n - p) is the signature of G, or simply O(n)
in the positive-definite case. Then the isometry group of rP,'i-P is the semi-direct
product of O(p, n - p) and the translation group: it inherits this structure from the
group of affine transformations of which it is a subgroup (see Chapter 1, Section 4
for the definition of the semi-direct product in that context).
Exercise 2. Show that if (ea) is an orthonormal basis and p is orthogonal then {p(ea))
is also an orthonormal basis. D

It is clear from the definition (by taking determinants) that any orthogonal
linear transformation p must satisfy

(det µ)' = 1.

In fact if fl is either of the two volume forms consistent with the metric then, since
p maps orthonormal bases to orthonormal bases, for any orthonormal basis {ea} it
follows that

(EL*II)(el,e2,...,e,,) = 0 (14(eI),A(e2),...,A(en)) = ±1.

Consequently
µ' fl = (det p)12 = ±n

and therefore det p = 1 if u is orientation-preserving, det µ = -1 if p is orientation-
reversing. In particular, an orientation-preserving isometry also preserves the vol-
ume associated with the metric.

The set of orientation-preserving orthogonal matrices is a subgroup of the group
O(p,n - p), called the special orthogonal group and denoted SO(p,n-p). It consists
of the elements of O(p, n-p) with determinant 1, and is the intersection of O(p, n-p)
with SL(n,R).
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Exercise 3. Show that any element of 0(2) may be expressed in one of the following
forms:

r cost - sint cost sint
t sint cost) or ( sint -cost

the first matrix corresponding to an orientation-preserving, the second to an orientation-
reversing transformation. Show that the first matrix leaves no (real) direction fixed, unless
it is the identity; but the second leaves the line x' sin s - x' cos s = 0 pointwise fixed (the
first matrix represents rotation through t; the second, reflection in the given line). o
Exercise 4. Show that any element of SO(1, 1) may be expressed in the form

( cosh t sinh t)
sinh t cosh t

Exercise 5. Let V be a vector space with scalar product g, and let {t be an orthogonal
transformation of V. Show that if p leaves a subspace )U invariant then it also leaves
the orthogonal subspace W 1 invariant. Show that if g induces a scalar product on W (by
restriction) then the restriction of µ to )U is orthogonal with respect to the induced scalar
product. a

2. Infinitesimal Isometries

We shall now describe the vector fields induced on an affine metric space by the one-
parameter subgroups of its isometry group. They are called infinitesimal isometrics.

One-parameter groups of isometrics and their generators. The set of ro-
tations of £2 defined in Exercise 3 has been used already as an example of a one-
parameter affine group in Section 1 of Chapter 3; its generator was shown to be the
vector field --x281 + x182.

Exercise 8. Show that the matrices
cosh t sinh t

( sinh t cosh t

of Exercise 4 form a one-parameter group, and that the infinitesimal generator of the
corresponding one-parameter group of isometrics of £'" is x'al + x'a2. a

It follows from the considerations of one-parameter affine groups in Chapter 3,
Section 1 that in affine coordinates an infinitesimal isometry must take the form

(Abxb -1 P°)8,, (As, Pa constants)

where the matrix A = (A*) is given by A = d/dt(Mt)(0), Mt being the matrix
of the linear part ut of the one-parameter isometry group. If the coordinates are
orthonormal then Mt is a one-parameter group of orthogonal matrices:

MtTGMt = G.

On differentiating this equation with respect tot and setting t = 0 one obtains

ATG+GA=0

(since Mo is the identity).
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Exercise T. Deduce that in the Euclidean case, with respect to orthonormal coordinates,
A must be skew-symmetric. O

We shall say, in the general case, that a matrix A satisfying the condition
ATG + GA = 0 is skew-symmetric with respect to the scalar product defined by C.
Thus the matrix A occurring in the expression of an infinitesimal isometry in terms
of orthonormal coordinates is skew-symmetric with respect to the scalar product.
Exercise 8. Show that if matrices A, B are skew-symmetric with respect to the same
scalar product, so is their commutator JA, B) = AB - BA. Show also that if A is skew-
symmetric with respect to any scalar product then tr A = 0. O

Conversely, if a matrix A is skew-symmetric with respect to a given scalar
product then the one-parameter group of matrices exp(tA) consists of orthogonal
matrices. To see why, consider the matrix function a(t) = exp(tA)TGexp(tA). Its
derivative is given by

de (t) = exp(tA)T (ATG + GA) exp(tA) = 0

and so a(t) = a(0) = G, and exp(tA) is orthogonal. It follows that if the matrix A
is skew-symmetric (with respect to a given scalar product) then the one-parameter
group generated by the vector field (Abxb + P°)8, is a one-parameter group of
isometries (the coordinates being orthonormal for the given metric). For suppose
that r is the integral curve of the vector field through the origin, so that

dr-
dt= Abrb + P° r-(0) = 0.

Then on any other integral curve o
d

Wt
(o° - a) = (Abob + Pa) - (Ab rb + P") = Ab (ob

- rb)

and so o°(t) - r°(t) = exp(tA)b (ob(O) - rb(0))

or

o-(t) = exp(tA)sob(0) + r°(t).

This means that the one-parameter (affine) group generated by the vector field has
exp(tA) as its linear part and, since this is always orthogonal, the one-parameter
group consists of isometries.

To summarise: the vector field (Ab xb + P-)8. (in orthonormal coordinates) is
an infinitesimal isometry if and only if A = (Ab) is skew-symmetric with respect to
the scalar product.

3. Killing's Equation and Killing Fields

In deriving these results we have made explicit use of the fact that isometrics are
affine transformations, and we have employed the special coordinates available in
an affine space. There is another approach to the identification of infinitesimal
isometries which does not appeal directly to the affine structure of the space and is
therefore more suitable for later generalisation. It is based directly on the original
definition of an isometry, and leads to an equation for the infinitesimal isometry
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called Killing's equation. When expressed in terms of coordinates (which need not
be affine) Killing's equation becomes a set of partial differential equations, of first
order, for the components of the infinitesimal isometry vector field.

Let Ot be a one-parameter group of isometries, and X the vector field which is
its generator. Consider the orbit t '-+ 4t(z) of some point z, and let V, W be any
two vector fields given along this orbit, at least near z. The required equation is
obtained by relating the rate of change of the function t '-+ g(V (t),W (t)) to the Lie
derivatives of V and W with respect to X, using the fact that X is an infinitesimal
isometry. By the isometry condition for m_t

9(V (t),W (t)) = 9(.0 -t.V (t), -e.W (t)).

On differentiating both sides with respect to t and putting t = 0 one obtains

X (9(V,W )) = g(CxV,W) + g(V, Cxw).

Strictly speaking this argument establishes the result only at the point x; but z, V
and W are arbitrary, so the result holds at every point and for every pair of vector
fields. Thus if X is an infinitesimal isometry

X(g(V,W)) = g((X,V1, W) +g(V,IX,WI)

for every pair of vector fields V, W. This is Killing's equation.
Another form of the equation may be obtained by making use of the covariant

derivative: using the properties of covariant differentiation in an affine metric space
given in Section 6 of Chapter 7 (especially the result of Exercise 47) we have

X (9(V,W )) = g(VxV,W) + 9(V, VxW );

but (X, V J = VXV - VvX, and so Killing's equation may be written

9(VvX,W) + 9(V,VWX) = 0.
A solution X of Killing's equation is called a Killing field; this term is used

interchangeably with the term infinitesimal isometry, as the result of the following
exercise justifies.
Exercise 9. By considering vector fields V, W defined along an integral curve of X by
Lie transport, show that if X is a Killing field then its flow consists of isometries (use the
first stated form of Killing's equation). O

Exercise 10. Show that, with respect to any coordinates, Killing's equation is equivalent
to the following set of simultaneous partial differential equations for X°, the components
of X with respect to the coordinate fields:

°a9bc axe axe oX axe + 906 az° + 96C
asp

= 0

Exercise 11. Show that, for (2 in polar coordinates, the conditions for X = fa/ar +
qa/ad to be an infinitesimal isometry are

at =
1'7ar 490 ar +' as - °

and deduce that
/X=acoet -- sinda )+b(sin tla t rcosdd)+eat9

for some constants a, b, c. O
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Exercise 12. Show that with respect to affine coordinates Killing's equation is equivalent
to g,c8&X° = 0. By differentiating and using an argument similar to the one
used to show that an isometry is an affine transformation show that X = (A,*xb + P4)8,
where g,bAC + g,,Ai' = 0. 0
Exercise 13. Show that the condition for a vector field X to be an infinitesimal isometry
of the metric g is that VX (Chapter 7, Section 7) be skew-symmetric with respect to the
scalar product determined by g. D

Killing's equation and the Lie derivative. In Section 4 of Chapter 5 we
defined the Lie derivative of a p-form and derived the equation

(ivW)(WI,W2,...,Wp)

p

= V (W(WI,W2,...,W,))) - EW(WI,...,IV,WrJ,...,Wp).
r=1

The first form of Killing's equation given above is clearly reminiscent of the right
hand side of this formula. This suggests that, with the appropriate definition of the
Lie derivative of a metric, one should be able to express Killing's equation in the
very satisfactory form

Cxg=0.
The appropriate definition is not hard to find, and works in fact in a rather more
general context. We digress a little to discuss this now.

In Section 8 of Chapter 4 we defined multilinear functions (on a vector space).
A field of p-fold multilinear functions on an affine space A is an assignment, to each
point x, of a p-fold multilinear function on TA (with the same p for all x). If Q is
such a field then for each choice of p vector fields W1 iW2, ... ,Wp there is determined
a function Q(WI,W2i...,Wp) on A, whose value at x is Q.(WI=,W2z1...,Wpz).
This construction is an obvious extension of the one defined for p-forms in Chap-
ter 5, Section 1, and reduces to it if Q= is alternating for each x. The field Q is
smooth if the function Q(W1iW2,...,Wp) is smooth for all smooth vector fields
W1, W2, ... ,Wp. Such a field is usually called a smooth covariant tensor field of va-
lence p. An affine metric is a covariant tensor field of valence 2, with some special
properties. Other examples of tensor fields (besides metrics and exterior forms) will
be introduced later (in Chapter 9, for example).

The definition of the Lie derivative of a form makes no particular use of the
alternating property of forms and extends immediately to covariant tensor fields. In
fact smooth maps of affine spaces induce maps of covariant tensor fields just as they
do of forms. Let Q be a covariant tensor field on an affine space B and 0: A -+ B
a smooth map. A covariant tensor field cb'Q on A, of the same valence as Q, is
defined by

(t Q)z(wl,w2,...,w,) = Q4k(z)*w1,0.w21 ...10.wp)
where W1, w2, ... , wp E T.A. This new tensor field c'Q is called the pull-back of Q
by '. To define the Lie derivative of a tensor field Q with respect to a vector field
V one uses the pull-back 01'Q of Q by the map O1 of the flow of V:

CvQ = dt(0e'Q)t=o
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(Strictly speaking, if V does not generate a one-parameter group then CvQ may
have to be defined pointwise, as described for forms in Chapter 5, Section 4.)

Exercise 14. Show that for any vector fields W1, W2, ... , WP,
P

(CvQ)(W1iW2,...,WP) = V (Q(W1, W2,... ,WP)) - YQ(W1 r..., (V,W,I,...,W,).
- 1

Deduce that a vector field X is an infinitesimal isometry of a metric g if and only if
Cx g = 0. 0
Exercise 15. Show that for any vector fields U, V and any constants k, I (and any
covariant tensor field Q)

C4u+rvQ = kCuQ + 1 CvQ
Cu(CvQ) - cv(CuQ) = AU'V1Q.

Deduce that if X and Y are both infinitesimal isometrics of a metric g then so are kX +1Y
(for any constants k and 1) and IX,YI. a

The Lie algebra of Killing fields. It follows from Exercise 15 that the set of
Killing fields (infinitesimal isometries) of an affine metric space is itself a linear
space: if X and Y are Killing fields so is kX + lY for any constants k, 1. (The
same conclusion may be drawn from the explicit form of a Killing field in affine
coordinates.) This linear space is in fact finite-dimensional. A basis for the space
may be defined as follows. Choose orthonormal affine coordinates. A Killing field
is determined by a matrix A which is skew-symmetric with respect to the scalar
product of the appropriate signature, and a vector P. For each a, b with a > b there
is a skew-symmetric matrix A which has Ab = 1, Aa = ±1, the sign depending
on the signature, and all other entries zero. These matrices form a basis for the
space of matrices skew symmetric with respect to the scalar product. A basis
for Killing fields built out of these matrices is given by { x680 ± x' 86, 8, } where
a, b, c = 1, 2, ... , n and a > b. There are 1n(n - 1) + n elements in this basis, and
so the Killing fields form a vector space of dimension zn(n + 1).

It also follows from Exercise 15 that the space of Killing fields is closed under
bracket: if X and Y are Killing fields so is (X,Y(. (This can also be seen from
the explicit form of a Killing field and from Exercise 8, in view of the relationship
between the bracket of affine vector fields and the commutator of matrices given in
Chapter 3, Exercise 57.)

A (finite-dimensional) vector space V equipped with a bracket operation, that
is to say, a bilinear map V x V V which is anti-symmetric and satisfies Jacobi's
identity, is called a Lie algebra. The Killing fields of an affine metric space form
a Lie algebra. In this case the properties of the bracket follow from those of the
bracket of general vector fields, by restriction. However, Lie algebras arise in other
contexts, and not all bracket operations are obtained from the bracket of vector
fields in such a transparent way. For example, square matrices of a given size form
a Lie algebra with the matrix commutator as bracket, and so do vectors in £s with
the vector product as bracket (Chapter 3, Exercise 58). The set of all vector fields
on an affine space does not form a Lie algebra since it is not finite dimensional over
the reals; however, the set of affine vector fields is one. We shall have much more
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to say about Lie algebras in Chapter 12.

4. Conformal Transformations

Chapter 8

As a further application of these ideas we shall briefly discuss the conformal trans-
formations of an affine metric space. A conformal transformation is one which
preserves the metric up to a scalar factor: the transformation 0 is conformal if

x9(v,w)

for all v,w E T.A (and all x E A), where is is a positive function on A. An isometry
is to be regarded as a special case of a conformal transformation. A conformal
transformation of Euclidean space preserves the ratios of lengths of vectors (but
not, unless it is an isometry, the lengths themselves); and it preserves angles. A
conformal transformation of a Lorentzian space maps null vectors to null vectors;
in other words, it preserves null cones.

A vector field X is an infinitesimal conformal transformation, or conformal
Killing field, if its flow consists of conformal transformations. In order for X to be
a conformal Killing field its flow 0 must satisfy oor'g = xrg for some function Kci,
and therefore

Cx9=P9
where p is a function on A, not necessarily positive.
Exercise 16. By adapting the method of Exercise 9, show that if Cxg = p9 then the flow
of X consists of conformal transformations. 0
Exercise 17. Show that if X and Y are conformal Killing fields so is kX + 1Y for every
pair of constants k, 1, and so also is IX, Y). a
Exercise 18. Show that in an affine coordinate system the conformal Killing equation
Cx9 = pg is equivalent to

g.e8eXa + gee B6X a = Pg.e. a
A simple example of a conformal Killing field which is not a Killing field is the

dilation field A = xa8a. For B,A" = 6c and so

9ab0cAa + 9aca6Aa = 29b,:

and A is therefore a conformal Killing field with p the constant function 2. A
conformal transformation for which the factor p is a constant is called a homothety:
the dilation field is an infinitesimal homothety.

Exercise 19. By adapting the argument of Exercise 12, show that any infinitesimal homo-
thety of an affine metric space is (apart from an additive Killing field) a constant multiple
of the dilation field. o
Exercise 20. Confirm that for any constants a. the vector field X given in affine coor-
dinates by

X = (a6zbra - =gecz6zcgaaoA)aa
is a conformal Killing field for the metric g, with p = a.xa. o

It may be shown, by an extension of the method of Exercise 12, that the vector
fields of Exercises 19 and 20, together with all Killing fields, give all conformal
Killing fields in an affine metric space of dimension greater than 2. It follows that
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when the dimension of the space is greater than 2 the set of conformal Killing fields
is a Lie algebra. However, in dimension 2 the space of conformal Killing fields is not
finite-dimensional, though it is a linear space closed under bracket. A conformal
Killing field, unlike a Killing field, need not be affine.

5. The Rotation Group

We shall devote the rest of this chapter to a closer investigation of the two affine
isometry groups of greatest interest, namely the Euclidean group (isometries of the
Euclidean space E3) and (in the next section but one) the Poincarc group (isometrics
of the Lorentzian space £ 1.3). From what has been said already it should be clear
that the translation parts of these groups present no particular problems; we shall
therefore concentrate on their linear parts, which are 0(3) and 0(1, 3) respectively.

The orientation-preserving elements of the orthogonal group 0(3) are just the
rotations of Euclidean space, and so the subgroup SO(3) is called the rotation group:
it is with this that we shall be mainly concerned in this section. We shall often find
it convenient to use vector notation.

The rotation group. A rotation of (3 is an orientation-preserving isometry
which leaves a point of the space fixed. With respect to right-handed orthonormal
affine coordinates based on the fixed point the rotation is therefore represented by a
special orthogonal matrix, that is, an element of SO(3). A familiar specific example
of a rotation is the rotation about the x3-axis given by the matrix

cos t - sin t 0
sint cost 0

0 0 1

The x3-axis, which is left fixed by this transformation, is called the axis of the
rotation, and the rotation is through angle t. Note that looking down the x3-axis
from the positive side towards the origin, with right-handed coordinates, one sees
the rotation as counter-clockwise for t positive.
Exercise 21. Let n be a unit vector, with components n°. Define a matrix R = (R6) by

R(x) =costx+(1 tn xx,
or in component form

Rba = cost 66 + (1 - cos t)6y,n°n` + sin t 6*'Cbcdnd

(Here 6bc are the components of the Euclidean scalar product in orthonormal coordinates,
and therefore just the components of the identity matrix, and 6°c likewise for the dual
scalar product; they are included to ensure that the formula conforms with our range and
summation conventions. The symbol eoe, is the Levi-Civita alternating symbol defined in
Section 2 of Chapter 4.) Show that R is a rotation which leaves fixed the line through the
origin determined by the unit vector n. 0

This rotation is the rotation about the axis n (or more accurately the line
determined by n) through angle t.

Exercise 22. Show that rotation about n through angle s followed by rotation about n
through angle t amounts to rotation about n through angle a + t. 0
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Exercise 23. Show that for any rotation R and any position vectors x, y, R(x x y) =
R(x) x R(y). Deduce that if S is rotation about n through angle t then RSR-' is rotation
about R(n) through angle i. D

The rotations about a fixed axis constitute a one-parameter group of isometries,
by Exercise 22. Slightly more generally, if Re is the one-parameter group defined
in Exercise 21 then Re is also a one-parameter group, where v is any constant; for
v j4 0 it is also a group of rotations about the axis n, and (if t is thought of as
the time) v is the angular speed of rotation. Our aim now is to show that every
one-parameter group of rotations is of this form, and that every rotation, except the
identity, is a rotation about a unique axis and therefore lies on some one-parameter
group of rotations. (The identity lies on every one-parameter group, of course.)

We show first that every rotation R j4 13 is a rotation about an axis. Since
the rotation is a linear transformation of a vector space of odd dimension it must
have at least one real eigenvalue. Let e be an eigenvalue and n a unit eigenvector
belonging to it. Since R preserves the length of vectors, R(n) = en must also be
a unit vector, and therefore e = ±1. Since R is an orthogonal transformation it
must map the 2-plane orthogonal to n to itself (Exercise 5) and its restriction to
this 2-plane may therefore be expressed in one of the forms exhibited in Exercise 3.
If it takes the first form, that of a rotation of the 2-plane, then e must be I since
R preserves orientation in E3; and n defines the axis of rotation. If not, there is a
fixed line in the 2-plane, which is the required axis; e = -1 and the rotation is a
rotation through rr about this axis, which has the effect of reflecting the 2-plane.
This result, that every rotation is a rotation about an axis, is known as Euler's
theorem.

We now show that every continuous one-parameter group of rotations, not
consisting merely of the identity transformation, is a group of rotations about a
fixed common axis. By a continuous one-parameter group of rotations we mean a set
of rotations {Rt} depending on a parameter t, satisfying the one-parameter group
property, and depending continuously on t in the sense that the matrix elements
of Re with respect to a fixed basis are continuous functions of t. We consider an
element Re of the one-parameter group, not being the identity: then by Euler's
theorem it is a rotation about an axis n. Now the pth power of a rotation is a
rotation about the same axis through p times the angle, if it is not the identity.
Consider, then, the rotation Rjl.. It cannot be the identity, and so is a rotation
about some axis n'. But (Re/P)P = Re; thus n' is an axis for Re, n' = n, and
Rtlp and Re are rotations about the same axis. It follows that for any rational
number r = p/q, R,t is a rotation about the same axis as Re, since R,r = (Re/Q)'.
Since the one-parameter group is continuous, if R,t is a rotation about axis n for
every rational r then Rke is a rotation about axis n for every real number k. The
one-parameter group therefore consists of rotations about n. Moreoever, if Re is
a rotation through angle s then Rki is a rotation through angle ks, in the first
place for rational k, and then by continuity for all real k. Thus the parameter t is
proportional to the angle of rotation.

The Lie algebra of Killing fields of Euclidean 3-space. The infinitesimal
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generator of a one-parameter group of rotations about an axis is easily calculated
by the methods of Section 2. For example, the generator X3 of rotations about the
z3-axis (parametrised by angle) is zla2 - z2a1.

Exercise 24. Show that the generators X1, X2 of the corresponding one-parameter
groups of rotations about the zl- and x2-axes are x'8s - x"432 and x"81 - x18" respec-
tively. 0
Exercise 25. Show that the brackets of the Killing fields X1, X2 and X3 are given by

1X2, Xs) _ -X, IX3, X1I = -X2 IX,, X21 = -X3.
Let T. = (9,, a = 1, 2, 3, be the generators of translations of bs along the coordinate axes.
Show that

IT1,X,I =0 IT,,X2) = --T5 IT,, XsI =T2
and evaluate the corresponding brackets involving T2 and T3. O

The results of Exercise 25, together with the fact that all brackets of generators
of translations are zero, specify the structure of the Lie algebra of Killing fields of
P. They may be conveniently written in the form

[X,,,Xb) = -fabcbcdXd ITa,XbI = -EabcbedTd ITa,TbI = 0.

Angular velocity. The general rotation about a specified axis is given in Exer-
cise 21. Making allowance for the fact that the parameter of a one-parameter group
of rotations need not be the angle of rotation, but may be only proportional to it,
we may write for the general one-parameter group of rotations

Ri (x) = cos vt x + (1 - cos vt)(n x)n + sin vt n x x.

Exercise 26. Show that the infinitesimal generator of this one-parameter group is vn°X,,
where n° are the components of n and X. the generators of rotations about the coordinate
axes (Exercise 24). Express this vector field in terms of the coordinate fields. o

We call the vector w = vn the angular velocity of the one-parameter group of
rotations, and IvI its angular speed. The one-parameter group and its generator are
completely determined by the angular velocity.

In terms of the basis Killing fields Xa the Killing field corresponding to the
angular velocity vector w is waXa = vnaX,. But in terms of the coordinate vector
fields any infinitesimal generator of rotations corresponds to a skew-symmetric ma-
trix A and takes the form Ab6°zbaa. We have therefore established a correspondence
between vectors in £3 and skew-symmetric 3 x 3 matrices. The correspondence is
given by

W «-+ w3 0 -WI
0 -w3 w2

-w2 & 0

or

Aa = bacEbcdwdb
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Exercise 27. Verify that if W is the skew-symmetric matrix corresponding to the vector
w then the map w -. W is a linear isomorphism; W (x) = w x x for any vector x; [W1, W2)
is the matrix corresponding to wI x w2; and exp(tW) is the one-parameter group of
rotations from which we started. 0

The dimension of the space is a key factor here, for only when n = 3 is the dimension
of the space of n x n skew-symmetric matrices, zn(n - 1), equal to n.
Exercise 28. Deduce from the Jacobi identity for brackets of vector fields the vector
identity

ax(bxc)+bx(cxa)+cx(axb)=0. 0

The conclusions of Exercise 27 may be summarised by saying that the Lie alge-
bra of infinitesimal rotations is isomorphic to the Lie algebra of Euclidean 3-vectors
with the vector product as bracket operation. It follows also from Exercise 27 (2)
that the velocity of a point x undergoing rotation with angular velocity w is given
by

dx
dt = w x X.

This is a well-known formula from the kinematics of rigid bodies, for the case of
rotation with constant angular speed about a fixed axis. We can pursue this line of
argument to cover more general rotatory motion, as follows.

Consider the motion of a rigid body with one point fixed. The position of such
a body at time t is determined by a rotation matrix R(t), which may be defined
as the rotation required to carry a right-handed set of axes fixed in space into
coincidence with a similar set of axes fixed in the body, the space and body axes
both being supposed to have their origins at the fixed point, and to be coincident
initially. The one-parameter family of rotations R(t) is not assumed to form a one-
parameter group. We compute the velocity of a point fixed in the body. If the
initial position of the point is given by the (constant) vector xo, then its position
at time t is x(t) = R(t)xo. Its velocity may be expressed in terms of its current
position as follows:

d (t) = d-(t)xo = d-(t)R(t)-lx(t).

Set

W(t) = Tt (t)R(t)-1.

Then W(t) is skew-symmetric: using the orthogonality of R(t) we have R(t)-1 =
R(t)T and so

T
W (t)T = R(t) dd (t) dR (t)R(t)T = -W (t).

Thus W(t) corresponds to a vector w(t), which we call the instantaneous angular
velocity of rotation; and

d`(t) = w(t) x x(t).

In effect, the definition of the instantaneous angular velocity at time t amounts
to approximating the rotation R(t + h)R(t)-1 by exp(hW(t)), for small h. This
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is quite analogous to the definition of instantaneous (linear) velocity, in which one
effectively approximates the difference between two translations of a one-parameter
family, representing the position of a point in general motion, by a one-parameter
group of translations, whose generator is the instantaneous velocity vector.

6. Parametrising Rotations

We have defined the general rotation in terms of its axis, specified by a unit vector,
and its angle. The group of rotations is thus a three-dimensional object, in the
sense that three parameters are required to fix a rotation, two for the direction of
the unit vector along the axis and one for the angle. (The word "parameter" here
is used to mean just a label or coordinate, without the additional meaning it has in
the phrase "one-parameter group".) It is no coincidence that the dimension of the
Lie algebra is the same as the dimension of the group in this sense: this relation
will be explored in Chapter 12. For the present our concern is to find convenient
and useful ways of parametrising the elements of the rotation group.

We could of course simply use the matrix entries to parametrise the elements
of SO(3). But they are not independent: the nine matrix entries are subject to six
conditions (the columns of an orthogonal matrix are unit vectors and are pairwise
orthogonal) and, in addition, to the condition that the determinant be positive. It
is not clear how to solve the equations of condition so as to express all nine matrix
entries in terms of just three of them.

The parametrisation in terms of axis and angle is not always the most useful,
but there are several points of interest about it worth mentioning. Each pair (n, t)
determines a rotation, where the unit vector n lies along the axis of the rotation
and t is the angle of rotation. However, more than one pair (n,t) may correspond
to one given rotation. Certainly, choices of t differing by an integer multiple of 2r,
with the same n, determine the same rotation. So do (-n, -t) and (n, t). And
(n, 0) determines the same rotation for all n, namely the identity. We may avoid
much of this ambiguity by restricting the values oft to lie between 0 and r inclusive.
Then each rotation, other than the identity or a rotation through r, corresponds
to a unique pair (n,t) with 0 < t < r. But it remains true that (n,0) defines the
identity for all n; and also (n,r) and (-n, w) determine the same rotation.

This parametrisation gives a nice picture of the group SO(3) as a whole. Con-
sider, for each unit vector n and each t with 0 < t < r, the point to in V. The set
of such points makes up a solid sphere, or ball, of radius r. Each point in the inte-
rior of this ball determines a rotation and does so uniquely (the centre of the sphere
corresponding to the identity). The only remaining ambiguity is that diametrically
opposite points on the sphere bounding the ball determine the same rotation. The
elements of SO(3) are therefore in 1 : 1 correspondence with the points of a ball in
t3, the diametrically opposite points of whose boundary have been identified. In
fact this correspondence is topological, in the sense that nearby points in the ball
(allowing for the identifications) correspond to rotations which do not differ much
in their effects. It should be apparent that because of the necessity of making these
identifications the topology of the rotation group is not entirely trivial.
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Euler angles. Another parametrisation of SO(3) may be constructed from the
fact that every rotation matrix may be obtained by multiplying matrices of rotations
about just two of the axes. This is seen from the following construction. Suppose
that R is a rotation which takes the standard basis vectors e1ie2,e3 to the vectors

of a new right-handed orthonormal basis. Assume that e3 $ ±e3 (the
cases e3 = ±e3 may be dealt with separately). We decompose R into a succession
of three rotations about coordinate axes as follows. Let R3 be the rotation about e3
which brings e3 into the eie3-plane. Let R2 be the rotation about e2 which takes
e3 into R3e3. Then R31 R2e3 = e3 = Re3 and so Ry ' R3R is a rotation about e3,
say R3. Thus

R=R3'R2R3
where R3 (and therefore R3 1) and R3 are rotations about e3 and R2 is a rotation
about e2. Suppose that the angles of rotation of R3', R2 and R3 are So, d and
respectively. Then the matrix representing R is given by

cosy, - sintp 0 cos0 0 sin t9 cos -sin k, 0
sin V cos V 0 0 1 0

1

sin g' cos 0 0
0 0 1 - sin 09 0 cosd 0 0 1

cos0cosP cosV sin0
-sin46 sin 0G -sin pcoso

sinp cos0 cos0 -sinV cost' sin ii, sinV sin0
sin0 +cosrpcos0

-sin0costj +sin0sin0 cosd

The angles V,0,0 are called the Euler angles of the rotation. The appropriate
ranges of values of the Euler angles are

0<<p<27r 0<0 <n 0<0<2,r.
The identity is given by rp = d = r/, = 0. The case where R is a rotation about
e3 is covered by i9 = 0. The case when e3 = -e3 is covered by d = a. The
parametrisation is ambiguous in both these cases: apart from d the angles are not
uniquely determined.

Stereographic projection and the Cayley-Kleln parameters. We next de-
scribe a parametrisation of SO(3) by means of complex parameters, the Cayley-
Klein parameters, which is of great importance. The general idea is that a rotation
of £3 about a fixed point determines a rotation of any sphere with that point as
centre. The points of the sphere may be made to correspond with the points of
its equatorial plane by stereographic projection: then each rotation of the sphere
induces a transformation of the plane. If the points of the plane are given complex
coordinates, so that the plane is treated as an Argand plane, the transformations
corresponding to rotations turn out to have a straightforward complex representa-
tion.

Without loss one may consider a unit sphere, since a rotation is determined
by its action on a sphere of any radius. Orthonormal coordinates are taken in £3
with origin at the fixed point of the rotations. Let E denote the unit sphere with
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centre at the origin, let N (0,0,1) and S (0,0,-1) be its North and South poles
respectively, and let 11 be the equatorial plane x3 = 0. Through any point P of the
sphere (other than S) extend the line SP from the South pole until it intersects the
plane H. Let Q (c', X2,0) be the point of intersection.

Fig. 1 Projection of a sphere onto its equatorial plane.

If r is the distance to P from the polar axis and R the distance to Q from the
centre of the sphere then by similar triangles

Thus

R 1

r
I--+ x3.

1t
2 =

x 2

1+x3 1+x3
and if we introduce the complex coordinate S = +;1 + on IT then

ZI + ix2
1+x3

Exercise 29. Show that S may also be written
x3

S x - rx2
Show that

and deduce that

Sc =
I - xs

X+ X

I
I X = 1 - Sc O

1+Sc 1+ScJ 1 4-Sc

The map E - S -+ fI so defined is called stereographic projection. It associates
a unique point Q on 11 with each point P, other than S, on E. The South pole S
may be regarded as being sent to infinity by the projection. With this convention,
stereographic projection is a bijective map from E to the extended complex plane
II U {oo} = 11*.

We note in passing that one may regard stereographic projection as a means
of specifying coordinates for the points of the sphere; though one point, the South
pole, is not assigned coordinates by this construction.
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If the sphere is now rotated the projections of its points on 11* will also move.
Thus any rotation induces a transformation of f1*. We shall derive this transfor-
mation.

First of all, rotate the sphere through an angle p about the x3-axis. Then
xt + ix2 H e'''(xl + ix2), while x3 is unchanged: so the induced transformation of
S is simply

S F--* e`.

Consider next a rotation about the x2-axis through an angle t9. This is not quite
so straightforward. The effect of the rotation is to send x3 + ix1 to etd(x3 + ixl )
and leave x2 unchanged. We set

x3 + ix1
I + x2

and then 1 - e"9??. From the expressions for x1, x2, x3 in Exercise 29 we obtain

I + 1(S + ( 1 + ic)(1 + (1 + iS)
rl -

1 i(S - S) + SS (1 - =0(1 + is) (1 - iS)

whence
1117

S= l+r
The transformation of fI* is therefore given by

~
1 - e',rl ((1 - iS) - C"t(1 + iS)

S1\1+e"q) = t 1 (1-15)+e`°(1+

_ (ell' + 1)S - 1(e"" - 1\) _ (cos Z>9)S + sin
2d

i(e"t - 1)S 4 (e"' + 1) - -(sin 2t9)S + cos zt9

Exercise 30. Show that the transformation of 11' corresponding to a rotation about the
xt-axis through angle X is

(cos 3 X)S - isin I'X

-i(sin !X)S + cos qX

A transformation of the (extended) complex plane of the form

as+b

O

cS + d'

where a, b, c, d are complex constants with ad - be j4 0, is called a fractional linear
transformation. The condition ad - be 0 ensures that the transformation is a
bijective map of the extended plane onto itself. The transformations of the complex
plane obtained by stereographic projection from rotations about the xl- and x2-
axes are manifestly of this form, but so in fact is the transformation obtained from
rotation about the x3-axis, which may be rewritten, for later convenience,

e'w/2S + 0

0 S + c-'V/2
Thus a rotation about any coordinate axis induces a fractional linear transformation
of fl*. Now the transformation induced by the composition of two rotations will be
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just the composition of the transformations induced by the rotations separately. So
we must next consider the composition of fractional linear transformations.

Exercise 31. Show that the composition of two fractional linear transformations is again
a fractional linear transformation. O

Every rotation may be expressed as the product of rotations about coordinate
axes. Thus to every rotation there corresponds a fractional linear transformation
S H (as + b)/(cc + d). Its coefficients a, b, c, d are initially determined only up
to multiplication by a complex constant: they will be normalised by demanding
that ad - be = 1. it will be observed that our expressions for the transformations
corresponding to rotations about the coordinate axes already satisfy this condition.

Exercise 32. By composing the appropriate fractional linear transformations for coor-
dinate axis rotations, show that a general rotation with Euler angles cp, t9, t(r induces a
fractional linear transformation whose normalised coefficients a, b, c, d are given by

a _ et(a+l)/2 cos st9 b = e+(a-tv)/2 sin ld

c = -e-'(a-V+)/2 sin 1 9 d = cos 1 t9. 0
Exercise 33. Observe that the coefficients in Exercise 32 satisfy d = a, c = -b, as well
as ad - be = 1. Deduce that ad + bb = 1b12 = 1. Show that, conversely, any pair of
complex numbers a, b such that 1012 + JbII = 1 may be expressed in the form

a = e+(n+*)/2 cos 't9 b = e'60-012 sin 0

with 0 < <p < 21r, 0 < t < ir, 0 < 0 < 2a, which determine therefore the Euler angles
for some rotation. Show directly, by using the expressions for z',z2,zs in terms of s
given in Exercise 29, that the transformation of f; determined by the fractional linear
transformation S - (ac + b)/(-bc + d) with 1al2 + 1b12 = I has the matrix

p2 .- q2 - r2 + s2 - 2(pq + rs)
2

2(pr - qa)
2(pq - rs) - q + r2 - s2p 2(ps + qr)

-2(pr + qs) 2(qr - ps) p2 + q2 - r2 - s2

where a - p + iq, b - r + is (and so p2 + q2 + r2 + s2 - 1). Confirm that this is orthogonal
and has determinant +1, and is therefore a rotation. 0

Thus to every rotation there corresponds a pair of complex numbers a, b such
that la!2 + Jb!2 = 1, and to every such pair of complex numbers there corresponds
a rotation. Complex numbers a, b determined in this way are called Cayley-Klein
parameters for the rotation. The extent to which Cayley-Klein parametrisation is
ambiguous still has to be determined: this will be one of the aims of the following
discussion.

It will have been apparent, from Exercise 31, that composition of fractional lin-
ear transformations is related to matrix multiplication. In fact we may replace any
fractional linear transformation by a 2 x 2 complex matrix, through the introduction
of projective coordinates. We set S = S2/St. This leaves S' and S2 undetermined up
to a common complex factor, but this is a convenience, not a nuisance. A fractional
linear transformation will be recovered if it is assumed that the complex vector
Z = (S1,s2)T transforms by matrix multiplication:

Z-UZ U=: a b

c d,'
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We require that the entries in U satisfy ad - be =- 1, so that det U = 1, and U
is a unimodular, or special, matrix. With this restriction it is easily seen that U
and U' determine the same fractional linear transformation if and only if U' = ±U.
Furthermore, the matrix product UIU2 represents the composite of the fractional
linear transformations corresponding to 1/I and U2.

The further conditions on a, b, c, d given in Exercise 33 reduce the set of matrices
of interest to those of the form

(-b a
where JaJ2 + Jb12 = 1.

Such a matrix U is necessarily unitary: that is to say, it satisfies UUt = UtU = 13,
where Ut is the complex conjugate transpose of U. In fact

a b a b ad + bb 0
UU1= (_b a) (b a) _

I. 0 as+bb
Thus U belongs to the group SU(2) of special (or unimodular) unitary 2x2 matrices.
Exercise 34. Show that, conversely, every element of SU(2) takes this form. O

The argument so far has shown that each element of SU(2) determines a ro-
tation (Exercise 33), and every rotation may be so obtained (Exercise 32). It has
been hinted further that the association of rotations and elements of SU(2) pre-
serves multiplication, in other words that the map SU(2) SO(3) is actually a
homomorphism: but this remains to be finally established. One could do it by brute
force, using the formula in Exercise 33, but fortunately there is a more civilised way
of proceeding.

Corresponding to the transformation of Z by an SU(2) matrix, namely Z
U7., there is a transformation Zt ZtUt of its complex conjugate transpose
Zt = (s2). Now Zt7, = c1 S1 +(252, a real number, and under the transformation
by U, V Z Zt Ut UZ, so this number is unchanged. On the other hand,

ZZt SISI SIC2I 2
S2C2

is a hermitian matrix, that is, it is equal to its complex conjugate transpose. Un-
der the transformation by U, 7,7,t - (J(ZZt)Ut. From the defining relations for
stereographic projection (Exercise 29) we obtain (with S = S2/S1)

X1 _ 00 + ST x2
S,S1 + f2S2

from which there follow

c'0
3

S1 S1 - 522

(S1S1+S2S2) X - S10 + S2S2

S'S2 _ 27,17.(x1 + ix2)
SISI = 2ZtZ(i + x'I) C2C2 = 2ZtZ(1 - x3).

Thus
1 771 = I

.

I +x.3 t1 - ix2
ZtZ 2 XI + ix2 1 - x3

So a point x = (x1,x2,x3) on the unit sphere E determines
which we shall denote a(x).

a hermitian matrix,
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Exercise 35. Show that a(x), as well as being hermitian, has determinant 0 and trace
1. Show that a is a hijective map of E onto the set of hermitian 2 x 2 matrices with
determinant 0 and trace 1. O

Exercise 36. Let h be any hermitian 2 x 2 matrix with determinant zero and trace 1,
and let U he any element of SU(2). Show that (Ih(11 has these same properties. O

It follows that, for any x c E and U F SU(2), the matrix Uo,(x)Ut represents
a point on E. The map x a 1 (Ua(x)Ut) is just the rotation of the sphere
determined by U, say R1r. Then for any two elements U1, U2 of SU(2) we have

Rill 1i,(x) a (111(12a(x)(12t 111) = o

so that

(111a(R1r,(x))Ui) = R1', Ru., (x)

R1r1 1'2 R1r, R1r,

and the map U -. R1, is therefore a homomorphism of the groups SU(2) and SO(3).
The question, which SU(2) matrices correspond to a given rotation, or equiv-

alently, what is the kernel of the homomorphism above, has yet to be answered.
To answer it, suppose that R1r is the identity rotation. Then Ua(x)Ut = o(x) for
all x e E. Multiplying by U on the right one obtains flu(x) a(x)U, whence,
considering either an arbitrary x or three specific linearly independent ones, one
quickly finds (1 _ ±12. Thus U and 11' determine the same rotation if and only
if U'U -1 - ± 12, that is, U' - t U. This ambiguity of sign cannot be avoided. It
is already present at the stage of passing from SU(2) to fractional linear transfor-
mations. Again, the matrix diag(e",O,", e "c12) determines a rotation around the
x3-axis through angle p, but as p increases steadily from 0 to 2ir the matrix changes
smoothly from 12 to - 12i even though rotation through 21r is indistiguishable from
the identity.

The kernel of a homomorphism of groups is a normal subgroup of the domain
group. The kernel in this case consists of the two matrices i 12 and is thus isomor-
phic to Z2, the cyclic group of order 2; and SO(3) is isomorphic to the quotient
group SU(2)/{t12}.

Finally, observe that it is easy to identify SU(2) as a topological space: each
element is uniquely determined by a pair of complex numbers a = p + iq, b = r + is,
with JaJ2 i- JbJ2 - p2 -+ q2 + r2 + 32 = 1. Thus the elements of SU(2) are in 1 : I

correspondence with the points of the unit 3-sphere, the set of points distant 1 from
a fixed point of V. To obtain SO(3) we have to identify diametrically opposite
points on this 3-sphere. Alternatively we may restrict attention to one hemisphere,
say that with p > 0: but it will still he necessary to identify opposite points on
the boundary p - 0. By projecting onto the hyperplane p = 0 one sees that the
3-hemisphere is equivalent to a ball in £3, diametrically opposite points of whose
boundary have to he identified; thus we recover the topological picture of SO(3)
described before.

7. The Lorentz Group

A torentz transformation of £1,3 is an isometry which leaves a point of the space
fixed. With respect to orthonormal affine coordinates based on the fixed point the
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Lorentz transformation is therefore represented by a matrix which is orthogonal with
respect to the scalar product of signature (1,3). Thus a Lorentz transformation is
represented by an element of 0(1,3). In special relativity this group is usually
denoted L and called the Lorentz group, and we follow this practice here.

We shall mainly be concerned with orientation-preserving Lorentz transfor-
mations, that is, with elements of SO(1,3). Such transformations are said io be
proper, and SO(1,3) is called the proper Lorentz group and denoted L+. There is
a further specialisation of Lorentz transformations concerned with time-sense. We
have distinguished (Chapter 7, Section 2)

timelike
null vectors v, for which
spacelike

g(v,v) > 0

g(v,v) = 0

g(v,v) < 0

(recall that g has the matrix diag(-1, -1, -1, +1) in orthonormal coordinates).
Since Lorentz transformations preserve g, they preserve the timelike, null or space-
like character of vectors. In particular, any Lorentz transformation preserves the
null cone, as a whole; it may however interchange the future and the past. In fact
if v and w are timelike vectors both pointing to the future or both pointing to
the past then g(v, w) > 0, while if one points to the future and the other to the
past then g(v,w) < 0 (Chapter 7, Exercise 9). Since a Lorentz transformation A
preserves g, if g(v,w) > 0 then g(A(v),A(w)) > 0. Thus a Lorentz transformation
either preserves future-pointing vectors and past-pointing vectors separately, or it
interchanges the whole future with the whole past. A Lorentz transformation which
preserves the future and the past separately (maps future-pointing timelike vectors
to future-pointing timelike vectors) is called time-preserving or orthochronous, while
one which interchanges future and past is called time-reversing or antichronous. The
orthochronous Lorentz transformations constitute a subgroup of L, denoted Lt and
called the orthochronous Lorentz group.

The Lorentz transformations which are both time- and orientation-preserving
form a subgroup of L called the restricted Lorentz group. This group is the inter-
section of L+ and Lt and is denoted L. It plays a central role in this section.

Exercise 37. Show that A E Lt if and only if A4 > 0. D

Exercise 38. Show that each of the following matrices defines a Lorentz transformation:
1 0 0 0 -i 0 0 0 1 0 0 0

0= 0 -1 0 0 T= 0 -1 0 0 B= 0 1 0
0

0 0 -1 0 0 0 -1 0 0 0 1 0

0 0 0 1 0 0 0 -, 0 0 0

1

-&

Show that 0 is orientation-reversing but time-preserving; that T is time-reversing but
orientation-preserving; and that B reverses both time and orientation. Show that together
with the identity 14 they form a group of four elements with the multiplication rules
0'=T'=B'=14; OT = TO = B, TB=BT=O, BO = OB = T. Show that L+ is
a normal subgroup of L and that the quotient group L/L+ is the four element group just
defined. D

Every rotation in the spacelike 3-plane x4 = 0 is a Lorentz transformation (in
L+). More generally, given any timelike vector, any rotation in its orthogonal 3-
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plane is a Lorentz transformation. Such a Lorentz transformation leaves fixed the
timelike vector and a spacelike vector orthogonal to it, namely any one on the axis
of rotation. It therefore leaves pointwise fixed the timelike 2-plane spanned by these
vectors, and so it leaves fixed the two independent null directions which this 2-plane
contains. Conversely any Lorentz transformation which fixes two independent null
directions induces an orthogonal transformation in the orthogonal spacelike 2-plane,
and if the transformation is to be proper this must be a rotation.

As an example of a more distinctively "Lorentz" Lorentz transformation, con-
sider the transformation whose matrix is

1 0 0 0
0 1 0 0
0 0 cosh t sinh t
0 0 sinht cosh t

This leaves invariant the timelike 2-plane spanned by e3 and e4, and also the or-
thogonal spacelike 2-plane spanned by el and e2, acting as the identity in the latter.
If we set v = - tanh t then the transformation in the 2-plane spanned by e3 and e4
is given by

x3 = 1 - (x3
.. vx4) 24

1
(-Vx3 + x4).

v2

r
v 2

These are the equations relating the coordinates of intertial observers in special
relativity in relative motion along their x3-axes with (constant) relative speed v.
The Lorentz transformation whose matrix is displayed above is called a boost in
the x3x4-plane. More generally, any Lorentz transformation (in L+) which leaves
fixed every vector in a spacelike 2-plane is called a boost.
Exercise 39. Show that by suitable choice of t any unit future pointing timelike vector
in the x3x4-plane may be obtained from e4 by applying the standard boost whose matrix
is given above. Deduce that any any timelike vector may be transformed by a boost into
any other of the same magnitude and time-sense.
Exercise 40. Show that the two null vectors k = (0, 0, 1, i)T and I =_ (0, 0, -.1,1)T in the
x3x4-plane transform under the boost given above by k .-+ e'k, 1 -- e -ti. Show that for
any boost there is a pair of independent null vectors k, I which transform in the same
way.

Both a boost and a rotation have a pair of independent null eigenvectors (in the
case of a rotation, each with eigenvalue 1). Conversely, any element of L+ having a
pair of independent null eigenvectors must consist of a boost in the timelike 2-plane
they span, and a rotation in the orthogonal spacelike 2-plane (it must certainly
map this spacelike 2-plane to itself, and must therefore be a rotation of it). We call
such a transformation a boost plus rotation. However, this does not exhaust all the
possibilities for elements of L. Every element of L+ must leave at least one null
direction fixed. The reason for this is essentially topological. A time-preserving
Lorentz transformation maps the future null cone to itself: the projection of the
future null cone from the origin onto the 3-plane x4 = : (say) is a sphere in that
plane, and so the Lorentz transformation induces a transformation of the sphere.
When the Lorentz transformation belongs to L. this is an orientation-preserving
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diffeomorphism, and it is known that such a transformation of the sphere must
have at least one fixed point. Any fixed point determines a fixed null direction of
the Lorentz transformation. There are elements of L+ which leave just one null
direction fixed, as we now show.

Suppose that A E LT has the null vector k as an eigenvector, with A(k) = Ak,
A > 0. Then A maps the 3-plane orthogonal to k to itself: this is a null 3-plane,
which contains k, and we may choose within it a pair of unit orthogonal spacelike
vectors r and s, which are also orthogonal to k. Then A(r) and A(s) are linear
combinations of k, r and s, and using the fact that A preserves scalar products we
find that

A(r) = Bk + cos Or + sin Os

A(s) = Ck - sin Or + cos 4s

for some B, C and 10.

Exercise 41. The vectors r,8 are not uniquely determined but may always be changed
by the addition of a multiple of k whilst retaining their orthonormality properties. Show
that in general r = r + ak, 4 = s + bk may be chosen so that A leaves the spacelike 2-plane
spanned by r and s invariant (and acts as rotation through 0 in it), and in this case A is
a boost plus rotation. But show that this cannot be done if A = I and d = 0. O

We concentrate therefore on the case A(k) = k, A(r) = Bk + r, A(s) = Ck + s.
To complete the description of A we introduce a further null vector 1, orthogonal to
both r and s but independent of k; we shall scale l so that g(k,l) = 1.

Exercise 42. Show that I must transform by A according to
A(t) = t + 1(B2 + C2)k + Br + Ca.

Show that when B and C are not both zero, A has no other null eigenvector than k and
deduce that it cannot be a boost plus rotation. 0

Transformations of this kind are called null rotations about k.
Exercise 43. Show that null rotations about a fixed null vector k form a subgroup of L+,
which is commutative, and is isomorphic to R2. Deduce that every null rotation lies on a
one-parameter group of null rotations. O

We have shown that an element of L+ has at least one null eigenvector: if it
has exactly one then it is a null rotation about that null vector; if two (or more)
it is a boost plus rotation, possibly with one component being the identity, unless
it is the identity itself. Furthermore, since every rotation lies on a one-parameter
group of rotations, every boost lies on a one-parameter group of boosts (as follows
in effect from Exercises 4 and 6) and every null rotation lies on a one-parameter
group of null rotations, it follows that every element of L. lies on a one-parameter
subgroup.

The Lie algebra of Lorentaian Killing fields. The Lie algebra of Killing fields
of V,' is 10-dimensional. A basis for it may be made up as follows: three generators
of rotations

XI = x283 - X383 X2 = x381 - x183 X3 = x182 - x281
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three generators of boosts

Y, = 7'a, + x48, Y2 = x28, + 7482 Y3 = x384 + 74a3

and four translations Ta = aa, a = 1,2,3,4. The brackets of generators of rotations
and of translations along the space axes are the same as for the Euclidean case.
Exercise 44. Show that

IX1, Y1I =- 0 IX,,Y2) -Y3 IX1, YJI = Y2

IY2,Y3I=Xl IYS,YdI=X2 IY1,Y2I =Xs
IT,,YiI =T4 IT,,Y21= IT,, Y,,] =0

(T4, X1I = IT4, X21 = IT4, XsI = 0 IT4, Y,I = T,
and compute the remaining brackets. O

These results may be summarised as follows (a, b, c = 1,2,3)

IXa, Xbl = -EabcbcdXd
(Ye, Ybl =

EabcbcdXd IXa, Ybl = -eabcbcdyd

ITa, Xb(_ --cabcbcdTd ITa, Ybl _= babT4 IT4, Xal = 0 (T4, Ya) = Ta

IT.,TVI = 0.

8. The Celestial Sphere

We now extend to the restricted Lorentz group L+ the ideas leading to the es-
tablishing of the homomorphism SU(2) - SO(3), with the help of the celestial
sphere.

To construct the celestial sphere, imagine that you are looking at the night
sky around you. You may locate each star by marking its apparent direction on
a transparent sphere with yourself at the centre, as if you were surrounded by a
planetarium. This sphere we call the celestial sphere. Let {ea} be an orthonormal
basis whose timelike member e4 is your 4-velocity, and let ka be the components
of a future pointing null vector: so that (-k°) might represent, for example, the
momentum of a photon arriving from a particular star. Then the direction of the
star image in your rest frame will he given by the vector (ka) (note that a ranges
from I to 4, a from 1 to 3). We choose to scale (0) so that k4 = 1; then

(k')2 + (k2)2 +
(k3)2 = 1,

so that the point (ka) lies on the unit sphere. Pursuing the ideas of the previous
section, we associate with the null vector k . (k') the herritian 2 x 2 matrix

a(k) , 0 4- V k' - ik2
2 t k' I ik2 k4 k3

In the case in which k4 = 1, this is precisely the same process as we used in Section 4,
and o(k) has determinant zero and trace I. But we may extend the idea a little
by dropping the restriction that k4 = 1: then a is a bijective map between the null
cone and the set of hermitian 2 x 2 matrices with determinant zero.

If now the orthonormal basis is rotated, keeping the timelike member un-
changed, the effect of the rotation on the matrix a(k) will be given by the ap-
propriate SU(2) matrix, as described in the previous section. A boost in the x374
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2-plane will transform the components of vectors according to

(k°) --+ (k', k2, cosh t k3 + sinh t k4, sinh t k3 + cosh t k4)

and the corresponding transformation of a(k) may be written

a(k) -- _ e'(k4 + k3) k' - ik2 - Sa(k)St
2 ( k' + ik2 a-'(k4 - k3)

where S is the unimodular (but not unitary) matrix
(e'/2

0

But it is only to be expected that in extending the discussion of the previous section
from SO(3) to L+ we shall have to go outside the group SU(2).

The restricted Lorentz group and SL(2,C). We now extend the map or one
stage further, by removing the restriction that its argument be null. Let a be the
map E'.3 N, the space of all hermitian 2 x 2 matrices, by

x4 _L. x3 xl -- ix2
a(x) _ (x' + i22 x4 - x3

where x° are the coordinates of x with respect to an orthonormal coordinate system
(the factors no longer has any significance so we drop it). Then

det a(x) = g(x, x) tr a(x) = 2x4.

Now if S is any unimodular matrix and h any hermitian one then
(1) ShSt is hermitian
(2) the map 1 )i by h ShSt is linear
(3) det(ShSt) = det h

the third of these being due to the multiplicative property of determinants and the
fact that det S = 1. Thus the map A S defined by

AS(x) = Or-'(SO(x)St)

is affine, leaves the origin fixed and preserves norms of vectors: it is therefore a
Lorentz transformation. We show that it is actually an element of Lt. For this
it is enough to show that the image of just one future-pointing timelike vector is
future pointing. We take the vector with components (0,0,0,1), for which the
corresponding hermitian matrix is the unit matrix. We have therefore to calculate
the trace of SSt for any unimodular matrix S. This is easily found to be Ja!2 +
Jb12 + Icl2 + Id12, if

S= (a b)
c d

and since this is positive, AS E LT. A tedious calculation shows that AS E L+ also,
so that AS /E L. Moreover, /for any two unimodular matrices Sl, S2,

As, Sa lx) = a ' (SJ S2a(x)S2 Si) = a ' S1 o(AS3 (x))SI) = AS, (Asi lx))
and so

AS, S, = AS, o As,
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Thus the map from SL(2,C), the group of unimodular 2 x 2 complex matrices, to
L+, given by S s-+ As, is a homomorphism.

We shall now show that this homomorphism is surjective. To do so we take
advantage of the fact that every rotation in the xlx2x3-space is the image of some
S in SL(2, C) (in fact in SU(2)), and every boost in the x3x4-plane is the image
of an S in SL(2, C), namely the diagonal matrix given in the previous subsection.
We shall show that every restricted Lorentz transformation may be written as the
product of matrices of rotations in the xlx2x3-space and of a boost in the x3x4-

plane.
Let A be an element of L+ and {r 0) the images of the basis vectors {ea} under

A, so that the EQ form an oriented orthonormal basis with E4 a future-pointing
timelike vector. There is a rotation R1 leaving e4 fixed such that Rl(e4) lies in
the x3x4-plane. There is a boost B in the x3x4-plane such that B(e4) = RI(04)
(Exercise 39). Then µ = R11B satisfies µ(e4) = 14: thus µ-1 (A(e4)) = e4, and so
µ-lA is a rotation leaving e4 fixed, say µ-'A = R2. Finally,

A = uR2 = R1 1BR2.

Here Ri 1 and R2 are rotations in the zlz2x3-space and B a boost in the x3x4-
plane. There are therefore SU(2) matrices U1, U2 and a diagonal SL(2,C) matrix
D such that

Au,=R1' AU,=R2 AD = B,

whence
AU, DU, = A.

The map S ' As is a surjective homomorphism. Its kernel comprises those S E
SL(2, C) for which ShSt = h for all hermitian h. In particular, such S must satisfy
S12St = 12; it must therefore be unitary, and so by arguments given earlier S =
±12. Once again the kernel of the homomorphism is Z2, and we have established
the isomorphism of L+ with SL(2, C)/{±12}.

The Lie algebras of SU(2) and SL(2,C). We now show how to find the Lie
algebras of SU(2) and SL(2, C), acting on the complex vector space C2 whose
elements Z = (,I,S2)T were introduced in Section 6.

The indices A, B will range and sum over 1, 2. We shall use "coordinate vector
fields" aA = a/acA on C2, which operate formally in just the same way as the
ordinary affine coordinate vector fields on a real affine space, so long as the functions
on which they act are functions only of the SA, and not of their complex conjugates.
Then any one-parameter group of 2 x 2 complex matrices Al acting on C2 has for its
generator the vector field ABScaB in the usual way, where A = (Ac) =
If Al is a one-parameter group of unimodular matrices then by differentiating the
condition det Al = 1 and setting t = 0 one obtains

trA =A,+Az=0.
Thus the coefficient matrix of the generator of a one-parameter group of unimodular
transformations is trace-free: AB = 0, but A is otherwise arbitrary. It may be shown
that every such vector field generates a one-parameter subgroup of SL(2, C).
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The conditions that At be also unitary are that (.1,)z = (aj),' and (.\t)2
-(At)2, so that the generator of a one-parameter subgroup of SU(2) must have in
addition AZ = Al and A? = -Al. These conditions may be summed up as follows:

Af= --A trA=O.
Thus A must be anti hermitian as well as trace free if ACcCBB is to be a generator
of a one-parameter subgroup of SU(2). Again, it may be shown that every such
vector field does generate a one-parameter subgroup of SU(2).

Exercise 45. Show that the vector fields X1, Xz, X3 whose coefficient matrices are
0

. _i/2
-0 2 ) ( -1/0 2 102 ) (r0 - /2

form a basis for the Lie algebra of infinitesimal generators of SU(2) (over the reals, so
that every element of the Lie algebra is uniquely expressible as a linear combination of
these with real coefficients). Show that these basis vector fields have precisely the same
bracket relations as the identically named basis elements for the Lie algebra of SO(3)
(Exercises 24, 25).
Exercise 48. Show that the vector fields X1, X2, X3 and Y, = iX1, Yz = iX2, Ys = iXs
form a basis for the Lie algebra of infinitesimal generators of SL(2, C), and that these
satisfy the same bracket relations as the identically named basis elements for the Lie
algebra of L l (Exercise 44).

There is therefore a bijective correspondence between the Lie algebras of
SL(2,C) and L L. which preserves brackets; and likewise for the Lie algebras of
SU(2) and SO(3). Such a correspondence is called a Lie algebra isomorphism. It is
interesting to observe that the Lie algebras are isomorphic even though the groups
are not, but only "nearly" so (isomorphic up to a finite subgroup). These groups
and algebras are useful examples to hear in mind for the general discussion of the
relation between Lie groups and their Lie algebras in Chapter 12.

Summary of Chapter 8
An isometry of an affine metric space A is a smooth map 0: A A such that
g(O.u,4.v) = g(u,v): it therefore preserves the metric. An isometry of an affine
metric space is necessarily an affine map. lsometries form a group, whose linear
part may be identified with the orthogonal group O(p, n - p) of matrices satisfying
MT GM = G, where G is the diagonal matrix diag(+1, +I.... , - 1, -1, ...) of ap-
propriate signature representing the scalar product in an orthoncrmal basis. Every
translation is an isometry. An isometry preserves orientation if its linear part has
determinant +I (the only alternative value is -1); the group of orthogonal matrices
with determinant +1 is denoted SO(p,n - p).

The infinitesimal generators of one-parameter groups of isometries are called
infinitesimal isometrics or Killing fields. In orthonormal affine coordinates the vec-
tor field (Abx' + P° )8a is an infinitesimal isometry if and only if A = (Ab) is
skew-symmetric in the sense that AT G + GA - 0. Infinitesimal isometries are so-
lutions X of Killing's equation, which may be written in several forms: Cxg = 0;
X(g(V,W)) = g(IX,Vl,W) +g(V,jX,wj); g(VvX,W) +g(V,VwX) = 0. In the
first case the Lie derivative is defined by extension of the definition of the Lie deriva-
tive of a form: Lxg = d/dt (mi' g) (0) where 0 is the flow of X. This definition applies
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more generally, to covaria:it tensor fields (fields of multilinear functions on the tan-
gent spaces to A). The Killing fields (infinitesimal isometries) form a Lie algebra,
that is, a finite-dimensional vector space closed under bracket. The dimension of
the algebra is z n(n } 1) where n = dint A.

A conformal transformation 0 satisfies g((k. v, O. w) = cg(v, w) for some positive
function c. Infinitesimal conformal transformations or conformal Killing fields are
generators of flows of conformal transformations. They are solutions of Cxg = pg
for some function p, and also form a Lie algebra, except in dimension 2; they are
not necessarily affine.

The Euclidean group is the isometry group of V. Its orientation-preserving
linear part consists of rotations, each of which leaves a line fixed, its axis. Rotations
about a given axis parametrised by a chosen multiple of the angle of rotation form a
one-parameter group; every one-parameter subgroup of 0(3) is of this form, and ev-
ery element of SO(3) lies on a one-parameter subgroup. The generators X,, X2, X3
of rotations about the coordinate axes satisfy the bracket relations IX2,X31 = -XI
and its cyclical variants. There is a hijective correspondence between generators of
rotations and 3-vectors in which the bracket goes over to the vector product. The
vector corresponding to a particular one-parameter group is the angular velocity of
the rotation, and points along the axis.

Each rotation may be parametrised by a unit vector along the axis, and the
angle of rotation: the rotations collectively form a 3-dimensional space which can
be pictured as a solid 3-sphere with the diametrically opposite points of its surface
identified. Rotations may also be parametrised by three angles of rotation about
coordinate axes, the Euler angles. Finally, rotations may be parametrised by two
complex numbers a,b satisfying Jal2 + Ib12 = 1, the Cayley-Klein parameters. This
parametrisation is arrived at via the stereographic projection of the unit sphere
onto its equatorial plane, which allows one to correlate rotations of the sphere and
certain fractional linear transformations of the plane. In the end this procedure
amounts to establishing a homomorphism of SU(2) (special unitary 2 x 2 complex
matrices) onto SO(3), whose kernel is the two element group {±12}.

The Poincare group is the isometry group of e'.3. Its linear part is called the
Lorentz group L, and the subgroup of L of orientation- and time-sense-preserving
transformations is L+, the restricted Lorentz group. There are essentially three
types of restricted Lorentz transformation: rotations in a spacelike 2-plane; boosts
in a timelike 2-plane; and null rotations. A basis of infinitesimal Lorentz transforma-
tions consists of three generators of rotations in the x2x3-, x3xL- and x'x2-planes,
and three generators of boosts in the x1x4-, x2x4- and x3x4-planes.

The homomorphism SU(2) -. SO(3) may be extended to a homomorphism
SL(2,C) -. L+ which is again surjective and has kernel {±f2}. The Lie algebras
of SU(2) and SL(2,C) are isomorphic to those of SO(3) and L+ respectively.



9. GEOMETRY OF SURFACES

This chapter should be viewed as a point of transition between the considerations
of affine spaces of the first half of the book and those of the more general spaces-
differentiable manifolds-of the second. The surfaces under consideration are those
smooth 2-dimensional surfaces, sensible to sight and touch, of 3-dimensional Eu-
clidean space with which everyone is familiar: sphere, cylinder, ellipsoid ... In the
first instance the metrical properties of such surfaces are deduced from those of the
surrounding space. One of the main geometrical tasks is to formulate a definition
and measure of the curvature of a surface. One such measure is the Gaussian curva-
ture; Gauss, for whom it is named, discovered that it is in fact an intrinsic property
of the surface, which is to say that it can be calculated in terms of measurements
carried out entirely within the surface and without reference to the surrounding
space. This is a most important result, because it renders possible the definition
and study of surfaces in the abstract and, by a rather obvious process of gener-
alisation to higher dimensions, of so-called Riemannian and pseudo- Riemannian
manifolds, of which the space-times of general relativity are examples.

We shall show in this chapter how the machinery of earlier chapters is used to
study the differential geometry of 2-surfaces in Euclidean 3-space, and so pave the
way to the study of manifolds in later chapters.

1. Surfaces

In earlier chapters we have used two methods of representing a surface: as a level
surface of a smooth function (Section 4 of Chapter 2), and by means of coordinates,
as in the case of stereographic coordinates for the sphere (Section 6 of Chapter 8;
the discussion of submanifolds in Chapter 6 provides another and more general
example). For the purposes of the present chapter the use of coordinates is the more
convenient method. We shall describe the assignment of coordinates to the points
of a surface in terms of a smooth map, as we did for submanifolds in Chapter 6.
Now, however, we suppose that the map m in question is defined on RI or some
open subset of it; and we suppose further that orthonormal coordinates have been
chosen, once for all, in the codomain V. Thus 0 will generally be thought of in
terms of its coordinate presentation.

We shall require that a coordinate map 0 have the property that the induced
map 0. is injective (as a linear map of tangent spaces) at every point of the domain
of m. This requirement is designed to eliminate from consideration points where the
surface may fail to be smooth. For example, one might use the map

to assign coordinates to the points of the cone (x')2 + (x2)2 - (x3)2 = 0. At its
vertex, the origin, this cone evidently fails to be a smooth surface. The induced
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map 0. has the matrix representation

cos f2 sinC2
sin i;2 ' cos i;2

1 0

which is the Jacobian matrix of the coordinate pesentation of 4). It is clear that
0. fails to be injective when i;' = 0, that is, at those points which are mapped to
the vertex. Unfortunately failure of 1. to be injective does not necessarily indicate
failure of the image of 0 in E to be a smooth surface. Consider for example the
map

0: (F',.2) _ (sin ' cos E2 sin E' sin E2,cos '),

which assigns coordinates to the points of the unit sphere (X' )2 + (z2)2 + (X3)2 =
1: here E2) are polar coordinates for the sphere, derived from spherical polar
coordinates for £' (Chapter 2, Exercise 24). The Jacobian matrix of the coordinate
presentation of 0 is now

cos e I cos C2 - sin {' sin {2

cos i;' sin f 2 sin C' cos C2
- sin ' 0

from which it is clear that 0. fails to be injective when ' = 0 in this case also:
here the points in R2 with e' = 0 are those which are mapped to the North pole
(1,0,0). In this latter case the fault clearly lies with the coordinates, not with the
nature of the subset of £3 with which we are dealing.

In the case of the cone no coordinate map can be found, in any neighbourhood
of the vertex, whose induced map is injective at points corresponding to the vertex:
in effect the existence of such a coordinate map would imply that the cone had a
unique tangent plane at its vertex. On the other hand, it is easy to find a coordinate
map onto a neighbourhood of the North pole of the sphere whose induced map is
injective at the corresponding points of R2, by using polar coordinates based on
some other point as pole, for example, or stereographic coordinates. What is clearly
not so easy (and is in fact impossible) is to find a single coordinate map for the
whole sphere whose induced map is always injective. Thus in defining a surface
by means of coordinates one must demand that the induced map of the coordinate
map be injective, to avoid the possibility of points like the vertex of a cone; but one
must then allow for the fact that more than one coordinate system may be needed
to cover the whole surface.

A subset S of E3 is called a surface if around each of its points there may
be found an open set 0 in F3 such that 0 n S is the image of an open set P
in R2 by a smooth map m: P -. E3 for which 0. is injective at each point of
P. This definition is at the same time a generalisation and a specialisation of the
definition of a submanifold given in Chapter 6: here we allow for the necessity of
using several coordinate systems to cover a surface, but restrict the dimensions in
question. Such a map 0 will be called a parametrisation of 0 n S (as before), or a
local parametrisation of S.
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The fact that a parametrisation 0 has injective induced map means that 0 is
itself locally injective. However, as the example

(e', 2) " (sin i:' cos {2, sin F' sin 0,cos l: ')

with P (e1, 2) E R2 10 < ' < 7r } and 0 = ( (x',x2,x3) E (3 I x',x2 # 0)
shows, a parametrisation need not be injective on the whole of its domain. In
order that the parametrisation have the desirable property that different coordinates
label different points of the surface, it may be necessary to restrict its domain.
For any surface S a family of parametrisations m: P -. £3, 0:12 - £3 ... may
be found, each of which is injective, such that the sets q$(P), 7/'(Q), ... together
cover S. In the case of the sphere, for example, such a family, containing just two
injective parametrisations, may be constructed on the principle of polar coordinates,
as follows:

P = Q = { ( C ' , e2) E R2 I 0 < C1 < 7r, 0 < S2 < 27r }

1, 2) = (sin a;' cos e2,sin C' sin £2, cos £')

/,( 1 , £2) C 2 ,
C ' , C '

But this is by no means the only way of injectively parametrising the sphere. Al-
ternatively, one could use stereographic projection from North and South poles, for
example.

Exercise 1. By using the formulae of Chapter 8, Section 6, show that the stereographic
parametrisations are given by P = Q = R2,

0(t',E2)=(2{',2E2,-1 + (Y')2 + ((2)2)/(1 + (C1)2 +(f2) )
O(f'.C2)_(2e',2E2,1-(C') -(f1) +(e)2)

The points on the sphere other than the North and South poles each have two sets of
stereographic coordinates. One may therefore define a map of R2 - ((0,0)} to itself by
mapping (C', C2) to the North pole stereographic coordinates of the point whose South
pole stereographic coordinates are W, C2). Show that this map is given by (e', (2)
(e1,f2)/((f1) + (f2)2)' and observe that it is smooth. O

Exercise 2. Show that on the sphere the point whose standard polar coordinates are
({', 2) has North pole stereographic coordinates (cot 3 C' cos G 2,cot,'1e' sin C2). O

Again, perpendicular projection from any plane through the centre of the sphere
onto the sphere may be used to construct two maps of the interior of the unit circle
(in the plane) into t3 whose images are the two hemisperes into which the sphere
is divided by the plane. In the case of the equatorial plane these maps are given by

(`7,52) o~ (t',`2.+ V 1 - (V)2 -

The images of the interior of the unit circle under these two maps are the hemi-
spheres with x3 > 0 and x3 < 0 respectively, and the maps are parametrisations
of these hemispheres; the equator itself is excluded, however. But by using the six
parametrisations based on the three coordinate planes in t3 the sphere is completely
covered.

These examples reveal three points of general significance.
(1) Two different injective parametrisations covering parts of the same surface

provide distinct sets of coordinates for the points belonging to the intersection of
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their images; the transformation between these coordinates is defined by a smooth
bijective map between open subsets of R2.

(2) The last construction shows how parametrisations may be found to cover the
level surface of a smooth function F on £3: in general, if (x0, xo, xo) is a point of the
level surface at which aF/8x3 / 0, say, then the level surface may be represented
in the form x3 = f (x' xs) near (x' x2 x3) and then (e' f2) " (e' e2 f (e' i;2))
provides the required parametrisation. Such a procedure will always work, for one
or other of the coordinates, provided that the partial derivatives of F do not all
vanish simultaneously at any point of the level surface, that is, provided dF is never
zero. Thus the level surfaces of a smooth function F are surfaces indeed, provided
that dF is not zero.

(3) There are many different local parametrisations covering parts of a surface,
and therefore many different ways of assigning coordinates to the points of the
surface: none is to be preferred to any other, except perhaps (as in the case of the
sphere) by custom or symmetry; in this respect a surface is quite different from
the affine space in which it lies. It is desirable, therefore, as far as possible to use
methods which do not depend on a particular choice of coordinates, at least for
general theoretical work, though specific calculations will usually require specific
coordinates.

2. Differential Geometry on a Surface

Tangent and cotangent spaces. At each point x on a surface S there is defined
a 2-dimensional subspace of T:£3 consisting of those tangent vectors which are
tangent to curves lying in the surface; this is the tangent space to the surface at x,
which we denote T.S. Its dual T; S is the cotangent space to the surface at x.

Elements of T. S may be thought of as vectors in a plane in £3 touching the sur-
face at x. Alternatively they may be regarded as differential operators (directional
derivatives) which act on functions specified on the surface, say by restriction; these
operators satisfy the linearity and Leibniz rules. A local parametrisation of S de-
fines local coordinate vectors at each point in its image: they are the tangent vectors
to the coordinate curves through the point, or equally the images of the coordinate
vectors in R2 by the linear map of tangent vectors induced by the parametrisation.
These coordinate vectors form a basis for the tangent space to S. A parametrisation
also defines coordinate functions on the surface whose differentials give the dual ba-
sis of the cotangent space. We shall denote the coordinate functions by f', f ' and
the coordinate vector fields and differentials by as = 8/8t° and dE,' in the usual
way: here a ranges and sums over 1, 2. Each tangent vector may thus be expressed
either as a linear combination of 8/8a;' and a/aie2, or (thinking of it as a tangent
vector to £3) as a linear combination of a/ax', 8/axe and 8/8x3, the orthonormal
coordinate vectors in P.
Exercise 3. Show that the tangent vector a/az' 4- a/8z' at (0,0, 1) in £s is tangent to
the unit sphere, and that its representation with respect to the stereographic coordinate
vectors (based on the North pole) is 3 (3/8E' + a/8e). a
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Exercise 4. Show that the tangent space at a point x on a level surface of a function F
consists of those vectors v E T. V such that (v,dF) = 0. o

The Euclidean scalar product in P defines a scalar product on each tangent
space T=S by restriction. This scalar product, or metric, g, may be used to calculate
lengths of, and angles between, vectors tangent to the surface, and may be used to
raise and lower indices, all without reference to the ambient space.

Classically, a metric would be expressed in the form

ds2 = E(dC')2 + 2Fde'des +C(dfs)s = 9 bdf°d£6.

The main point here is that g,6 = g(a/aC°, a/ae6) are the components of the metric
with respect to the coordinate vectors, which will not in general be orthonormal.
On the other hand it will certainly be possible in the neighbourhood of any point
to find vector fields tangent to the surface which are orthonormal: but they will not
necessarily be coordinate vector fields.

The various operations on vector fields and forms which we have introduced
earlier may be applied to vector fields and forms on a surface, that is to say, vector
fields and forms whose values at each point of the surface are elements of the tangent
apace to the surface at that point, the cotangent space to the surface, or its second
exterior power (there are no non-zero p-forms for p > 2). In particular, a vector field
V on a surface generates a flow of transformations of the surface into itself, whose
induced linear maps map tangent spaces to the surface to other tangent spaces to
the surface. Thus the Lie derivative of one vector field on the surface by another is
again a vector field on the surface. Alternatively, the bracket of two vector fields on
the surface, regarded as a differential operator on functions on the surface, defines
another vector field on the surface. Again, if a vector field V is given in P in a
neighbourhood of a surface, which happens to be tangent to the surface at points
on it, and if -0: P --. £3 is a parametrisation, then there is a vector field on P to
which V is '-related. Since the brackets of 0-related vector fields are 0-related
(Chapter 3, Section 10) it follows that the bracket of two vector fields in £3 tangent
to the surface is again tangent to the surface.

The exterior derivative of a 1-form 0 on the surface is given by

de(U,V) = U(V,e) - V(U,e) - ((U,V1,0),

where U, V are vector fields on the surface. It defines a 2-form on the surface.
An important example of a vector field in £3, specified on a surface S, which

is not however a vector field on the surface in the sense just described, is furnished
by a normal field. A vector field N defined on the surface such that, at each point
x, N. is orthogonal to T=S (considered as a subspace of T=£3) is called a normal
field; and if it is of unit length, a unit normal field. At each point of S there are
two unit normal vectors, which point in opposite directions. Whether a consistent
choice can be made to form a unit normal field all over the surface depends on
whether the surface is orientable: a familiar example in which this cannot be done
is the Mi bius band.

Exercise 5. Show that if a surface S admits a global unit normal field N then NJfl
restricted to the surface is nowhere vanishing, where fl is the volume 3-form in V. Show
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that N Al is in fact a volume 2-form determined by the metric on S. Show conversely that
if there is a nowhere vanishing 2-form on S then S admits a global unit normal field. D

Exercise 6. Show that with respect to North pole stereographic coordinates the metric
on the sphere is given by

do3 = 4/ (df')' + (df')3)/(1 + (f')= +

Find vector fields proportional to a/oe1 and 8/8E' which are unit, and compute their
bracket. Find the volume 2-form, in terms of df2 and dc', with respect to which
(a/aE',a/aF') is positively oriented. Find the 1-forms obtained by lowering the indices
on the two unit vector fields and compute their exterior derivatives, expressing the answers
as multiples of the volume form. O

Exercise 7. Show that on a level surface of a function F whose differential does not vanish
on the surface grad F is a normal field. D

3. Curvature

The curvature of a surface is made manifest by the way the normal changes its
direction as one moves from point to point. A surface will usually curve by differ-
ent amounts, and possibly in different senses, in different directions. This idea of
curvature being measured by the change in the unit normal, and being direction
dependent, is captured by the definition we shall now develop.

On a surface S, with N one of the two (local) unit normal fields, the covariant
derivative with respect to vectors v tangent to the surface has several impor-
tant properties. First, since the covariant derivative (computed according to the
rules of covariant differentiation in £3) respects the Euclidean scalar product,

9(V0N,N) = 1v(9(N,N)) =0
because N is unit, and so being orthogonal to N, is tangent to the surface.
Now the map v ' -. is linear; and therefore for each x E S there is defined
by this means a linear map of T=S into itself. Finally, this map is symmetric with
respect to the surface metric, in the sense that for any v, w E T. S

9(V,,N,w) = 9(v, V N)
In order to show that this is the case we shall have to make use of the fact that for
any two vector fields tangent to S, say V, W, the bracket IV, WI is also tangent to
S, and to relate the bracket to the covariant derivative we must deal with vector
fields defined not just on the surface but in an open set in £3 about the point x
iri the surface. The construction of suitable vector fields is left to the reader in the
following exercise.

Exercise 8. Show that given v,w E T.S there are vector fields V, W defined on an open
set 0 containing z in F3 such that V and W are tangent to S on S and take the values
v, to at x, as follows. Let 0 be a parametrisation of a region of S about r. Extend 0 to a
map of an open subset of R' into £' by

;b(f',f',(') _ #(f',(')+f'N
where N is the normal at O(E', r;'). Show that ¢ is smooth and that at points for which
f' = 0 its induced map . is non-singular, and deduce that about each such point (whose
image lies on S) there is an open set in R3 on which is injective. By the assumption that
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0 is a parametrisation there are vectors vo, wo in Tit, ,(2)R' such that *.vo = v, O.wo = w
(where = r). Let Yo, Wo be the constant vector fields on Es which are everywhere
parallel to vo, wo, considered as vectors tangent to the f 1f3-plane at ((1,tr,0). Show that
. Vo and m.Wo are well-defined local vector fields on f 3 with the required properties. O

With vector fields V, W constructed as in the exercise and with N extended
into P by defining it as we have

g(VvN,W) - g(V,VwN)

= V (g(N,W)) - W (g(N,V)) - g(N,VvW - VwV)

= V (g(N,W)) - W (g(N,V)) -g(N,IV,WI).

On the surface, V(g(N,W)) depends only on the values of g(N,W) on S since V
is tangent to S. But g(N,W) = 0 on S, and so V(g(N,W)) = 0 there. Likewise,
W (g(N,V )) = 0 on S. Finally, g(N, IV, W]) = 0 on S because IV, W) is tangent to
S (actually, IV, WI = 0 by construction). Thus at x E S

g(VvN,w) = g(v,VwN)

The linear map T=S -' T=S by v '-. could reasonably be called the
curvature map; it is in fact called the Weingarten map.
Exercise 9. Compute the Weingarten map at the origin for the surface given in orthonor-
mal coordinates by xs = al (z' )2+al(z')' (an elliptic paraboloid for ala2 > 0, a hyperbolic
paraboloid for ala2 < 0). Express the result as a matrix with respect to an orthonormal
basis for the tangent plane to the surface, whose vectors lie in the directions of the x1-
and z2-axes. a
Exercise 10. Show that the normal component of VvW (where V, W are any two vector
fields tangent to S) in -g(VvN,W). o

The curvature properties of a surface at a point are defined by the algebraic
invariantsof the Weingarten map. Its determinant is the Gaussian curvature K and
half its trace the mean curvature H of the surface at the point. Since the Weingarten
map is symmetric with respect to g and therefore will be represented by a symmetric
matrix with respect to an orthonormal basis for T. S it has real eigenvaluee, and
eigenvectors corresponding to distinct eigenvalues are orthogonal. These eigenvalues
are called the principal curvatures and the corresponding eigenvectors the principal
directions at the point. The elliptic paraboloid of Exercise 9 is an example of a
surface with positive Gaussian curvature and (provided al 76 as) distinct principal
curvatures, whose principal directions at the origin are the x1- and x2-axes. The
hyperbolic paraboloid has negative Gaussian curvature, and the same principal
directions. If the Weingarten map is a multiple of the identity the point is called an
umbilic: this occurs when al = az in Exercise 9, and at every point of the sphere.
If the Weingarten map is zero the point is a parabolic umbilic, or planar point (thus
the Gaussian curvature may be zero at a point without the point being planar: all
points of a cylinder have zero Gaussian curvature without being planar).

Exercise 11. Show that the origin is a planar point of the 'monkey saddle" surface
X3 = 21(X1 - fz')(x1 + z3). a
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4. Surface Geometry using Exterior Forms

We have defined the curvature in terms of vector fields on the surface; it is also
possible to discuss the geometry of a surface in terms of forms. On the surface,
choose a pair of 1-forms 9, 02 which are orthonormal (that is, obtained by lowering
the indices on a pair of orthonormal vector fields V1, V2 on the surface, using the
metric on the surface). Now {V1,V2,V3 = N} is an orthonormal basis for vector
fields on if defined on the surface, which can be extended into an open set about
the surface as described in Exercise 8. The 1-forms 91, 82, 93on E3 dual to these
satisfy the structure equations

d9° + w n 00 = 0, a, 8 = 1, 2, 3

where the connection forms w*, defined by

VUV9 = (U,wP°)V°,

satisfy
WQ6tr7 +Waaj{.., = 0

(see Section 7 of Chapter 5 and Exercise 52 of Chapter 7). Consider these structure
equations on the surface (so that the vector arguments are restricted to be vectors
tangent to the surface). Since 83 vanishes if its argument is tangent to the surface
we have

dB' + w21 n 92 = 0 d92 +W2 n 91 = 0

because of the skew-symmetry of also, w? + wz = 0. We set w = w? and call
it the connection form of the surface for the orthonormal basis of 1-forms {91, 02};
then

d9'=wn92 d92=-wn9'.
These are the first structure equations of the surface.
Exercise 12. The connection form may be defined as follows. Since V1, V2 are orthonor-
mal, for any vector v tangent to S the tangential component of is in the direction
of V2, and that of is in the direction of Vt. Define 1-forms w1, W2 on S as follows:
(v,wl) = g(V V1, V2), (v,w2) = g(V1, VvV2). Thus wl, w2 measure the components of

V V2 tangent to S. Show that wl = -w2 = w. Deduce the first structure equations
directly. o

Since 93 vanishes if its argument is tangent to the surface, so does 03 if both of
its arguments are tangent to the surface; thus on the surface the symmetry condition

W1 A 8' + W2 A 2 = 0

holds. Now

V0V3 = (v,w3)VI + (v,w3)V2 = -(v,w1)VI - (v,w2)V2,

and on S, V3 = N: thus w3 and w2 are related to the Weingarten map. In fact if
we set (Va,w9) =

W.
then (W;) is the matrix of the Weingarten map with respect

to the orthonormal basis {Ve}. The symmetry condition then corresponds to the
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symmetry of this matrix. Moreover w3 = We 96, from which it follows that the
Gaussian curvature K and mean curvature H are given by

w3 A w3 = det(Wo )9' A 9' = K81 A B'

3 A 02 + 0' A w3 = tr(Ws )B' A 0' = 2H9' A B'.

The connection forms wp for the local orthonormal basis {VQ} in £3 satisfy

dwl + w.°y A wl = 0

as we showed in Section 7 of Chapter 5. Specialising again to the surface one obtains
first Gauss's equation

dw = -w3 A w3,

and then the Codazzi equations

dW3 = w / w3 dw3 = -w A w3.

Finally, from Gauss's equation and the equation for the Gaussian curvature there
follows the second structure equation for the surface:

dw=-KO'A02.

5. The Levi-Civita Connection
it is interesting to compare the two structure equations for a surface with those for
Euclidean space of the same dimension, £2. In each case there is a single connection
form w and the first structure equations are the same for both:

dB' = w A 92 d62 = -w A 0'.

The second structure equation for £2 is

dw=0
while that for the surface is

dw=-KB'n02.
This confirms that £s, which may after all be considered as a surface in £s, has
zero Gaussian curvature, as one might expect. More suggestive is the identity of
the first structure equations. Exercise 12 showed that the connection form w may
be defined in terms of the components of covariant derivatives tangential to the
surface. In the case of £s, considered as a surface in £3, covariant differentiation of
a vector field on £2 along a vector tangent to £2 is the same whether the operation
is carried out with respect to parallelism in e2 or in £3. In the case of a surface we
have been forced up to now to rely on the parallelism in £3 to compute covariant
derivatives even when the direction of differentiation and the differentiated vector
field were both tangent to the surface. The fact that this process produces the same
first structure equations as those of £2 suggests that it may be possible to introduce
a concept of parallelism and an operation of covariant differentiation in the surface,
enjoying some of the properties of parallelism and covariant differentiation in £2,
from which the first structure equations would follow. That this generalisation
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of the concept of parallelism can be made was discovered by Levi-Civita and the
structure obtained is named after him as the Levi-Civita connection of the surface.
The clue to the construction is contained in Exercise 12. Before we explain it in
detail, however, we shall describe a thought experiment which suggests that one at
least of the properties of parallelism in £2 will have to be renounced.

The example concerns parallelism on the sphere. The great circles on a sphere
(the intersections of the sphere with planes through its centre) are, like the straight
lines in £2, curves of minimal length, and therefore constitute a possible general-
isation of straight lines. There are two properties of parallelism in £2 concerned
with straight lines which we seek also to generalise: first, the tangent vectors to
an affinely parametrised straight line are parallel along it; and secondly, vectors
specified at different points on the line, and given to be parallel, will all make the
same angle with it. The difficulty which arises in the case of the sphere becomes
clear if one attempts to endow parallel vectors along great circles with these prop-
erties. Consider for example two great circles through the North and South poles
of the sphere, say the Greenwich meridian and the meridian at 90°W; and consider
the vector at the North pole which is the initial tangent vector to the Greenwich
meridian, say vN. Then so far as the Greenwich meridian is concerned, the vector at
the South pole parallel to vN is again the tangent to the Greenwich meridian. But
the rule of constant angles, applied to the other great circle, produces at the South
pole a different vector parallel to vN-in fact the negative of the first. And clearly,
by choosing other meridians, one could obtain vectors parallel to vN, according to
these criteria, in all possible directions at the South pole.

Fig. I Parallel vectors on a sphere.

The major difference between Levi-Civita parallelism on surfaces and paral-
lelism in £2, which is so convincingly demonstrated by this example, is that paral-
lelism on a surface is path-dependent: that is to say, there is no longer any substance
to the statement that vectors tangent to a surface at different points are parallel;
one may only ask whether or not vectors tangent to the surface, specified along a
curve in it, are parallel. Despite this apparent defect, this concept of parallelism
and the operation of covariant differentiation deduced from it are enormously use-
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ful, and indeed the dependence of parallelism on the path is related to the curvature
of the surface in a very interesting way.

Now to the definitions. We say that a vector field V along a curve a in a surface
S, which is tangent to S at each point a(t), is parallel along a in the sense of Levi-
Civita if V (t)V is normal to S for every t in the domain of a (where o(t) is the
vector tangent to a at o(t)). We define a rule of covariant differentiation associated
with Levi-Civita parallelism as follows: the covariant derivative of the vector
field W tangent to S by the vector v tangent to S is the component of

V denotes the covariant derivative operator in E3, as before). This law
of parallelism, with its associated covariant differentiation, is called the Levi-Civita
connection on S. The definitions are motivated by Exercise 12; we have still to
show that they reproduce most, although not all, of the properties of parallelism
and the covariant derivative in £2, or indeed £".

The covariant derivative. It is convenient to begin by examining the properties
of the covariant derivative operator 0. It will be recalled (Chapter 3, Section 11 and
Chapter 7, Section 6) that the corresponding operator V in £" has the following
properties:

(1) Vu+vW = VuuW +VyW
(2) V1vW = fvvw
(3) VU (V + W) = Vtr V + V(1W
(4) Vv(fW) = fVvW + (Vf)W
(5) U(g(V,W)) = g(V(,V,W) + g(V,VtrW)
(6) VvW - VwV = IV, W1
(7) VcrVvW - VvVuW = Vlir,vlW

for any vector fields U, V, W and function f on C". The first four of these properties
are concerned with the linearity (or otherwise) of V: in particular, the contrasting
effects of multiplication of the arguments by functions exhibited in (2) and (4) are
distinctive features of covariant differentiation. Property (5) is a consequence of
the fact that parallel translation preserves scalar products (and therefore lengths
and angles). The last two properties express the interrelationships of covariant
differentiation and the bracket operation on vector fields. Furthermore, properties
(1)-(6) of this list uniquely determine the covariant derivative operator in F", since
it follows that

g(VII V,W) = s{U(g(V,W))+V(g(U,W)) -W(g(U,V))

+ g(1U,V1,W) - g((U,WI,V) - g(U,(V,WI)}
(Exercise 50 of Chapter 7), a formula which defines VUV in terms of the directional
derivative and bracket once g is given. Note that property (7), the second order
commutation relation, is not involved in this determination; it is a consequence
of the fact that coordinates, namely affine coordinates, may be found in C" with
respect to which affine the metric has constant components, and that parallel vector
fields have constant components in terms of these coordinates; this property is
therefore special.

The Levi-Civita covariant derivative on a surface enjoys all of properties (1)-
(6), but not in general property (7). If N is a unit normal vector field on the surface
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then

VirV = V1rV -- g(VvrV, N)N

for any vector fields U, V tangent to the surface. From this it follows that (for
example) property (4) holds for t as a consequence of its truth for V: for if f is
any function on S, and F any function defined in a neighbourhood of a point of S
in £3 which agrees with f on S, then (on S)

'v(fW) _: Vv(F'W) - g(Vv(FW),N)N
= FVvW i (VF) IV Fg(VvW,N)N - (VF)9(W,N)N

fVvW + (Vf)W fg(VvW,N)N on S

= fVvw + (Vf)W.

Exercise 13. Prove properties (1), (2) and (3) similarly. O

Exercise 14. Prove property (5). o

Property (6) for t follows from the same property for V (applied to any extensions
of the vector fields V and W to V) and the fact that, since V and W are tangent
to S, so is IV, W1.

Exercise 15. Show that for any vector fields U, V, W tangent to S,

9(vuV,W) _ {U(9(V,W)) + V(9(U,W)) - W (9(U,V))

+g(IU,VI,W) - g(IU,WI,V) - g(U,IV,WI)).
(Since the arguments of g are all vector fields tangent to S, g here represents the metric
on the surface). o
Exercise 16. Suppose that V = V as/af W = W'49/c){' with respect to coordinates
(C', E_) on the surface. Show that

a

o'w=V` a +recWb {a,

where the coefficients f be are defined in terms of the metric components gob by

I ad a9cd a9., agbc
Fbc = 29 afb + afc - afd o

Exercise 17. Let {U1,U2) be an orthonormal basis of vector fields on S with dual
orthonormal basis of 1-forms (01,03). Show that for every vector v tangent to S,
v ,.-. defines a 1-form w on S, the connection form of the Levi-Civita con-
nection. Show that deduce that

VyW = V(W,ea)Ua + (W,e')(V,w)U2 - (W,02)(V,W)U1

and rederive the first structure equations. O

The Levi-Civita covariant derivative makes sense in several forms: when V and
W are vector fields tangent to S then VvW is a vector field tangent to S; when v is
a vector tangent to S at z and W a vector field defined in a neighbourhood of z in S
and tangent to S then is well-defined and is a vector tangent to S at z; when
u is a curve in S and W a vector field defined along a and tangent to S then VdW is
a vector field on a tangent to S. This last construction, which corresponds to what
we called the absolute derivative in Chapter 2, is useful in considering parallelism
in the sense of Levi-Civita, to which we now turn.
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Parallelism. A vector field V along a curve a in S, which is tangent to S, is
parallel along a if V,V = 0, in other words if VVV is normal to S. From Exercise 16
it appears that the components of a parallel vector field satisfy a pair of linear first
order ordinary differential equations

d Vas

+ I'bc V e ddtc = 0.

Any solution (V 1, Vs) of these equations defines a parallel vector field along o.
From the properties of such systems of differential equations it follows that for a
given tangent vector v to S at a given point a(t I) of a there is a unique parallel
vector field along or coincident with v at a(ti). Using this result we define a map
from (say) T,(g,)S to T,(i,)S, called parallel translation along a, denoted T, as
follows: given v E T,(t,)S, T(v) is the value at a((s) of the parallel vector field
along a whose initial value (at a(ti)) is v. It follows from the properties of linear
differential equations that any linear combination of parallel vector fields, with
constant coefficients, is parallel and so T is linear; that the only parallel vector field
which takes the value 0 anywhere is the zero field and so T is injective; and thus by
dimensionality that T is an isomorphism. Thus, just as in the case of parallelism in
V, Levi-Civita parallelism defines an isomorphism of distinct tangent spaces; and
by property (5) of the covariant derivative, parallel translation preserves lengths
and angles. However, there is this important difference, that on a surface parallel
translation depends on the path joining the two points in question.

Exercise 18. Examine the effect of a reparametrisation of a and confirm that parallel
translation depends on the path, not the curve. O

Exercise 19. Compute the equations of parallel translation on a sphere in terms of spher-
ical polar coordinates and confirm the correctness of the description of parallel translation
along meridians given above. O

Geodesics. An autoparallel curve on a surface, that is to say, a curve whose tan-
gent vector is parallelly transported along itself, is called a geodesic. The coordinate
functions of a geodesic y satisfy the second-order non-linear differential equations

d21 a a drye d-y°

dt2 + rb` dt dt - 0.

It follows that there is a unique geodesic through a given point of the surface with
given initial tangent vector.

Exercise 20. Show that (in terms of the covariant derivative operator in the ambient
space E3) a curve 7 in a surface is a geodesic if and only if its acceleration Vary' is normal
to the surface, so that the geodesics are the paths of particles constrained to move on the
surface by smooth constraints and under the influence of no other forces. O

Exercise 21. Show that a plane curve in a surface is a geodesic if and only if it is the
intersection of the surface with a plane everywhere normal to it, and confirm that the
great circles are geodesics on the sphere. To show that these are the only geodesics, write
down the geodesic equations using polar coordinates for the sphere (Section 1) and deduce
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that the functions A, B, C given by

A = -sin' - sin f' coe f' coe f'
B= f l cos f' - f' sin f' coo f' sin f'
C = f'sin' f'

are constants along any geodesic; show that A min f' case + B sin(' sin f 2 + C cos f' = 0,
and infer that the geodesic lies in the plane through the centre of the sphere perpendicular
to the vector whose orthogonal components are (A,B,C). a
Exercise 22. Deduce from the fact that parallel translation preserves lengths that the
tangent vector to a geodesic has constant length, and that therefore two geodesics with
the same path differ by an affine reparametrisation s ,-+ as + b (a, b constant). Show that
any other reparametrisation of a geodesic produces a curve which satisfies '., y = rcry' where
R is some function along the curve; and that conversely any curve whose tangent vector
satisfies this equation is a reparametrisation of a geodesic. O

6. Connection and Curvature
We return now to the consideration of the final property of the covariant derivative
in a", the second order commutation relation

VUVvW - vvvt,w = VIU,v1W,

and describe how this is modified on a surface S. By using the definition of t we
may express VvW (where V and W are tangent to S) in the form

VvW = VvW + g(VvW, N)N = VvW - g(W, VvN)N
since g(W, N) = 0. Notice that VV N is the vector field obtained by applying the
Weingarten map to V. By covariantly differentiating again we obtain

0 = VtrVvW - VvVr,W -VIutIW

= Vu'vW - VV VUW - VIu,vIW
+ g(W,VUN)VvN - g(W,VvN)VuN,

where in eliminating the remaining terms we have used the fact that (for example)
g(VUW,VvN) = g(VUW,VvN) because VvN is tangential and VUW - VuW is
normal to S. Thus

VUVVW - VvV1,W - VIu,VIW = g(W,VvN)VUN - g(W,VuN)VvN.
The right hand side of this equation is formed from the Weingarten map; the fact
that it is skew symmetric in U and V suggests (since the dimension is 2) that it
should be expressible in terms of the determinant of the Weingarten map, that is,
the Gaussian curvature K.
Exercise 23. Show that

g(W,VvN)V(,N - g(W,VuN)VvN = K(g(V,W)U - g(U,W)V). O

Exercise 24. Show that the equation
VuVvW - tvVvW -'Irr,v1W = K(g(V,W)U - g(U, W )V )

is equivalent to the second structure equation. O

The results of this calculation may be summed up by saying that the Gaussian
curvature measures the non-commutativity of second covariant derivatives.
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7. Tensor Fields

The calculation above reveals another unexpected and important fact about
VuVvW - OvOuW - Olt, vIW: though it appears on the face of it that this par-
ticular combination involves derivatives of the vector fields U, V and W, it is clear
from the right hand side of the equation in Exercise 24 that in fact it depends only
on their values. That is to say, if we write R(U,V)W to denote this expression (a
notation which reflects the similar roles of U and V and the different role of W
in it) then the value of the vector field R(U,V)W at a point x in S depends only
on the values of U, V and W at x. This observation is confirmed when R(U, V )W
is calculated in terms of the connection coefficients Iec relative to some coordinate
system on S.
Exercise 25. Show that R(U, V )W = R°e,aW 1U`V da, where

as bd - afc + r,', r,d - re.Ceo. O

The object R defined in this way is an example of a tensor field. To be precise,
a tensor at a point x in a surface S is a map from the r-fold Cartesian product of
T=S into either R or T. S, as appropriate, which is multilinear; it is said to be of type
(0, r) or (1, r) respectively. A tensor field is a choice of tensor at each point of S, of
the same type everywhere, which is smooth in the sense that its components with
respect to coordinate vector fields are smooth (local) functions. It is multilinear
over the functions on S. Thus R is a tensor field of type (1,3). Other tensor fields
already introduced are g (type (0, 2)) and any form (type (0, p) if it is a p-form).
We have also made use of the identity map of tangent spaces, represented by the
Kronecker delta bb; this is a tensor field of type (1,1). Tensor fields of type (O,p)
are said to be covariant, of valence p (Chapter 8, Section 3).

Actually, the definition given above, although it generalises the definition of
Chapter 8, still does not cover the most general kind of tensor, even allowing for
the limitation on dimension due to the fact that we are here concerned only with
surfaces: more general kinds of tensor will be discussed in a later chapter.
Exercise 26. Show that a type (1, 1) tensor field may be regarded as a field of linear
maps of tangent spaces. The Weingarten map is an example of a type (1,1) tensor field
on a surface. Show that if T is a type (1,1) tensor field then (v,w) - g(T(v),w) is a
type (0, 2) tensor field, obtained by lowering an index on T; and that in the case of the
Weingarten map this tensor field is symmetric. a
The symmetric type (0, 2) tensor field constructed in this way from the Weingarten
map is called the second fundamental form of the surface.

As we pointed out above, it is not immediately obvious that R is a tensor field,
especially since (U,V) -+ Vt,V does not define a tensor field (its value at a point
depends on the derivatives of the components of V). The non-censorial nature of
the covariant derivative shows up in the effect of multiplying V by a function:

Vu(fV) = fVt,V + (Uf)V.

In order for a map of vector fields on S to be a tensor field it must be multilinear,
not just over the reals, but over the algebra of smooth functions 1(S). That is to
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say, in order to be a tensor field, a map T: X(S)' -+ 3(S) or X(S) (here X(S) is the
set of smooth vector fields onS, a module over 3(S)) must satisfy the multilinearity
conditions

T(V1,V2,...,Vk + Vk,...,V,)
= T(VI,V2,...,Vk,...,Vr) +T(VI,V2,...,Vk,...V,)

for V1, V2,... , Vk, Vk,... , V,. E X (S) and f e F(S). The covariant derivative satis-
fies the first of these, but not the second. Both conditions are required, however, in
order that it be possible to express T in terms of components. (To be precise, we
should explain here that we are working essentially in a coordinate patch: there are
some technical problems which have to be overcome before the following arguments
work globally; we postpone discussing them until later.) Suppose, for definiteness,
that T is of type (1,2). Then, in terms of any basis {Ua} of vector fields we may
set

T(Ua,Ub) = T`abU.

where the functions T`ab are the components of T with respect to the basis. So far
we have merely exploited the fact that T(Ua,Ub) E X(S) and {Ua} is a vector field
basis. But if T is a tensor field then it must be the case that for any vector fields
V = V'Ua, W == WaUa, where VO,W* are functions,

T(V,W) =T`abVaWbUc,

and this requires the multilinearity property asserted above.
It is clear that R, defined by

R(U,V)W = Vt,'vW - VV 7,W - tlt,,vlW,

is additive in each of its arguments (that is to say, it satisfies the first of the
multilinearity conditions). We can show directly, without appealing to its expres-
sion in terms of the Weingarten map, that R is a tensor field (of type (1,3)) by
showing that it also satisfies the second of these conditions. That it does so fol-
lows from numbers (2) and (4) of the properties of a connection, and the rule
if U, V I = f JU, V I -- (V f )U for the bracket. Thus

R(f(1, V)W = V ftwVvW - VvV ftrW - 7l ft,,vjW

fVu Vvw - vv(fvuw) - folu,vlW + (Vf)Vt,w
fVuVvW - fvvvt,W - (Vf)vt,W - folu,vjW + (Vf)vt,W

= f R(U,V) W.

The argument for R(U, f V )W is essentially the same.

Exercise 27. Show that R(U,V)JW = JR(U,V)W.

This confirms that R is a tensor field.
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Exercise 28. Show that, for any operator V which satisfies properties (1)-(4) of a con-
nection, the map (U,V) - VuV - VvU - JU,V) is a tensor field of type (1,2). a
In the case of parallelism in an affine space the tensor field defined in this exercise
is zero; however, it is possible to construct covariant differentiation operators for
which it is non-zero, a matter discussed in Chapter 11.

We have shown how to construct a connection-that is to say, a concept of
parallelism and an associated covariant derivative-on a surface, which satisfies
most of the properties of the corresponding structure in E" but is path-dependent.
It has been shown that this connection, though defined initially in terms of normal
and tangential components, is uniquely determined by the metric (Exercises 15-17)
and is therefore in principle definable in terms of operations carried out entirely
within the surface, and not referring to the ambient Euclidean space, once the
metric is known; it is therefore said to be intrinsic. It has also been shown that
second covariant derivatives do not commute (even when allowance is made for the
possibility that the vector fields involved do not commute), but rather that the
commutator of second covariant derivatives defines a type (1,3) tensor field, which
we call the curvature tensor of the surface. This tensor field is defined intrinsically,
but it has been shown to be equivalent to the Gaussian curvature, which is not
on the face of it intrinsic since it is defined in terms of the normal field. This
important fact, that there is an intrinsic measure of curvature, was regarded by
Gauss, who discovered it and called it his Theorema Egregium, as one of his most
significant results. It opens the way to a study of curved spaces in the abstract,
initiated by Riemann. Generalisations of matters concerned with connections and
their curvature tensors will occupy much of the rest of this book.
Exercise 29. Define a type (0,4) tensor field (also denoted by R) by R(U1iU2,V1,V=) _
g(R(U1,Ui)Vi,V=). Show that

R(U2,U1,V1,V3) = R(U1,U3,V2,V1) _ -R(U1,U2,V1,V3)
Show that it follows from these identities and the fact that the surface has dimension 2 that
with respect to a basis of vector fields on the surface the tensor R has just one independent
non-vanishing component, say R1215, all others being either 0 or determined in terms of
this one. Show that R,21, takes the same value with respect to any orthonormal basis of
a given orientation, and deduce that if K is the common value then

R(U1,U3,V1,V2) = K(9(U1,V1)9(Ut,V3) - 9(U1, V3)9(U2, V1))
(compare Exercise 24). o

8. Abstract Surfaces

The previous sections were concerned with identifying features of the geometry of a
surface which are intrinsic in the sense that they depend on operations carried out
in the surface itself without reference to the ambient space (once the basic notions
of topology, differentiability and measurement have been fixed). It is natural to
take this process one stage further and define a surface in the abstract, without
reference to an ambient space, thus finally stripping away any dependence on £3
at all. What we are left with is the most general kind of 2-dimensional space on
which "vector calculus" can be carried out and which has a Euclidean-like measure
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of lengths and angles; it is an example of a Riemannian differentiable manifold.
At least one further generalisation is possible--to other dimensions-and since the
whole process is discussed in detail in the next chapter we shall be somewhat brief
here.

The basic requirement of an abstract surface is that its points may be labelled
by coordinates. The discussions of surfaces in £3 and of curvilinear coordinates
in affine spaces have indicated that it is unreasonable to expect that in general
one coordinate system can he found to cover the whole surface, that all partial
coordinate systems should be regarded as equally satisfactory, and that different
coordinate systems should be related by smooth coordinate transformations. The
part of the definition of an abstract surface which is concerned with its topological
and analytical properties uses these three features of coordinate systems. There is,
however, one small technical problem to overcome: as the reader may have noticed
there is a discrepancy between the way we described coordinates for affine space in
Chapter 1 and the way we described coordinates for surfaces in £3 in this chapter.
In either case a coordinate system is a bijective map between a subset of the affine
space or surface and an open subset of R" (where n = 2 for the surface). However,
for an affine space we regarded the map as going from the space to R" (assigning a
point to its coordinates), whereas for a surface we have regarded the map as going
in the opposite direction, from R2 to the surface (attaching a coordinate label to
each point). Though each possibility has its advantages, the former is generally
preferred for the abstract definition (mainly because then the coordinates may be
regarded as functions on the space) and so this change is made in the following
definition.

An abstract surface S is a set of points which may be given coordinates in the
following sense. A (local) coordinate chart for S is a bijective map 0 of a subset
of S (a coordinate patch) onto an open subset of R2. Two local coordinate charts
01,+'2 defined on different patches P1, P2 are smoothly related provided that both
of the coordinate transformation maps, , 1 o r/,z 1: 02(Pi n P2) -+ G1 (P1 n P2) and its
inverse 02 o 01 1, are smooth maps of open sets in R2. An atlas for S is a collection
of coordinate charts and patches which cover S, in the sense that each point of S
belongs to some patch, the charts on each pair of patches being smoothly related.

Such notions as the smoothness of functions on an abstract surface, or of maps
between abstract surfaces, may be defined in terms of the smoothness of their
coordinate presentations, much as in Chapter 1. At each point on an abstract
surface one may define the tangent space, whose elements must be regarded as
differential operators on smooth functions, which satisfy the linearity and Leibniz
rules, since there is no internal or external affine structure to allow one to use the
limiting vector definition. The cotangent space is defined to be the dual of the
tangent space. Thus vector fields, forms and tensor fields in general may be defined
on an abstract surface and the usual operations (bracket, Lie derivative, exterior
product, exterior derivative ...) may be carried out. Details are given in Chapter 10.

The metric structure of an abstract surface is provided by the assumption that
there is a symmetric type (0,2) tensor field singled out, which has the property
that, regarded as a bilinear form on each tangent space, it is positive-definite. This
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metric tensor field may be used to define lengths of vectors and angles between
them, lengths of curves, raising and lowering of indices and the other operations
associated with a Euclidean metric. In particular there is a unique connection
satisfying the first six properties set out in Section 5, defined just as in Exercises 15-
17. This connection will be associated with a law of parallel translation which is
in general path-dependent, and will have a curvature associated with it, so that
the commutator of second covariant derivatives will not be zero but will define a
curvature tensor field. This is finally what is meant by the statement that Gaussian
curvature is intrinsic.

A surface in e' may be thought of as a realisation of an abstract surface S by
means of a smooth map or "imbedding" S -a e3 such that the metric induced on
S from F3 is the same as that which is there already. The non-intrinsic geometrical
properties of a surface in (3, such as its mean curvature, are then properties of
the imbedding. Thus the plane E2 may be considered as an abstract surface and
has zero Gaussian curvature; it may be imbedded in e3 in many different ways,
for example as a plane (zero mean curvature), or as a cylinder of radius r (mean
curvature 1/2r).

Summary of Chapter 9

The term "surface" may be applied either to a suitable subset of £3, or to a suitable
object in the abstract. In either case, what distinguishes a surface is the existence of
local coordinate systems such that each point may be labelled by two coordinates,
and such that coordinate transformations, which may be regarded as maps between
open subsets of R2, are smooth. A tangent vector at a point on a surface is an R-
valued linear operator on smooth functions on the surface which satisfies Leibniz's
rule. All the usual objects-vector fields, their flows, their brackets, exterior 1- and
2-forms-may be defined on a surface. A surface in £3 inherits a metric from the
Euclidean metric of the ambient space.

The Weingarten map corresponding to a unit normal field N on a surface in
£3 is the linear map of the tangent space defined by v -- V ,,N. It is symmetric
(with respect to the metric); it describes the way the surface curves in different
directions, and its invariants are the curvatures of the surface: the determinant
is the Gaussian curvature K and the trace is twice the mean curvature H. The
curvature may also be represented in terms of an orthonormal basis of 1-forms
{91,02} on the surface: in particular, d6' = w A 02 and d92 = -w A B' where w is
the corresponding connection 1-form, and dw = -KO' A $2; these are the first and
second structure equations for the surface.

There is on a surface a uniquely defined covariant derivative operator 0, with
corresponding law of parallel translation, which enjoys almost all of the properties
of the connection in Euclidean space, except for two major differences: parallel
translation is path-dependent, and covariant derivative operators do not commute,
even when they are differentiating in the directions of commuting vector fields.
This connection is called the Levi-Civita connection of the surface, and may best
be defined by the formula
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g(tt+V,W) = z{U(g(V,W)) + V (g(U,W)) --W(g(U,V))

+g(IU,VI,W) -g(IU,WI,V) -g(U,IV,WI)}
where U, V, W are any vector fields on the surface and g is its metric. The non-
comrnutativity of covariant derivatives is related to the Gaussian curvature by

OtuVvW - VvVrrW - Oltr,vlW = K(g(V,W)U -g(U,W)V)
This establishes that the left-hand side, denoted R(U, V )W , is a tensor field, that is,
depends multilinearly on its arguments over 3(S); it is called the curvature tensor.
It shows also that the Gaussian curvature is an intrinsic object, that is, that it
may be defined in terms of the surface metric alone (unlike the mean curvature,
which depends also on the realisation of the surface in Euclidean space). In other
words, both the Levi-Civita conection and the Gaussian curvature may be defined
for any abstract surface which has a metric, that is, a symmetric positive-definite
type (0,2) tensor field, defined on it, without the necessity of conceiving of the
surface as imbedded in £3.



10. MANIFOLDS

The treatment of surfaces in Chapter 9 shows that restricting oneself to affine spaces
and subspaces would be a limitation on geometrical thinking much too severe to be
tolerable. The more general idea foreshadowed there and developed in the rest of
this book is that of a manifold, a space which locally resembles an affine space but
globally may be quite different. Manifolds are used in Lagrangian and Hamiltonian
mechanics, where configuration space and phase space are among the relevant ex-
amples, in general relativity theory, where space-time is a manifold and no longer
an affine space, and in the theory of groups: the rotation and Lorentz groups con-
sidered in Chapter 8 are among those which may to advantage be considered to be
manifolds.

In this chapter we define manifolds and maps between them, and go on to
explain what modifications must be made to the ideas introduced, in the affine
space context, in Chapters 1 to 7 to adapt these ideas to manifolds.

1. Manifolds Defined

We begin with two examples. Like the sphere, dealt with in the previous chapter,
these examples lack the property possessed by affine spaces that one may label
points with a single coordinate system so that

(1) nearby points have nearby coordinates, and
(2) every point has unique coordinates.

On the other hand, as in the case of the sphere, it is possible to choose for each of
these examples a set of coordinate systems such that

(1) nearby points have nearby coordinates in at least one coordinate system,
and

(2) every point has unique coordinates in each system which covers it.
Our first example is the configuration space of a double pendulum, which is

shown in the figure on the next page. A rod AB turns about an axis at A. A second
rod BC turns about a parallel axis fixed to the first rod at B, so that the whole
system moves in a plane. A mass is attached to the second rod at C. The joints are
supposed to be arranged so that B can turn in a complete circle around A and C
can turn in a complete circle around B. Thus the configuration of the system may
be specified by giving a point on each of two circles; in order that nearby positions
of the system should always be represented by nearby points in configuration space
it is necessary that the two circles be configured into a torus. Suppose for example
that the position of the rod AB is represented by an angular coordinated which
runs from 0 to 2,r, that of BC by another angular coordinate V which also runs
from 0 to 27r. Then configurations for which 0 = 27r (and V takes any specified
value) must be identified with those for which d = 0 (and V takes the same value),
since these values of 0 represent the same positions of the rod AB. In the same
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way, configurations for which 'p = 2or must be identified with those for which 'p = 0.
In the figure the identifications are indicated by arrows. Imagining the resulting
rectangle made out of indiarubber one may join the identified edges and the result
is a torus.

Fig. 1 A double pendulum.

The problem of introducing coordinates on the torus is similar to that which
arises for the circle and the sphere; a fairly straightforward covering by four coor-
dinate patches is shown in the next figure.

Fig. 2 Coordinate patches on a torus.

Our second example is the configuration space of a rigid body turning about
a fixed point. Any given position of the body may be specified by the (unique)
rotation which takes it from some standard position to the given position. Thus
the configurations of the body are in 1 : 1 correspondence with the elements of the
rotation group SO(3), and two rotations should be considered nearby if they yield
nearby configurations of the body. The simplest parametrisation of the rotation
group for the inspection of the group as a whole is the one whereby rotation through
angle t about axis with direction n (a unit vector) is represented by the vector tn
In this way every rotation is represented by at least one point inside or on the
surface of the sphere of radius x. However, diametrically opposite points on the
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surface represent the same position of the body, achieved by rotations through a in
opposite senses, and must therefore be identified with one another. We cannot use
these parameters as coordinates if we wish to preserve the uniqeness of labelling
enjoyed by points in an affine space.

These two simple examples taken from mechanics, together with the examples
already discussed in Chapter 9, point the need for a definition of a kind of space
more general than affine space, in which nevertheless the use of coordinates remains
a possibility.

Charts and manifolds. A manifold is a set in which it makes sense to intro-
duce coordinates, at least locally. In this respect it behaves locally like an affine
space, except that there are no preferred systems of coordinates comparable to
affine coordinates. The definition may conveniently be reached in two stages, the
first establishing the topological properties, the second, differentiability.

Let M be a topological space. If every point of M has a neighbourhood home-
omorphic to an open subset of R'", and if furthermore it is a Hausdorff space
with a countable basis, then M is called a topological manifold of dimension m
(or topological m-manifold). The latter restrictions prohibit various more or less
bizarre constructions which would otherwise qualify as manifolds. However, this is
a somewhat technical matter which need not cause undue concern.

More structure is required in order that the usual operations of the calculus
should be possible. This structure may be introduced by specifying admissible
coordinate systems. Let M be a topological m-manifold. A chart on M comprises
an open set P of M, called a coordinate patch, and a map 0: P -. R' which is a
homeomorphism of P onto an open subset of R'. If x lies in P, then the pair (P, ')
is called a chart around x. The definition of a topological manifold guarantees the
existence of a chart around each point.

The map 0 is used to assign coordinates to points of P in exactly the same
way as in an affine space (Chapter 2, Section 6): fI° denotes the projection of R'
on its ath factor; the coordinate functions on P are the functions

x°=11°ot/i:P-»R a=1,2,...,m.
We need next to establish a criterion of mutual consistency of coordinate sys-

tems by specifying conditions to be satisfied when two charts overlap. It is at this
point that the concept of differentiability, or smoothness, is introduced into the
structure. Suppose that (P1,1O1) and (P2,t,12) are two charts on M, with overlap-
ping coordinate patches. In the overlap P, n P2 two maps to R' are specified. Since
these maps are homeomorphisms they are invertible, and therefore maps between
open subsets of R' may be specified by

x = t 2 o+, :i1I(PinP2)-' 2(P1nP2)
X-' = 01 o,/,z':02(P1 n P2) -' 01(PI n P2)

The question of smoothness is now reduced to consideration of the maps X and
X "'. Precisely the same conditions will be imposed as in the affine case, namely
that X and X-' are both C"°, or smooth, which is to say Ck for every k. This
means that the functions relating the coordinates in two overlapping patches may
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Fig. 3 A chart around a point in a manifold.

Fig. 4 Two overlapping patches in M and a change of coordinates.

be differentiated any number of times. The difference between this and the affine
case is that here all coordinate systems are curvilinear, none having priority over
others, and all of equal status, only the relations between them being restricted.
Pairs of charts related in this way are said to be smoothly related. It is convenient
to say that two charts are smoothly related also if their domains do not intersect.

Since smooth functions of smooth functions are smooth functions, the compo-
sition of smooth maps yields a smooth map. Consequently it makes sense to allow
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all charts which are smoothly related. This is the mathematical realisation of the
physical idea that all coordinate systems are equally good. The inclusion of all such
charts is the point of the following definitions.

Let M be a topological manifold. A smooth atlas for M is a collection of pairwise
smoothly related charts whose coordinate patches cover M. Thus every point of M
must lie in some patch of the atlas, and thereby acquire coordinates, and where
two sets of coordinates are both in operation they must be smoothly related. An
atlas is called complete if it is not a proper subcollection of any other atlas; this
means that there is no chart, smoothly related to all the charts in the atlas, which
is not itself already in the atlas. Any atlas may be completed by adding to it all
the charts not already in it which are smoothly related to those in it. There is no
question of enumerating all the charts in a complete atlas. The point is merely that
any coordinate system which is related to those of an atlas by smooth coordinate
transformations is as admissible as those already in the atlas.

An m-dimensional topological manifold M, together with a complete atlas, is
called an m-dimensional C°O, or smooth, differentiable manifold. A complete atlas
is also sometimes called a differentiable structure for M.

Suppose that (PI,+'1) and (P2,'b2) are two charts on an m-dimensional smooth
manifold M with overlapping coordinate patches. We may use the map X and its
inverse to express the relation between the coordinates belonging to PI and to P2,
as follows. If x, = fl' o 01 and xz = fi° o 02 denote the coordinate functions on PI
and P2 respectively then

The
X-I

X2 = X'(x1) xi = (X-1) (x4)
invertibility of X implies that its Jacobian matrix and the Jacobian matrix of
are inverses of each other. This is often expressed in the form

axz ax; _ ° ax; aZ, __

ax; axz
6s

axz ax;
66

Examples of manifolds. We conclude this section by giving some more examples
of manifolds and atlases. It is enough to give one atlas, which may in principle
always be completed.

(1) Any open subset P of R' is a manifold, with an atlas consisting of one
chart (P,V)), with >b the identity map on R' restricted to P. This example is
enough for almost all work in tensor calculus, except where integration is involved.
In particular, the whole of R' may be regarded as a manifold, m = 1,2,...

(2) Any affine space, with an atlas consisting of one chart of affine coordinates,
is a manifold. In this example the affine structure is exploited only to construct
the coordinate chart, and apart from that it may be ignored. Permissible curvilin-
ear coordinates on affine space are precisely those coordinates which are smoothly
related to affine coordinates.

(3) The m-sphere
m+1

S" = { (XI ,x?.,...,x"+I) E £m+I I E (xk)2 = 1
k=I
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is a manifold. At least two charts are needed. Stereographic projection may be
generalised from 3 to m dimensions to yield the required charts, one by projection
from each pole (0, 0, ... , 0, ± 1).

(4) The Cartesian product of two manifolds may be made into a manifold.
Let M and N be manifolds; then M Y N is the set of pairs (x,y) with x E M
and y E N. If is an atlas for M and {(Q6,d,a)} is an atlas for N then

x Q,,,'I'Oa)) is an atlas for M x N, where 4',n: P x Q --+ R'"+" is given by
an(x,y) _ (t o(x),4.a(y)).

(5) Let M he a manifold, and let 0 he an open subset of M. Let {(P,,, be
an atlas for M. Then {(P, n 0, 0.l p.,r,p)} is an atlas for 0, as manifold. It follows,
in particular, that if (P,,k) is a chart on M then P may be regarded as a manifold
with {(P,0)} as an atlas, consisting of a single chart.

(6) Let M" (R) denote the set of n x n matrices with real entries, and for
any A E M"(R) let xh(A) denote the entry in the ath row and bth column of A.
Then (xi , xz, ... 'X ;,'X2'. .. , xn) may be taken as coordinate functions on M"(R),
making it into an n2-dimensional manifold. If the singular matrices, defined by the
polynomial equation det(xh(A)) = 0, are removed what remains is an open subset
which may also be made into an n2-dimensional manifold.

2. Maps of Manifolds

A number of examples of maps between manifolds have already appeared in various
contexts: affine maps, assignment of coordinates by a chart, parametrisation of
surfaces in Euclidean space are all special cases of maps between manifolds. The
introduction of a geometrical structure such as a vector field may also be described
by a map, as will appear later on. In fact, almost anything worth talking about
may he described by a map. The definition and exploitation of maps depend on
the possibility of using coordinate charts both to give explicit form to maps and to
carry out computations.

The question at once arises, what maps should be allowed which are in a rea-
sonable sense compatible with the manifold structure. The answer is conveniently
formulated in terms of coordinate presentations. Let M and N be (smooth) mani-
folds, not necessarily of the same dimension, and let 0:.M N be a map. Let (P, r(')
and (Q, ) be charts on M and N respectively, chosen so that the overlap O (P) n Q
is not empty. This is always possible, whatever P may be, because every point of
t(P) lies in some patch of N. Let the coordinate functions in these charts be xa
on P C M (a = 1,2,...,m = dim.M) and y" on Q C N (a = 1,2,...,n = dim N).
The coordinate presentation of the map 0, with respect to these charts, is the map

o r¢ o 0 -1 which, on its domain of definition,
goes up from R' to M: V)--'
then goes across from M to N: 0
then goes down from N to R": .

The coordinate presentation o 0 o 0' of m is therefore a map of a subset of R'"
into R". To be precise, the domain of oto>i 1 is 0(45-1(0(P) n Q)), which is an
open subset of R', and its image is e(O(P) n Q), which is an open subset of R".
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Fig. 5 Charts for a map of manifolds.

A coordinate presentation of a map of manifolds is therefore a map of open subsets
of real number spaces.

The n functions on tP(O'I n Q)) c R' which give the coordinates y°
of O(x) in terms of the coordinates x° of x E P will be written 40°, so that the
coordinate presentation of 0 may be expressed in the form

y° = 0°(x°).

A map is called smooth if its presentations in coordinates are given by smooth
functions, for all charts of complete atlases for both domain and codomain manifold.
Most maps of interest in applications are smooth; and in the rest of this book,
maps may be assumed to be smooth, or it may be assumed that smoothness can be
proved from other assumptions made about them. Fortunately it is not.necessary
to examine the presentation of a map in every pair of coordinate charts of complete
atlases for both its domain M and codomain N to determine whether it is smooth.
Provided that a map has a smooth coordinate presentation with respect to enough
charts on M to cover it, and enough charts on N to cover it (that is, with respect
to an atlas for M and one for N), it will be smooth: for its coordinate presentation
with respect to any charts smoothly related to those of the two atlases will clearly
also be smooth.

An important special case of a map of manifolds is a smooth bijective map
with a smooth inverse; such a map is called a diffeomorphism, and two manifolds
connected by a diffeomorphism are said to be diffeomorphic. From the differential-
geometric point of view, diffeomorphic manifolds not distinguished by some other
structure are effectively the same. Notice, by the way, that a map 0 can be smooth
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and invertible without having a smooth inverse; the map R -+ R by x F-+ x3, whose
inverse is not smooth at 0 (Chapter 2, Exercise 19), is a simple example.

Affine transformations of an affine space are diffeomorphisms of the affine space
to itself. Rotations of a sphere about its centre are diffeomorphisms of the sphere to
itself. According to Examples 3 and 5 the sphere with either North or South pole
deleted is a manifold. On this manifold, stereographic projection to the plane is a
diffeomorphism. However, the sphere as a whole is not diffeomorphic to the plane.

Immersions and imbeddings. If 0:.M - N is a smooth map, if (P,,,) is a
chart about some point x F M, and if (Q, is a chart about t(x) E N, we may
form the Jacobian matrix (80°/8xa) of 0, or strictly of its coordinate presentation.
The Jacobian matrix of 0 changes when the coordinates are changed; but it does
so by pre- and post-multiplication by non-singular matrices, namely the Jacobian
matrices of the coordinate transformations in R' and R' respectively. It follows
that the rank of the Jacobian matrix of 45 at any point is independent of a change
of coordinates and is therefore a property of 0 itself: we call it the rank of 0 at the
point.

A smooth map whose rank does not vary from point to point is rather easier to
deal with than one whose rank does vary. It follows from the results of Chapter 6,
Section 4 that if a smooth map 0 has constant rank k on M then coordinate charts
may always be found on M and N with respect to which the coordinate presentation
of 0 is given by

40(e) S) (P (x') -- x.2 ... jk(x°) = zk
ok+I(xa) _ 10k+2(xa) _ n(xa) = 0.

Two particular extreme cases stand out. First, when k = n < m, the coordinate
presentation of fi corresponds to projection of R' onto the first n factors. We call
a smooth map whose rank is everywhere equal to the dimension of its codomain a
submersion. At the other extreme, when k m < n, the coordinate presentation
of corresponds to the injection of R' into Rn as a coordinate m-plane. We call
a smooth map whose rank is everywhere equal to the dimension of its domain an
immersion.

It is clear that an immersion is locally injective: no two points of M lying in a
coordinate neighbourhood in which 0 has the coordinate presentation given above
can have the same image. However, an immersion need not be injective globally.
Moreover, an immersion may have other undesirable global features: for example,
the curve whose image is shown in the figure is an immersion of R in R2, but its
image approaches a point of itself asymptotically. This is a topological peculiarity
of the map; the point of the following definition is to exclude such possibilities. A
smooth map is an imbedding if it is an injective immersion and is a homeomorphism
onto its image.

Submanifolds. If 0: M - N is an immersion then in the special coordinates
described above the image '(M) c_ N is represented locally by a coordinate m-
plane, and the first m of the coordinates on N serve as coordinates for it. It is
therefore appropriate to consider 46(M) as, locally, a submanifold of N. We say
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Fig. 6 An immersion whose image approaches itself.

that a subset of N which is the image of an immersion M -i N is an immersed
submanifold of At, while a subset of N which is the image of an imbedding is an
imbedded submani/old, or simply a submani/old of N.

Suppose that S is a subset of a smooth manifold N with the property that
about each point in S there is a chart of N such that the part of S covered by the
chart coincides with the coordinate m-plane y-+1 = ym+2 = .. = y" = 0. Then
the restrictions of these charts to S define on it the structure of a smooth manifold
of dimension m, and the injection S -. N, which maps each point of S, considered
as a differentiable manifold in its own right, to the same point regarded as a point of
the differentiable manifold At, is an immersion. Thus S is an immersed submanifold
of N.

In particular, if f'"+1, f,12'... , f" are smooth functions on N, then the sub-
set S of N on which they simultaneously vanish is an immersed submanifold of
N, provided that the differentials df m+l , df "'+2, ... , df" are linearly independent
everywhere on S. For when this is the case the matrix of partial derivatives of the
coordinate representatives of the f' (i = m + 1, m + 2,... , n) with respect to any
coordinates (z°) on N has rank n - m, and so without loss of generality it may
be assumed that the (n - m) x (n - m) matrix (8f'/8z') is non-singular. It then
follows that if

1 I ] m m m+1 m+1 o n n ey = z ,y = Z2'...' y = z ,y = I (z ),...,y = ! (z )

then the y° form a coordinate system with respect to which S is given by
ym+1 = ym+s = ... yn = 0

Exercise 1. Show that, more generally, if 0: all -. JV2 is a submersion then the inverse
image of any point of N: is an immersed submanifold of )1 . 0

3. Curves and Functions

In this section we generalise to the context of manifolds the ideas of curve and
function introduced in Chapter 2, Section 1 and used continually since then.

Curves. Let M be a smooth manifold. A curve in M is a map R -+ M, or a map
I -+ M where I is an open interval of R. A curve is smooth if it is defined by
a smooth map of manifolds. It may be helpful, however, to give the definition of
smoothness for a curve in detail.

Let o: I -+ M be a curve in M (I may be the whole of R). The curve a is said
to be smooth on a subinterval J of I if there is a chart (P, 0) of M such that o(J)
lies in P and the coordinate presentation of a, (a°) = (a° o a): J -+ R"`, is given
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by smooth functions. If a(J) lies in two overlapping coordinate patches and a is
smooth in one chart then it will also be smooth in the other, because of the assumed
smoothness of coordinate changes. Since the whole of M is covered by charts, so
is the whole of a(l), and o is called smooth (without further qualification) if its
domain is covered by overlapping intervals in each of which it is smooth. This
definition depends on the differentiable structure of M but not on the choice of
particular charts.

Fig. 7 Coordinate presentation of a curve.

No fresh ideas are needed in order to generalise to manifolds the definitions
of constant curve, or reparametrisation, which are therefore not repeated here (see
Chapter 2, Section 1).

Functions. The definition of smoothness for a function on a manifold follows a
similar pattern. A (real) function on M is a map f : M -+ R.

As in the affine case, there is a problem of notation for functions, which is re-
solved in the same way. We distinguish a function from its coordinate presentation,
but now the latter cannot be given all over the manifold at once unless there hap-
pens to exist a global coordinate system. If (P, +') is a chart on M with coordinates
(s°), then the coordinate presentation of a function f in this chart is the map

f== fo0-':{i(P)CRt-R.
The coordinate presentation may be distinguished by an index identifying the

coordinates which are being used, as before.
If the function f Z is a smooth function of m variables then f is called smooth

in P. Because charts are smoothly related, if f is smooth in P, it is also smooth in
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Fig. 8 Coordinate presentation of a function.

the overlap with P of the patch P' of any other chart (P',0'). A function which
is smooth on all the charts of an atlas is called a smooth function. Thus a smooth
function on M is a map M -' R which is smooth as a map of manifolds. As in the
affine case, we shall deal always with smooth functions.

The smooth functions on M form an algebra, which we shall denote 1(M).
One useful consequence of our choice of smoothness condition is the existence

of so-called bump functions. Let 0 be an open subset of a smooth manifold M
and x a point of 0. Then one can find a smooth function b such that b(x) = 1
but b(y) = 0 for y V 0. The construction is based on the smooth function h
on R described in Chapter 2, Exercise 4 which takes the value 1 on some closed
interval containing a given point of R but vanishes outside a larger open interval.
Let P be a coordinate patch about x, with coordinates chosen so that x is at the
origin; it is convenient to think of the coordinate space as being Euclidean. Let R
be a positive number sufficiently small that the open ball of radius R lies in the
coordinate neighbourhood and the corresponding subset of P is contained in 0.
Define b as follows: for y V P, b(y) =-0; the coordinate presentation of b on P is
given by b=(xi,x2,...,xm) = h(r), where r is the usual radial coordinate and h
the smooth real function which takes the value 1 on I-R/2, R/2J say and vanishes
outside (-R,R). Then b has the required properties: it is a bump function at x.
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Tangent vectors. There are some manifolds, such as affine spaces, on which the
idea of a displacement vector makes sense. However, on an arbitrary manifold with-
out appropriate additional structure there is nothing analogous to a displacement
vector. For instance, the differences between the coordinates of two arbitrarily cho-
sen points may be altered by a coordinate change in a completely arbitrary way
without any effect on the coordinates of two others, and there is no longer any
reason to prefer one coordinate system over another. Consequently the definition
of a tangent vector as a limit of displacement vectors along chords is not amenable
to generalisation to the case of manifolds.

The directional derivative definition, on the other hand, can be generalised
quite readily. In the first place, if or is a smooth curve in M and f is a smooth
function on M, then f o a is a smooth real function of one variable and (exactly
as in the affine case) the derivative d/ds(f o a) (0) represents the rate of change of
the function along the curve. In any coordinates (xa) of a chart around the point
x = a(0)

d

de (f o a) (0) = ds (f =(aa))(0) = 8x6 ab(0)'

the partial derivatives in the last expression being evaluated at (xa(x)).
In the affine case, the derivative of a function along a curve is the same for any

two curves with the same tangent vector at a chosen point, and all such curves con-
stitute an equivalence class defined by and defining the tangent vector. Moreover,
the directional derivative so defined has the properties

v(af + bg) = avf + bvg linearity

v(fg) = (uf)g(x) + f(x)(vg) Leibniz

for all real a, b and all smooth functions f and g. Conversely any map of functions
which enjoys these properties fixes a unique tangent vector v at x.

We now turn this around, following the revised definition for the affine case
given in Chapter 2, Section 2, and define a tangent vector at a point x of a smooth
manifold M to be an operator on smooth functions on M which is linear and satisfies
Leibniz's rule as set out above.

We shall denote the set of tangent vectors to M at x by T.M. To make this
set into a vector space we define the linear combination av + bw by

(av + bw) f = avf + bwf

where v,w E TZM, a,b E R and f E 7(M). The linear space T=M is called the
tangent space to M at x.

The partial differentiation operators 8a = 8/8xa with respect to the coordi-
nates xa in any chart around X are tangent vectors, whose action on functions is
given by

f '- aa! = axa (xb),

the partial derivative being evaluated at the coordinates (xb) of x. We shall show
that these coordinate tangent vectors form a basis for the tangent space T=M, which
is therefore of (finite) dimension rn, the dimension of the manifold itself. To do so
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we shall need to use the following fact of analysis: if F is any smooth function on
R"` then there are smooth functions F,, such that

F(O) + r°FQ(e).

This follows from the fact that

fo

for

1 dt {F(tCc)}dt = F(i;`) - F(O);

f ` d {F(te°)}dt = e°J' eE (tCc)dt

and the integral is a s mfunction for each a. Note that

f(o) = F.(0).

Suppose that v is any tangent vector at x E M, so that v is a linear operator on
smooth functions which obeys Leibniz's rule. We show first that such an operator
can be made to act on smooth local functions defined near x, so as still to satisfy
linearity and Leibniz's rule. Let f be a smooth local function defined near x. We
call a smooth globally defined function F an extension of f if F and f agree on
some neighbourhood of x (contained in the domain of f). Extensions of a local
function may always be found, for example by multiplying it by a suitable bump
function. We propose to define the operation of a tangent vector v at x on a local
function f by setting of = vF where F is an extension of f: but this will make
sense only if vF has the same value regardless of the extension chosen. If Fl and
F2 are two extensions of f then F, - F2 vanishes on a neighbourhood 0 of x. Let
b be a bump function at x, which vanishes outside some open set whose closure is
contained in 0. Then b(F, - F2) is identically zero, while b(x) = 1. By linearity of
the operator v

v(b(F, - F2)) = v(0) = 0,

while by Leibniz's rule

v(b(Fi - F2)) = v(b)(Fi(x) - F2(x)) + b(x)(v(Fi) - v(F2))

= v(Fj) - v(F2).

Thus v(Fi) = v(F2), and the operation of v on local functions is well-defined.
Now let x° be the coordinate functions of a coordinate chart about'x, chosen

so that (x°(x)) = 0, so that x is at the origin of coordinates. Then we may define m
numbers v° by v° = v(x°). We shall show that, with respect to these coordinates,
v=v°8Q.

First of all, it follows from Leibniz's rule that for any function f

o f = v(1 f) = v(1)f(x) + 1 of

and therefore v(1) = 0. Then by linearity, for any c c- R

vc = cv(1) = 0.
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Thus v certainly vanishes on constants, as one would expect. Now for any smooth
function f, by the analytical result above there are local smooth functions fa such
that f = f (x) + faxa, where fa (x) = as f (x). Then since f (x) is a constant (the
value of f at the fixed point x)

of = (vfa)xa(x) + fa(x)v(xa) = vaaaf(x)

as required. The coordinate vectors as certainly span TZM; they are clearly linearly
independent (since (9ax° = bb); they therefore form a basis for T.M.

Note that in this argument essential use is made of the fact that the functions
concerned are smooth: bump functions are required, and only when f is smooth
will the corresponding fa also be smooth.

Exercise 2. Show that if xa and to are coordinates in two charts around s then as =
(ax°/ata)a,. o
Exercise S. Show that the derivative along a curve a defines a tangent vector, whose
components with respect to a coordinate basis are ba(s). o

In the tensor calculus a tangent vector is usually defined by giving the com-
ponents in one coordinate chart and asserting that under change of chart they
transform by the formula given in Exercise 2. Many modern authors, on the other
hand, define a tangent vector to be the equivalence class of curves which yields the
appropriate directional derivative. These definitions are both equivalent to the one
given above, and in any particular context one should employ whichever is the most
convenient.

Level surfaces and covectors. The ideas of level surfaces and linear forms may
be taken over from the affine case essentially unchanged. If f is a function on M
and c is a real number then the set of points f -(c) at which f takes the value
c, if not empty, is called a level surface of f. If a is a curve lying in f'' (c) then
d/ds(f o a) = 0 at any point of a, so that the tangent vectors to curves in the level
surface are those which satisfy of = 0.

For fixed f and x the map TsM R by v '--+ of defines a linear form df
on T=M called the differential of f. The vector space of linear forms on T=M is
called the cotangent space at x and denoted T. X and the linear forms are often
called cotangent vectors or covectors. The differential of f, provided it is not zero,
determines the tangent space to a level surface of f, as the subspace of TM of
codimension I consisting of the tangent vectors which it annihilates. If df = 0 at
x, on the other hand, the level surface may not have a well-defined tangent space
at x.

case.

The idea of a tangent hyperplane does not survive generalisation from the affine

As in the affine case, the covectors dxa, the differentials of the coordinate
functions, constitute a basis for T. M dual to the basis {aa} of T.M.ZAny element
a of TT M may therefore be written uniquely in the form aadxa, where as = (aa, a).
In particular, since of may always be expressed as of = vaaf=/axa in a local chart
about x, we have

a
df = af.dxa = (aa,df)dxa,
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so that the differential of a function is effectively the same as the total differential
encountered in elementary calculus; but in the absence of a metric, df is to be
distinguished from the gradient vector, as before.

Exercise 4. Show that if x° and f° are coordinates in two charts about s then d+' _
(8i°/8xb)dxb. 0

In the tensor calculus a covector is usually defined by giving the components
in one coordinate chart together with the above transformation formula.

Induced maps. Let 0:.M N be a smooth map of manifolds. Then 0 may be
used to move objects back and forth between M and N, in particular, curves and
tangent vectors from M to N, functions and covectors from N to M.

Let a be a curve in M. Composing a with ¢, one obtains a curve 0 o or in N,
called the curve induced by 4) from or.

Now let h be a function on N. Composing 0 with h, one obtains a function
h o m on M, called the function induced by 4) from h.

Exercise 5. Show that if 0, a and h are smooth, so are 0 o a and h o 0. 0
Exercise 0. Show that the map T(N) T(M) by h .-+ ho4) is an algebra homomorphism;
that is, it preserves sums and products of functions. 0

Notice that d induces a curve in N from a curve in M, but induces a function
on M from a function on N. Thus curves go cogrediently (in the same direction as
0) while functions go cotragrediently (in the opposite direction). This is just what
one would expect from the affine case.

It is straightforward, and very useful, to extend induced maps from curves and
functions to vectors and covectors.

Let ¢: M -. N be a smooth map and v a tangent vector to M at x. An operator
q5.v: 3(N) R is defined by

(m.v)h = v(h o 0) for all h E T(N).

This operator is a tangent vector at 4)(x), because if f and g are functions on N
and a and b any numbers then

(af + bg) o 4) = a(f -(k) + b(g o m) and (fg) o 4) = (f o 4))(g o 4)),

(Exercise 6) so that

(0.v)(af 4 bg) = a(4).v)f + b(O.v)g

and

((4).v)f)g(4)(x)) + f(4)(x))((4).v)g).

The tangent vector 0.v so defined is said to he induced from v by 0, and 0.:T=M
T,OIZIN by v 4).v is called the induced map of tangent vectors.

Exercise T. Show that if v is a tangent vector at some point to a curve a in M then eb.v
is the tangent vector to the induced curve in N at the corresponding point. 0
Exercise 8. Show that 0. is a linear map of vector spaces. 0
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Exercise 9. Show that a smooth map 0 is an immersion if and only if 0. is everywhere
injective, and a submersion if and only if 0. is everywhere surjective. 0

All this may be turned around and used to induce covectors, instead of vectors.
However covectors, like functions, go in the opposite direction to 0. Let a be a
covector at 6(x) F N. A linear form m'a on T=M, hence a covector at x E M, is
defined as follows:

(v,0,0r) = (0.v,a) for all v E T.,M.

Thus m':Tml=1N Tz M is just the adjoint of the linear map 0.:T,, M TAI=1N,

and is therefore a linear map of cotangent spaces. It is called the induced map of
covectors.

Exercise 10. Show that for any h E 3(N), 0' (dh) = d(h o m). o
Exercise 11. Show that if K: K M and µ: M -- N are smooth maps of manifolds then
(fit o K). = it. o K. and (ft o K)' - K' O /t'. 0

It is essential to be able to compute induced maps in terms of coordinates.
Exercise 12. The coordinate presentation or the map 0 is y' = 0'(xa), where (za) are
local coordinates around x E M and y' are local coordinates around O(x) in N. Show
that if v = vaa. E TAM then '.v = v°(8a¢B)as, while if a = apdyp E T;(=)N then
O'a = ao(aa0p)dx', 0

4. Vector Fields and Flows

In this section we continue the generalisation to the context of manifolds of ideas
introduced earlier in the alfine case; we deal now with the one-parameter groups,
vector fields, flows and congruences introduced originally in Chapter 3.

One-parameter groups of diffeomorphisms. Recall (Section 2) that a diffeo-
morphism of a manifold M (to itself) is a smooth map 0 with a smooth inverse.
Combining this with the idea of a one-parameter group (Chapter 3, Section 2)
we define a one-parameter group of diffeomorphism8 of M to be a smooth map
(k: R x M - M with the properties

(1) for each t, fit: M -. M by x g5i(x) - 4'(t,x) is a diffeomorphism
(2) 46(0, x) = x for all x E M
(3) for all z E M and all s, t E R, 46(s, m(t, x)) = 0(s + t, x).

This definition is based on the construction in Exercise 5 of Chapter 3; it incor-
porates a convenient smoothness condition. Because of (2) and (3), the diffeo-
morphisms mt satisfy the conditions mo = id, and 0, o Ot = asa+t. The set of
all diffeomorphisms of M forms, under composition, a group diffM and the map
t Ot is a homomorphism of groups R -- diffM, the real line being considered as
an additive group (compare Exercise 6 of Chapter 3).

Let x be any point of M. The set of points into which x is mapped by 4St as t
varies is a smooth curve az called the orbit of x under (kt and given by o=(t) = Ot(x).
If y lies on the orbit of x, so that y = a=(s) _ 0,(x) for some s E R, then
ay(t) = of (O,(x)) = (b.,+t(X) and so the curves a,, and oy are congruent:
they differ only by a change of origin of the parameter (Chapter 2, Section 1). Every
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point of M lies on the orbits of a congruent set, and no two congruent sets intersect.
As in the affine case, a collection of curves on M, such that each point lies on the
curves of a congruent set and no two curves from distinct congruent sets intersect,
is called a congruence of curves. A unique tangent vector at each point of M may
be associated with a one-parameter group or a congruence, namely the tangent
vector to the orbit or congruent set through that point. A choice of a tangent
vector at each point of M is called a vector field on M; thus a unique vector field is
associated with any congruence or one-parameter group. This vector field is called
the (infinitesimal) generator of the one-parameter group.

A vector field V is smooth if the function Vf is smooth whenever the function
I is smooth.
Exercise 13. Show that a vector field is smooth if and only if its components in the charts
of any atlas are smooth functions. Derive the transformation law for the components of
a smooth vector field under a coordinate transformation (compare Exercise 2, where the
rule for a coordinate vector is given). o

The vector fields on M form a module over the algebra of smooth functions
F(M); we shall denote this module X (M). Unlike the affine case, where the existence
of global coordinates ensures that there is a basis for the module of vector fields,
X(M) need have no basis: the most that can be said is that any point has a
neighbourhood on which local vector fields are defined which form a basis of the
tangent space at each point in the neighbourhood. The coordinate fields on any
coordinate patch provide an example of such a local basis.

Flows. As the examples given in the affine case show, there are vector fields
on manifolds which do not generate one-parameter groups, and the more general
concept of a flow introduced in the affine case may be generalised to encompass
these examples.

A flow (or local group of local transformations) on a manifold M is a smooth
map 0: D -. M, where 0 is an open subset of R x M which contains {0} x M, such
that 4'(0, x) = x for each x E M and that 4'(s, 4'(t, x)) _ ¢(s + t, x) whenever both
sides are meaningful. As before, 4e is given by 0&) _ 0(t,x). Orbits, changes of
origin, congruent sets, congruences and generating vector fields are defined exactly
as in the affine case (Chapter 3, Section 3).

A unique vector field is associated with every flow, and the point of the defini-
tion, of course, is that a unique flow is associated with every vector field. The only
novelty here is that the integral curves have to be pieced together as one moves from
one coordinate chart to another. This tedious process yields the following result.
Let V be a smooth vector field on M. Then there exists an open subset D of R x M
containing {0} x M and a flow 0 on D having V as generator. With this result one
may retrieve the diagram drawn for the afiine case:

vector field

flow congruence

The implications expressed in this diagram are that whenever one of the three
constructions is given existence of the other two is assured.
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Lie transport and the Lie derivative. The finite version of Lie transport devel-
oped in the affine case in Chapter 3, Section 5 depends on the existence of displace-
ment vectors and cannot be generalised to manifolds. However, the infinitesimal
version generalises without significant alteration, and leads to the definition of the
Lie derivative. Let V be a vector field on a manifold M and ¢ the flow which it
generates; let W be a vector field given on an integral curve or of V, not necessarily
maximal. We may without loss of generality assume that x = a(0). From the defi-
nition of a flow it follows that there is an open neighbourhood 0 of x and an open
interval I containing 0 for which 4t(y) is determined for every y E 0 and t E I.
For t E I the vector 4'_t.W(t) may be constructed. The Lie derivative of W at x
is the vector

li o t (4)-t.W(t) - W(0)) = d

By carrying out the same construction at each point of the curve, a vector field
CVW is obtained. In many applications 0 is a one-parameter group, not merely
a flow, and W is defined all over M, and then the precautions about domains of
definition are unnecessary.

If a vector w is given at one point, a vector field W may be constructed along
the orbit of that point by W(t) = 4t.w. A vector extended to a vector field in this
way is said to be Lie transported along the flow. The vector field W then has the
property CvW = 0 wherever it is specified. Conversely, a vector field W for which
this condition holds must have been obtained by Lie transport.

The Lie derivative has, as in the affine case, the properties

Cu(aV + bW) = aCuV + bCuW
U,V,W E X(M),a,b E R

Lv(fW) = fJvW + (Vf)W f E 1(M).

The Lie derivative of a covector field a is defined, as in the affine case, by

Cva(0) = lim(4)t'a(t) - a(0))

and the equations

V (W, a) = VV W, a) + (W, CV a)

Cv(df) = d(Vf)

are also satisfied. The arguments leading to these results do not depend on the
affine structure and may be repeated word for word in any coordinate chart.

The bracket of two vector fields, considered as operators on functions obeying
the linearity and Leibniz rules, is their commutator as before; it is related to the
Lie derivative in the same way as in the affine case. Thus

CvW = [V,WI = -CwV
[Cv,Cwl = ClV,wl.

The argument given to establish the first of these in the affine case, in Sections 7
and 9 of Chapter 3, may be easily adapted to the more general situation.
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The definition of X17-relatedness of vector fields given in Chapter 3, Section 10
extends without obvious change to the case where * is a smooth map of manifolds;
and the argument that shows that the brackets of 'Y-related vector fields share that
property goes through unchanged.

5. Tensor Fields

In this section we make some generalisations which do more than merely adapt to
manifolds ideas already developed in the affine space case: we introduce a general
idea of tensor fields, which encompasses the exterior forms introduced in Chapter 4,
the bilinear forms and metrics of Chapter 7, the covariant tensor fields of Chapter 8
and the curvature tensor of Chapter 9. We begin with the algebraic foundations of
the concept.

Let V1, V2, ... , V, be vector spaces (over R). A map

is multilinear if it is linear in each factor, that is , if
oI

T(vi,v2,...,cvk + c vk,...IV')

= eT(v1,v2,...,vk,...,vr) + C T(v1,v2i...,vk,...,vr)

for k = 1, 2, ... , r. Now let V be a fixed vector space (over R), and let each of
U,, V2, ... , V, be either V' or V, so that there are altogether p copies of V' and q
copies of V (in some order), with p+q = r. A multilinear map T: V1 X V2 x . . X Vr -
R is then called a tensor of type, or valence, (p,q) over V. It may happen that all
the copies of V' appear first and all the copies of V afterwards, in the Cartesian
product, so that

T: V' x ... V' x V x ... V - R,
p copies q copies

but this need not be the case. If (ea) is a basis for V and {Ba} the dual basis for
V', then T is determined completely by its action on each sequence chosen from
these-in the case just mentioned, by

a, a-2 ...ar a avT 6,62 ...6, = T (B ,0"', ...,8
where all the a s and bs range over 1, 2, ... , m = dim V. These Mr numbers are
called the components of T with respect to the chosen bases.

A tensor of type (1, r) as defined here is a multilinear map V' x V x x V -. R.
Thus if T is a tensor of type (1, r) and v1, v2, ... , v, are any fixed elements of V, then
the map V' -. R by a --' T(a, vi, v2, ... , v,) is linear; it is thug an element of (V') *,
the space dual to V'. But this is just V. There is thus an alternative interpretation
of a tensor of type (1, r): it is a multilinear map of V x V x x V -' V, where
there are r copies of V in the domain.
Exercise 14. Show conversely how an r-fold multilinear map V x V x x V -+ V may
be used to define a tensor of type (1,r) in the original sense. O

Thus the curvature tensor at a point of a surface, as defined in Chapter 9, is a
tensor of type (1,3) according to this alternative definition.
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Notice that the type counts the number of copies of V and V' which appear,
but not their order, so that a trilinear map V x V x V' -+ R and a trilinear map
V x V' x V -+ R are of the same type (1,2), for example.

The tensors of a given type, with the factors of the Cartesian product in a
given order, form a vector space, with addition defined by

(CIT1 + C2T2)(v1,v2,...,vr) = CIT1(V1,V2,...,Vr) 4- C2T2(v1iv2,...,V,),

where the argument vk belongs to the kth factor of the Cartesian product, be it V
or V'.
Exercise 15. Show that the dimension of a space of tensors of type (p, q) is m" where
m=dimV and r=p+q. O

There is a natural isomorphism between tensors of the same type with the
factors in different orders, defined by rearranging the factors. For example, if T: V x
V x V' - R is a tensor of type (1, 2), then a tensor T', of the same type but mapping
V x V' x V --+ R, may be defined by T'(v1i a, v2) = T(v1i v2, a) for all v1, v2 E V
and all a E V. Tensors which are related by such a rearrangement are called
isomers.

All these constructions may be carried out at a point x of a manifold M, taking
T=M for V and T, M for V. A tensor of type (p,q) at x E M is a multilinear
map V1 X V2 X X V, R, where each Vk is either T, ,*M or T.,M, there are p
of the former and q of the latter, and r = p + q. In practice, a tensor at a single
point of a manifold in isolation is not of much interest: one is far more likely to
have to deal with tensor fields. A tensor field on M is a choice of tensor at each
point of M, of a fixed type and order of factors in the argument. From a tensor
field of type (p, q) and any p 1-forms and q vector fields one may build a function
by the obvious pointwise construction; the tensor field is said to be smooth if the
resulting function is smooth for every choice of smooth 1-form and vector field
arguments. One may also define components of a tensor field with respect to any
local basis of vector fields and dual basis of 1-forms, simply by carrying out the
construction of components described above in the vector space context pointwise;
these components will be local functions, smooth if the tensor field is. We shall
have to deal only with smooth tensor fields.

Exercise 16. Show that under a change of coordinates the components of a tensor field
with respect to a coordinate basis transform linearly and homogeneously: for example

49±° ax` (9x1
= std air ai, Td. . o

This property of tensor fields is the defining property used in tensor calculus.
We have carried on the description of tensor fields so far by starting from a

pointwise definition. However, it may happen that a tensor field is defined in the
first instance as a map of vector fields and 1-forms: the curvature tensor introduced
in Chapter 9 is a case in point. In such a case it is useful to have a test of whether
or not a given object is tensorial which deals directly with the object as it is defined.
Now a tensor field of type (p, q) on M defines a map =I X C2 x X C, --+ 3(M)
where each Bk is either P(M), the 3(M) module of covector fields or 1-forms,
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or X (M), and there are p of the former and q of the latter in some order, with
r = p + q. Moreover this map is 3(M)-multilinear. It is this property of 1(M)-
multilinearity which provides the required test. For example if a is a given 1-form
then (V,W) -4 V (W, a) - W (V, a) - (JV^, a) is a tensor field of type (0, 2),
namely the 2-form da; but in contrast (V,W) - V (W, a) - W (V, a) is not a tensor
field, because V (f W, a) - f W (V, a) = f { V (W, a) - W (V, a)) + (V f) (W, a) and the
final term spoils the 3(M)-multilinearity (compare Chapter 5, Exercise 13 and the
subsequent discussion). Thus 3(M)-multilinearity gives one a filter for the removal
of objects which are not tensor fields. Its function is to guarantee that a tensor
field can be specified by giving its components with respect to any basis. There is
however a technical difficulty which arises in the present case which has not arisen
before. This is that the 7(M)-multilinearity property involves only globally defined
vector fields and 1-forms, while components are expressed in terms of local fields. We
should like to be able to say that an 7(M)-multilinear map =, x E2 x x 3(M),
where each Ek is either X' (M) or X (M), defines a tensor field; but we have no reason
to suppose, on the face of it, that such a map would make sense when its arguments
are only locally defined; and this would be an essential step in reconstructing an
R-multilinear map of tangent and cotangent spaces.

This problem does not arise for affine spaces (because of the existence of global
coordinate fields); nor does it occur for the curvature tensor on a surface (because
this can be expressed in terms of the metric in a way which makes its tensorial
nature clear). In fact it is true for a COO manifold that an 3(M)-multilinear map
=, x 22 X X Br --4 3(M), where each Sk is either X(M) or X'(M), defines a
tensor field; we shall now give an indication of the proof.

For ease of exposition we shall consider a specific case: type (1, 1) tensor fields.
We consider therefore a map T from X(M) to itself which satisfies the conditions

T(f,V, + f2V2) = fiT(V1) + f2T(V2)

for all f1, f2 E 7(M), V1,V2 E X (M). It is not at all clear that it makes sense to
talk of "the value of T at some point x E M"; but this is what we must establish to
show that T is indeed a type (1,1) tensor field, according to the pointwise definition.
Now the value of T (V) at x is well-defined, for any V E X (A) and any x E M,
since T(V) is just a vector field. The question to be faced is this: is the value of
T(V) at a point determined by the value of V at that point? Or does it depend on
the values of V at other points, as would be the case if T(V) were, in some sense,
a derivative of V? We shall show that the linearity condition implies that T(V)= is
completely determined by V.

We show first that T is well-defined on local vector fields. The argument is
similar to the one given already in the discussion of tangent vectors in Section 3.
Every local vector field may be extended to a global one by multiplying it by a
suitable bump function. The definition of T may thus be extended to apply when
its argument is a local vector field, but this will make sense only if the result does
not depend on how the local vector field is extended. We must therefore show that
T(V)= depends only on the values of V in some neighbourhood of x. Suppose first
that V is zero on some neighbourhood 0 of x. Let 0 be an open set containing
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x whose closure is contained in 0, and let b be a bump function which takes the
value 1 at x and which vanishes outside 0. Then the vector field bV is identically
zero, and since by its assumed linearity T maps the zero vector field to the zero
vector field, T(bV) = 0. Thus bT(V) 0, and b(x)T(V)= = 0; but b(x) = 1, and
therefore T(V )r = 0. For given 0, this conclusion holds for every x E 0: and so
if V is zero on 0, so is T(V). It follows that if V, = V2 on an open set 0 then
T(VI) = T(V2) on 0, and therefore that T is well-defined on local vector fields. To
evaluate T on a local vector field V whose domain is the open set 0 we may choose
any global vector field V which agrees with V near x E 0 and set T(V ), = T(V)_.
Moreover, T satisfies the same linearity conditions whether its arguments are local
vector fields and functions or global ones. So suppose that (U,) is a basis of local
vector fields on some open set 0. Then

T(U,) T,,Ub

for some local functions 71, on 0; and for any V, local or global,

T(V) -: V°T, Ub where V = V°Ua.

It follows that T(V ),, depends only on the value of V at x-and depends linearly
on it. Thus T is a type (1, 1) tensor field.

Exercise 17. Let A be a type (1, 1) tensor field, and for any vector fields V, W set

NA(1',W) = A'(IV,WI) + IA(V),A(W)1 - A(IA(V),WJ) - A([V,A(W)]),
where A2 -- A o A. Show that NA is a type (1,2) tensor field. (Assume that the 7(M)-
multilinearity condition works in general.) o

A tensor field of type (p,0) is called contravariant and a tensor field of type
(0, q) is called covariant. The nomenclature is unfortunate, because under maps of
manifolds covariant tensor fields, like exterior forms which they include as a special
case, map contragrediently, while contravariant tensor fields, like vector fields, need
not map at all, but if they do, map cogrediently. For example if T is a tensor field
of type (0,q) on a manifold N and ¢: M -* N is a smooth map of manifolds then
one may define a tensor field O'T of type (0,q) on M by

((V7').(t'1,V2,...,t'q) -

If 4' is a diffeomorphisrn then tensors of any type map in both directions; for
example if T is of type (1,2) then

and so on. This makes it possible to define the Lie derivative of a tensor of any
type along a flow: if 41 is a flow with generator V, and T is a tensor field, then CvT
is a tensor field of the same type defined by

CvT = lim I (4','T - T).
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Exercise 18. Show that if T is a tensor field of type (p, q) (whose 1-form arguments come
first, for convenience) and if 0', 92, ... , BP and W1, W,, ... , Wq are 1-forms and vector fields,
then

(CvT){e1,ez,...,8P,w,,w,,...) wq)
V(T(e,0',...,OP,W1,W2,...,Wq))

P

- T(e',...,Cve',...,eP,W1iW,,...,Wq)

q

- ET(e',e',...,eP,w,,...,(V,WkI,...,Wq).
k=1

Derive an expression for the components of CvT in a coordinate basis. O

6. Exterior Algebra and Calculus
The exterior algebra and differential calculus of exterior forms developed for affine
spaces in Chapters 4 and 5 goes over essentially without alteration to the context
of manifolds, as we shall now show.

A p-form on a manifold is a tensor field of type (0, p) which is alternating in its
arguments, which is to say, changes sign if any two of them are interchanged. The
set of p-forms on M is denoted AP M' .

The operations of exterior algebra, including exterior and interior multiplica-
tion, are carried out pointwise, just as in the affine case. If w is a p-form and X a
q-form then, for any vector fields V1, V2, ... , Vp+q,

(w A X)(Vi, V2, ... , Vp+q)

= 1
!

FY

the sum being over all permutations ?r of (1, 2, ... , p + q). The exterior product is
distributive and associative, and

XAw=(_1)PgwAX.

With these operations defined, the set of all forms (of all degrees) forms an algebra
over 3(M), the exterior algebra of forms on M, denoted A M'.

The interior product of a p-form w and a vector field V is the (p-1)-form V Jw
defined by

(V JW)(V1,V2,...,VP-1) =W(V,V1,V2,...,Vp_1).

In any coordinate chart a p-form w may be written

W = I- Wa, a:...a,.dra' A dxa= A ... A dxa,
P!

where
Wn,a_...n,. = W(UaI ida;,...,Va,.) Wla,a....a,,l-

A smooth map 0: M E induces a map 0-: A ) - AM', defined as for
tensors, which preserves degree. The map 4' is 3(M)-linear, and preserves exterior
products.



Section 6 259

The exterior derivative d: Ar M' - Ar+1 M' is defined by
r+1

L(--1)r+1Vr(w(VI,...Vr...,Vp+1))
r_I

+
(-'1)r41W(IVr,VsI,VI,...Vr...V,...,Vp+1).

1<r<s<p4I

The exterior derivative is R-linear and satisfies

d(f w) = f dw 4- df n w

d(WAX) =dwAX -} (--1)pwndX wEnpM'
d20

4'(dw) = d(O-w),

all exactly as in the affine case.
The Lie derivative Cvw of a p-form w along a vector field V is defined as for a

tensor field, and satisfies
r

(Cvw)(WI,W2,...,wr) = V(w(W1,W2,...,Wp)) -- 1: W(W...... (V,Wr1,...,Wp).
r-1

Moreover, the Lie derivative is R-linear in V and w, and

Cv(fw) -= flvw + (Vf)w
£v(WAX) =CVWAX+wACvX

Cv(dw), d(Cvw)
Cfvw = fCvw + df n (V Jw)
CvCww - CwCvw = Clv,W1W

Cvw = V Jdw + d(V Jw),

again all as in the affine case.

Closed and exact forms. As before, a form w such that dw = 0 is said to be
closed, and one which is an exterior derivative, w = dX, is said to be exact. An
exact form is necessarily closed, since d2 = 0. A closed form is locally exact, in the
following sense: every point has a neighbourhood on which is defined a local form X
such that w = dX. To see this it is enough to realise that a coordinate chart about
the point x such that x is at the origin of coordinates and the corresponding open
subset of R' is star-shaped with respect to the origin (Chapter 5, Exercise 34),
will serve, because the argument given in the affine case will then apply.

However, a closed form on a manifold need not be globally exact. A simple
example of a closed but non-exact form is furnished by the 1-form

-x2dx' + x1 dx2
a (x1)2 + (x2)2

on R2 - {(0,0)}. This 1-form is in fact the Cartesian expression for what is often
written d19, where 6 is the polar angle: but this does not mean that a is exact,
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because the polar angle does not define a smooth function on R2 - {(0, 0)} (compare
Chapter 5, Exercise 32).

For a slightly more complicated example, consider the 2-form on the unit sphere
in e3 which is given, with respect to stereographic coordinates based on the North
pole, by

w= -
dxI n dx2

(1 -f- (x1)2 + (x2)2)'

That this does define a smooth global 2-form on the sphere is easily checked by
transforming to stereographic coordinates based on the South pole (the required
coordinate transformation is given in Chapter 9, Exercise 1); it turns out that w
has the same expression with respect to either coordinates, and so in particular is
smooth at the North pole as well as everywhere else. It is a closed 2-form (as every
2-form on a 2-dimensional manifold must be). A 1-form on the coordinate chart
corresponding to North pole stereographic coordinates, whose exterior derivative
is the given 2-form, is easily found (by the method of Chapter 5, Section 8, or by
guesswork): for example

x2dx' + x'dx2
2(1

+ (x')2 + (X2)2)

Any other such 1-form must differ from this by an exact form. The 1-form which
has the same expression as this in South pole stereographic coordinates has w for
its exterior derivative on that coordinate chart. When it is transformed to North
pole stereographic coordinates it is found to differ from the 1-form given above by

-x2dx' + x'dx2
2((xl)2 i- (x2)2)'

this 1-form being defined on R2 - {(0,0)}, corresponding to the region of overlap
of the two coordinate charts. Had the original 2-form w on the sphere been exact,
this 1-form would also have been exact; but (as follows from the first example) it
is not exact (though it is closed). It follows that the original 2-form is not exact.
(The 2-form w is, apart from a constant multiple, the volume 2-form on the sphere
induced from the standard volume in F3).

Whether or not there exist on a manifold closed forms which are not (globally)
exact depends on the global topological properties of the manifold. It is a most
interesting question, but one we shall not pursue further here.

7. Frobenius's Theorem

A distribution on a manifold M is an assignment, to each point x of M, of a sub-
space of T.M.=It is to be assumed that all the subspaces thus defined have the same
dimension, and that they vary smoothly from point to point. This latter require-
ment may be expressed in two equivalent ways: first, by requiring that every point
of M has a neighbourhood in which smooth local vector fields V,, V2, ... , Vk may
be found which form at each point in the neighbourhood a basis for the subspace
distinguished by the distribution (whose dimension is therefore k); alternatively,
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by requiring the existence about each point of M of m -- k independent smooth
local 1-forms Bk+I , ek+2,... , B" which form a basis at each point for the space of
constraint forms for the distinguished subspace.

An immersed submanifold of M is said to be an integral submani/ofd of a
distribution D if, at each point x on it, its tangent space coincides with the subspace
P of T,, M. The necessary and sufficient conditions for a distribution to be integrable
(that is, for local integral submanifolds of it to exist through every point of M) are
those given in Chapter 6. These have two alternative formulations: in terms of a
local vector field basis,

IV0,VR f ."O Vry o,A,7 = 1,2,...,k
for some functions f,," or in terms of a local basis for constraint 1 -forms,

dOl' A"AB° p,or =k+l,k+2,...,m
for some 1-forms API.

When a distribution is integrahle, the existence of local integral submanifolds
is assured by the argument of Chapter 6. In fact, M may be covered by coordinate
charts in each of which the coordinates are such that the submanifolds xk+i =
constant, xk 4 2 = constant,. . . , x' - constant, are integral submanifolds of the
distribution. The question remains how to piece these local integral submanifolds
together to form maximal integral submanifolds. The problem is best solved by
approaching it from a slightly different direction. We call a smooth curve in M
whose tangent vector everywhere belongs to D an integral curve of D; more generally,
a continuous curve in M which is made up of a finite number of smooth segments
each of which is an integral curve of D we call a pieceunse integral curve of D. For a
given point x C M we define the leaf of D through x, L(x), to be the set of all points
of M accessible from x along piecewise integral curves of D. These concepts may be
defined regardless of whether or not D is integrable: but when it is integrable each
leaf L(x.) is an immersed submanifold of M, and is an integral submanifold of D
which is maximal in the sense that any other connected integral submanifold of D
through x must be contained in it. In fact, suppose that y is any point of L(x), and
consider a coordinate chart about y whose coordinates are adapted to the integral
submanifolds of the distribution in the way described above. Then every point in
the corresponding patch which lies on the submanifold given by xk4I = xk+1(y),
xk+2 - xk+2(y), , x"' . ,n (y) can he joined to x by a piecewise integral curve of
D (via y),

and

therefore itself belongs to L (x); conversely every point of L(x) which
lies in the patch and which can he joined to y by an integral curve of D lying in the
patch belongs to this submanifold. The first k coordinates of the chart then serve
to define a coordinate system about y on L(x): it may be shown that L(x) acquires
in this way the structure of a smooth manifold, and is an immersed submanifold of
M.

Now suppose given any connected integral submanifold S of D through x. Any
connected manifold is pathwise connected: that is, any point y of S may be joined
to x by a piecewise smooth curve lying in S. But the smooth segments of this curve
must then be integral curves of D; thus y may be joined to x by a piecewise integral
curve of D and is therefore in L(x). Thus L(x) contains S, and is maximal.
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However, the leaf of an integrable distribution may still have somewhat com-
plicated structure (in relation to M) even in simple-looking cases. The following
example is standard. Consider the 2-torus, regarded as before as a square in RI
with opposite edges identified. Define a 1-dimensional distribution on the torus by
taking for vector field basis the single vector field cosp8! + sin 02 where V is some
constant. The integral submanifolds are given by x1 sin p - x2 cos cp = constant
(where z! and x2 take their values modulo 1). Now if tan p is rational then each
leaf is a closed path on the torus and is an imbedded submanifold. But if not, it can
be shown that the leaf of any point, while it does not return to that point, comes
back repeatedly arbitrarily close to it; and in fact the leaf is a dense subset of the
torus, that is, it intersects every neighbourhood of every point of the torus.

8. Metrics on Manifolds

In this section we introduce the idea of a metric on an arbitrary manifold. This
is simultaneously a generalisation of the idea of an affine metric, introduced in
Chapter 7, Section 5, and of the idea of a metric on an abstract surface, introduced
in Chapter 9, Section 8.

An affine metric on an affine space A is a symmetric bilinear form, that is, a
symmetric tensor field of type (0, 2), constructed on each tangent space to A from
a scalar product on the underlying vector space by identifying the tangent space
with it. It is distinguished by the fact that its value on any two everywhere parallel
vector fields is constant, or in other words, that in an affine coordinate system its
components are all constants.

A metric on an abstract surface is a positive-definite symmetric tensor of type
(0, 2) assigned on the surface. It is more general than an affine metric in that there
need not be even a coordinate patch in which the components are all constants,
but less general in that it is only defined for dimension 2 and is restricted in its
signature.

The generalisation to arbitrary manifolds gives up the constancy of the affine
case and gives up the restriction on dimension and signature of the abstract surface
case.

Let M be a manifold of dimension in. A metric on M is a non-degenerate
symmetric tensor field g of type (0, 2) on M, which is to say, an 3(M)-bilinear map
X(M) x X(M) -+ 3(M) such that g(W,V) = g(V,W) (as functions on M) for any
vector fields V, W, and that g(V,W) = 0 for all W only when V = 0. Assignment
of a metric on M is equivalent to assignment of a scalar product in each tangent
space, with the proviso that if V and W are smooth vector fields then g(V,W) is a
smooth function.

The remarks about signature in Chapter 7, Section 1 (which deals with scalar
products on vector spaces) apply to each tangent space; in particular, g is called
positive-definite if g=(v,v) > 0 whenever v E TM $ 0. If g is positive-definite then
there is

(1) a basis {Va} for vector fields on each coordinate patch such that g(Va,Vi,) _
bab all over the patch, and
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but

(2) a coordinate chart around any point such that g(8,,, db) - dab at that point;

(3) in general no neighbourhood of any point throughout which g(8a,ab) = bab
in any chart.

The possibility of finding a local orthonormal basis of vector fields as given
in (1) arises from the fact that a system of vector fields can constitute a basis for
tangent vectors at each point without reducing to a coordinate basis in any chart.

A positive-definite metric is often called a Riemannian metric, Riemannian
structure or Euclidean structure on M, and M, endowed with a Riemannian metric,
is often called a Riemannian manifold.

If g is of signature (r, m - r) then there is
(1) a basis {Va} for vector fields on each coordinate patch such that g(Va, Vb) _

r)ab all over the patch, where

+1 for a = b = 1,2,...,r

77ab - - I for a = b = r + l,r + 2,..., m

0 fora$b.
(2) a coordinate chart around any point such that g(8a, IN _ Jab at the point;

but

(3) in general no neighbourhood throughout which g(8a,8b) = nab, in any
chart.

A non-singular, but not positive-definite, metric is often called a pseudo-
Riemannian metric or pseudo-Riemannian structure on M, and M, endowed with
a pseudo-Riemannian metric, is often called a pseudo-Riemannian manifold.

If r - 1, which is the case in classical gravitation theory and other applications,
then g is often called a hyperbolic normal or Lorentzian metric or a Lorentz structure
on M. The distinction between timelike, spacelike and null vectors and directions
may be taken over unaltered from the affine case, and readily extended to vector
fields.

A metric has components gab = g(8a,8b) and may be written

ds2 = gabdxadxb.

The operations of raising and lowering indices described in Chapter 7 may be
applied in a Riemannian or pseudo-Riemannian manifold; they are carried out in
essentially the same way as before. In particular, a function f may be used to define
a vector field, its gradient, by the rule g(grad f, V) = V f for every vector field f.

We may also raise and lower indices on tensor fields. For example, if A is a
type (1,1) tensor field then (U, V) --+ g (A(U), V) defines a type (0, 2) tensor field;
and conversely, given any type (0, 2) tensor field B there is a type (1, 1) tensor field
A such that B(U,V) = g(A(U),V). Then A is obtained by raising an index on B
(caution: there are two indices to choose from), and conversely B is obtained by
lowering an index on A.

A type (0, 2) tensor field is symmetric if its value is unchanged by interchange
of its arguments. A type (1,1) tensor field is symmetric with respect to g if the
corresponding field with lowered index is symmetric.
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Isometries. If 0:.M N is a map of manifolds and y is a metric tensor on N then
(A'y, defined by (4'4)z(v,w) = yml=I((A.v,m.w) for all v,w E TxM, is a symmetric
type (0, 2) tensor field on M.
Exercise 19. Show, by means of an example, that 4'y is not necessarily a metric on M. C3

If there is already a metric tensor on M, say g, and 0'4 = g then 0 is called an
isometry. An example of this is the realisation of an abstract surface by an isometric
imbedding described in Chapter 9, Section 8.

One important case is that in which N = M and the map belongs to a one-
parameter group or flow. Thus a flow 0 is an isometric flow of a manifold M with
metric g if gm,l=1(4't.v,Ot.w) = gz(v,w) whenever the left-hand side is defined, and
if an isometric flow is actually a one-parameter group it is called a one-parameter
group of isometrics. Locally it makes no difference whether one is dealing with a
flow or a one-parameter group. If m is any flow, with generator X, then it follows
from the definition of the Lie derivative of a tensor field that the condition for 0 to
be an isometric flow is Cxg = 0. The components of this equation in a coordinate
basis are called Killing's equations, (or the equation itself may be called Killing's
equation) and the solutions are called Killing vector fields of g.
Exercise 20. Show that Killing's equations are

X`acgae + gacaeX c + gecaaXc = 0. O

Exercise 21. Find three linearly independent solutions of Killing's equations for the met-
ric of the unit sphere specified in polar coordinates 0, V by ds' = dd' + sin' ddSo'. (We
have written 6, (p here instead of ', f2 which we used when we introduced polar coor-
dinates for the sphere in Chapter 9, Section 1.) Verify that these solutions are R-linear
combinations of the restriction to the unit sphere of the generators of rotations of t3. o
Exercise 22. Show that if X and Y are Killing vector fields then so are kX + IY, for
k,IER,andlX,Y1. O

It is known that the Killing fields constitute a (finite-dimensional) Lie algebra.

Conformal structures. Roughly speaking, a conformal transformation is a map
which preserves the metric up to a scalar factor (in general variable). The im-
portance of this idea for applications is that in the case of a pseudo- Riemannian
structure such a transformation leaves the null cones unaltered.

Let M and N be manifolds, endowed with metrics g and y respectively. A
smooth map 0: M -. N induces the symmetric tensor field 0'g on M, and 0 is said
to be conformal if

9 = xg

where ec is a positive function on M. In particular, if rc is constant, 4' is called
homothetic; if K = 1 we regain the case of an isometry, already discussed.

Of greatest interest is the case in which N = M and g = g: a diffeomorphism
4' of M which is conformal is called a conformal transformation of M in this case.

Exercise 23. Show that the conformal transformations of a manifold form a group. o

A related notion is that of a conformal change or conformal rescaling: here
we deal with one manifold, which carries two metric structures, say g and g, which
are conformally related: g = ,cg, where K is a positive function, as before. Two
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metric structures which are related by a conformal change are called conformally
equivalent.

Exercise 24. Show that conformal equivalence is an equivalence relation. o

An equivalence class of conformally equivalent metric structures on M is called
a conformal structure on M. Specifying a conformal structure amounts to specifying
a metric structure up to a positive scalar factor. A property common to all members
of an equivalence class is called conformally invariant.
Exercise 26. Show that the definition of conformal transformation passes to the quotient
to apply to conformal structures. o

Remark first of all that the ratio of scalar products is well-defined: if g and
y are conformally equivalent metrics of Lorentz signature and UI,u2iV1,V2 E TzM
then

9z(u1,u2) _ 9=(ui,u2)

9=(vi,v2) 9=(VI,V2)

(one must of course avoid gz(vi,v2) = 0). Whether a vector is timelike, null or
spacelike is conformally invariant:

gz (v, v) > 0 gz (v, v) > 0 timelike
gz (v, v) = 0 t=> gz(v, v) = 0 v is null

(v, V) < 0 gz(v,v) < 0 I spacelike

(the signature is chosen as in Chapter 7, Section 2). Orthogonality (between any
pair of vectors u, v) is defined by gz(u,v) = gz(u,v) = 0. The angle d between
spacelike vectors u, v is well-defined:

9:(u,v)
_

MUM
cosV =

9.(u,u)9z(v,0 9z(u,u)9z(v,v)

A hypersurface (submanifold of dimension n -- 1) is called

spacelike timelike
null according as its normal is null
timelike spacelike.

All these properties may in fact be defined entirely in terms of the null cone.

Summary of Chapter 10
A manifold is a set in which it makes sense to introduce coordinates locally; it differs
from an alfine space in that there need not necessarily be any globally defined
coordinates. A topological manifold of dimension m is a topological space each
point of which lies in an open subset which is homeomorphic to an open subset
of R'; such an open subset, together with the homeomorphism, is called a chart
of the manifold. If the homeomorphisms of open subsets of R' which represent
coordinate transformations on the overlap of two charts are smooth then the charts
are smoothly related. A (smooth) atlas is a collection of pairwise smoothly related
charts covering the manifold; it is complete if it is not a proper subcollection of
any other atlas. A differentiable manifold is a topological manifold with a complete
atlas.
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Maps of manifolds are smooth if smoothly represented with respect to charts
in domain and codomain. An immersion is a smooth map of manifolds whose
Jacobian matrix (with respect to any charts) has rank equal to the dimension of
its domain; a submersion is a smooth map whose rank is equal to the dimension of
its codomain. A subset of a manifold which is the image of another manifold by an
immersion is called an immersed submanifold; it is an imbedded submanifold (or
just a submanifold) if the immersion is in addition injective and a homeomorphism
onto its image. A curve is a smooth map of (an open interval) of R into a manifold;
a function is a smooth map of the manifold to R. With these definitions practically
all of the concepts from Chapters 1 7 which are not specifically tied to the affine
structure of an affine space may be generalised to apply to manifolds. We mention
only those points where caution is necessary in making the generalisation, or where
some new element is introduced.

In defining a tangent vector it is necessary to use the directional derivative
definition, since in general the idea of a displacement vector makes no sense in
a manifold. It remains true that the space of tangent vectors at a point of an
m-dimensional smooth manifold is an m-dimensional real vector space, though to
prove it requires the use of a technical lemma from analysis. Cotangent vectors are
defined as duals of tangent vectors, as before.

The integral curves of a vector field, whose existence in any chart is assured by
the existence theorem for systems of ordinary differential equations, must be pieced
together as one moves from chart to chart. One obtains thereby a unique maximal
integral curve which passes (with parameter value 0) through a given point of the
manifold. But a vector field may generate only a flow, and not a one-parameter
group, as is known from the affine case.

A tensor at a point x of a manifold .M is an R-multilinear map of the Cartesian
product of p copies of Ti M and q copies of T. M, in some order, to R. Such a tensor
is said to be of type (p, q). A tensor field on a manifold is a smooth assignment
to each point of a tensor at that point; or equivalently, an 7(M)-multilinear map
of 1-forms and vector fields to T(M). (Strictly speaking, proof of this equivalence
requires a technical analytic result to allow one to replace global fields by local fields
as arguments.) If there are p 1-form and q vector field arguments the tensor field is
said to be of type (p, q), in accordance with the pointwise definition. A tensor field
of type (1,r) may be regarded, alternatively, as an r-fold 3(M)-multilinear map
X(M)r -+ X(M), where X(M) is the 3(M)-module of vector fields on M.

The algebra and calculus of exterior forms (which are special kinds of tensor
fields) follows much the same pattern as in an affine space, except that a closed
form is not necessarily exact (though it is locally exact).

The results of Frobenius's theorem on the integrability of distributions apply
also as in the case of an affine space, though again there is a technical difficulty
in piecing together local integral submanifolds (defined on coordinate patches) to
form maximal ones.

A metric on a manifold, of whatever signature, is defined in much the same
way as a metric on an affine space, but there will not generally be a coordinate
chart in which its components are constants. Two metrics are conformally related
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if one is a scalar multiple of the other by a positive function.

Notes to Chapter 10

1. Hausdorff spaces with countable bases. A Hausdorff space is one in which
any two distinct points lie in disjoint open sets. A topology has a countable base if
the sets in its base may be put into I : I correspondence with the positive integers.
For details of these ideas see for example Kelley 11955], and for their relevance to
the definition of a manifold for example Brickell and Clark 1970).

2. Closed and exact forms. An exact form is necessarily closed. A closed form
is locally exact, that is, may be written as an exterior derivative in a neighbourhood
of each point of its domain of definition. The example given at the end of Section 6
shows that there are closed forms which are not everywhere exact. Call two forms
equivalent if they differ by an exact form. The number of inequivalent closed p-
forms on a manifold is determined by the topological properties of the manifold.
We do not attempt to explain this: to make the statement precise would take us
too far afield. An elementary treatment, with many applications, has been given
by Flanders 119631. A more advanced version is in Warner 119711; de Rham 119551
is the standard classic.



11. CONNECTIONS

The one major item of discussion from Chapters 1 to 9 which has not been gener-
alised so as to apply in a differentiable manifold is the idea of a connection, that is,
of parallelism and the associated operation of covariant differentiation. This is the
subject of the present chapter.

It may be recalled that in an affine space it makes sense to say whether two
vectors defined at different points are parallel, because they may be compared with
the help of the natural identification of tangent spaces at different points. On a
surface, on the other hand, no such straightforward comparison of tangent vectors
at different points is possible; there is however a plausible and workable generali-
sation from affine spaces to surfaces in which the criterion of parallelism depends
on a choice of path between the points where the tangent vectors are located.
Though the covariant differentiation operator associated with this path-dependent
parallelism satisfies the first order commutation relation of affine covariant dif-
ferentiation, V(, V -- Dell (U, V1 -= 0, it fails to satisfy the second order one,
pr,CVW - OVVr,W - 0 in general; and indeed its failure to do so is
intimately related to the curvat.ure of the surface.

In generalising these notions further, from surfaces to arbitrary differentiable
manifolds, we have to allow for the arbitrariness of dimension; we have to develop
the theory without assuming the existence of a metric in the first instance (though
we shall consider that important specialisation in due course); and we have to allow
for the possibility that not even the first order commutation relation survives.

As an illustration of the last point we describe a rather natural definition of
parallelism on the surface of the Earth which, unlike Levi-Civita parallelism, satisfies
the second order commutation relation but not the first. This construction is due
to E. Cartan. Imagine the Earth to he a perfect sphere with the North pole of
polar coordinates placed at the North magnetic pole. Then at each point on the
surface a compass needle would point along the meridian, and a navigator might
therefore choose to call vectors at different points parallel if they had the same
lengths and made equal angles, in the same sense, with the meridians at the points
in question. This definition would of course break down at the poles themselves,
which will therefore be left out of the following argument. On the rest of the sphere
parallelism of vectors at different points is thereby defined in a way independent of
any path between the points. It follows that the second order commutation relation
is satisfied. In the usual polar coordinates 0, V on the sphere the vector fields 8/80
and (sin r9)-'a/8v are parallel fields; if the first order commutation relation held
they would therefore commute, but evidently la/ao,(sin r9)-ra/app) # 0. Cartan
described this failure to commute in terms of a construction which he called the
"torsion" of the connection; we shall define torsion in Section 3 below.

Most of the techniques for handling general connections used in this chapter
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are simple generalisations of techniques introduced in the discussion of specific cases
in previous chapters. We develop the theory of connections, starting from ideas of
parallelism, first by vector methods, then by methods of exterior calculus. After a
discussion of geodesics and exponential maps, we describe the Levi-Civita connec-
tion in a pseudo- Riemannian manifold.

1. Parallelism and Connections on Manifolds

Following the lead suggested by surface theory, we shall define parallelism on a
manifold with respect to a path. It will be recalled that a path in a manifold M is
a curve freed from its parametrisation. The essential notion of parallelism is that
one should be able to identify the tangent spaces at any two points, once given a
path joining them. This identification should preserve the linear structure of the
tangent spaces. Vectors at points x and y, which are identified in this way, are
parallel with respect to the given path. One would expect that if z is a point on
the path intermediate between x and y then vectors at x and y will he parallel if
and only if they are both parallel to the same vector at z.

We therefore define a rule of parallel transport along a path as a collection of
non-singular linear maps T.,r: TM - TM, one for every pair of points x, y on the
path, such that for any point z on the path

Ty,z o T=,= = Ty,z.

It follows from this that T.,z is the identity on T,,M, and Tz,y = (Ty,z) -'.
Pedantry would require that Ty,z be labelled by the path as well as the points

on it, since the possibility that the map depends on the path is an essential feature
of this construction, but so long as only one path is being considered at a time this
dependence will be understood rather than inscribed in a yet more cumbersome
notation.

If a rule of parallel transport is given for each path of M, one says that a rule of
parallel transport is given in M. We assume that if one path is a subset of another,
then the rule of parallel transport on the subset is that obtained by restriction.

A vector field given along a path is called a parallel field along the path, or
said to he parallelly transported, if it may he obtained by parallel transport from a
vector given at some point of the path; thus W is a parallel field if Wy .- Ty,=W=
for each y and some x on the path.

Some conditions of smoothness have to be imposed; we shall do this in full
when we define the covariant. derivative below. For the present we suppose merely
that parallel fields are smooth.

Exercise 1. Let V and IV be parallel fields along a given path obtained by parallel trans-
port of V. and W. from a point r along the path. Show that for any real a and b, aV 4 bW
is a parallel field obtained by parallel transport of aV, + bW, from z. O

Exercise 2. Let r he a point chosen on a given path and w a vector given at X. Construct
a vector field W along the path by parallel transport of w. Show that if z is some point
on the path distinct from r, w - T,.,w, and w is a vector field constructed by parallel
transport of w along the path, then W and IV coincide. 13
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Exercise 3. With the help of a parallelly transported basis, show that if W is a smooth
field (not necessarily a parallel field) given along a path and if vectors w(y) are defined
in T.M by w(y) = T,,yWv then in any smooth parametrisation of the path w(y) depends
smoothly on the parameter, and therefore defines (the path of) a smooth curve in T=M. O

The ideas of parallel transport and parallel field may be extended immediately
from vectors to subspaces of the tangent spaces along a path: if a subspace H. of
T.,M is given, one may define a field of subspaces along a given path through x
by parallelly transporting the vectors in H11 and thereby constructing subspaces
Hy = { Ty,.,v I v c Hr ). The field of subspaces obtained in this way is said to be
parallel along the path.

Parallel transport may also be extended to covectors in a straightforward way:
a non-singular linear map T;,=: Tz M - T,' M is defined by (w, TV.Za) _ (T=,yw, a)
for each a E Tz M and for all w E This rule ensures that parallel transport
preserves pairings.

As in the alfine case one may employ parallel transport to construct along a
curve an absolute derivative of a vector field which is not necessarily parallel: the
result is another vector field along the curve. Let W be a vector field defined along
a curve a. Let W (t) denote the value of W at a(t) and let W (t + 6)ii be the vector
at a(t) obtained by parallelly transporting W (t + 6) along the path defined by a
from a(t + 6) to a(t): W (t + b)II = To(t),a(t+F)W (t -} 6). The absolute derivative of
W along a at a(t) is

Dt
(t) = lim

b

(W (t + 6) 11 W (t)) _
ds iTO(t),o(e)W(S)l e t

Exercise 4. Show that if W, W, and W2 are vector fields and f a function, all given on
a, then

Dt(W. +W') = DDtl + DD = Di5i (fW)
_- fDDW + dtW.

Deduce that if (V, } is a basis of vector fields along or and if W = W 'V, then

DW a DV, dW
Dt

-
W Dt 4 dt V O

Exercise 5. Show from the definition that if a vector field W is parallel along a path then
DW/Dt -= 0 for any curve with that path as image. Deduce that if W is smooth (but not
necessarily parallel) then DW/Dt is smooth along the path. O

Exercise 6. Show that the absolute derivative satisfies the chain rule for reparametrisa-
tion (compare Chapter 2, Exercise 43): if b = a o h is a reparametrisation, and W(s)
denotes the value of W at o(s) = a(h(s)), then DW/Ds = h(DW/Dt) o h. O

We prove now that if DW/Dt = 0 along a path then W is a parallel field. Fix
a point x on the path; take a curve a which defines the path, such that x = a(0).
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Observe first that

dt{T:'°(t)W(t)) = ds{T.,,(t+,)W(t+s)),=o

d
:_

dS
{T a TO(t).o(f4,)W(t + 5))"=0

d {T(t) (t + s)),-oT= mo(t)
d.9

DW

Thus if DW/Dt = 0 in some interval about x then T,,°(t)W(t) is a constant vector
in TIM, say w, and so W(t) = T°(t),,w is parallel.

2. Covariant Differentiation

In affine space, and on a surface, the absolute derivative at a point depends only
on the tangent vector to the curve, and not on the choice of a particular curve with
that tangent vector. Moreover, it depends linearly on the tangent vector. Examples
may be constructed to show that the rules of parallel translation outlined above are
not in themselves sufficient to ensure that this is the case. Nevertheless these are
important properties of the absolute derivative, which we seek to generalise, and
they must therefore be the subject of additional assumptions.

We assume that the rule of parallel transport in question satisfies the following
additional conditions:

(1) the absolute derivative along a curve depends, at any point, only on the
tangent vector to the curve, in the following sense: if o and r are curves such that
a(0) = r(0) = z and 6(0) = r(0), and if W is a vector field given near z, then the
absolute derivatives of W at x along a and r are equal

(2) given a vector field W defined near x the map TIM -+ TIM which takes
each u E TIM to the absolute derivative of W at x, along any curve whose tangent
vector at x is u, is a linear map.

Such a rule of parallel transport is said to determine a linear connection on
M. This term refers equally to the rule of parallelism, to the associated absolute
derivative, or to the covariant derivative operator now to be defined.

According to assumption (1) above we may unambiguously associate, with
each u E T=M and each vector field W defined near x, an element of TZM by

DW/Dt(0), where the absolute derivative is taken along any curve a such
that o(0) = x and &(0) = u. We call the covariant derivative of W along U.

Using the covariant derivative one may construct from two local vector fields
U and W with the same domain a further local vector field V ,W whose value at
any point x where U and W are defined is Vtt,W. To complete the definition of a
smooth linear connection, we require O(,W to be smooth for every smooth U and
W.

The covariant derivative has the properties
(1) VU+vW = VUW + V,W
(2) V fuW = f OuW
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(3) V1,(V + W) = 4- V(,W
(4) V(,(fW) = fVt,W + (Uf)W.

Here U, V, W are locally defined smooth vector fields and f a locally defined smooth
function. The first two properties follow from the linearity assumption (2) above,
the second two from properties of parallel translation. These properties correspond
to the first four of those listed for the covariant derivative in Chapter 3, Section 11
and Chapter 9, Section 5.
Exercise T. Show that a covariant derivative operator (that is, an operator on local vector
fields satisfying the properties given above) defines a rule of parallel translation along
paths, by using the fact that V;W = 0 is a set of linear first order differential equations
for the components of W. O

Exercise 8. Extend the operation of covariant differentiation to 1-forms along the lines
set out in Exercise 45 of Chapter 2. 0

It is a straightforward matter to express covariant derivatives in terms of an
arbitrary local basis for vector fields, and in particular in terms of a coordinate basis.
Let {Ua} be a local basis of vector fields on M. Then the covariant derivatives Vu,Ub
may be expressed in terms of the basis itself, say

Vt,. Ub = 7bc Ua.

The functions 7b' are the coefficients of linear connection with respect to the local
basis. From the properties of V set out above it follows that if V = V aUa and
W = WaU, then

VVW = V`(Uc(Wa) + i Wb)Ua.

In particular, if {Ua} = {aa} is a coordinate basis then

VvW = V,(a,Wa + rticwb)aa

where, as is customary, we have written F for the coefficients of connection with
respect to the coordinate basis:

oa,ab = rs,aa.

The term in parentheses in the expression for VvWis often abbreviated to W°IIc:
thus VvW = (VvW)aaa where (VvW)a = WallcVc and Wall, = acwa + rscwb

Exercise 9. If {U,} is another local basis, where Ua = A;U& with (A;) a non-singular
matrix of functions, then the coefficients of connection it corresponding to (U,) are given
in terms of those corresponding to {U,}, by

AJ-e< + 7e.A,A,'
In particular, if (U,), (U,) are coordinate bases, so that (A;) is the inverse of the Jacobian
matrix of the coordinate transformation, then

a2Zd ata d ae ax, azf
Q. - ftbat, azd + r f

azd at-, 3 c .

0

Exercise 10. Show that if (0°) is the local basis of 1-forms dual to (U.) and if a = a,9a
then

War = V `(Ue(ab) - 74-008,
and in particular if U. = a, and Ba = dz° then Vva = V `aoii dz6, where a611 = a,ab -
I'6Ca,. 13
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Exercise 11. Extend covariant differentiation to tensors of type (0,2) by requiring that
it act as a derivation.

3. Torsion and Curvature
For a general choice of connection on a manifold there is no reason to suppose that
either of the commutation rules

V1,V -- VvU - IU,VI = O
DtrwW - Vv VI, W - VIU vIW = 0

need be satisfied. However, the left hand sides of these equations, when not zero,
define quantities which are helpful in the geometrical interpretation of the connec-
tion and the associated rule of parallel transport, as is clear from Chapter 9 and the
introductory remarks to this chapter, and they are of great importance (especially
the second) in physical applications. We therefore define, for a given connection, its
torsion T: X(M) x X(M) X(M) and curvature R: X(M) x X(M) x X(M) -= X(M)
by

T(U,V) = Vu,v -- VvU - IU,VI
R(U, V )W = V,VvW - VvV(,W - Vtv vIW.

Just as for a surface, the curvature is a type (1,3) tensor field; and the torsion is a
type (1,2) tensor field (see Exercise 28 of Chapter 9).
Exercise 12. Show that T and R satisfy the necessary linearity properties over I(M) to
be tensor fields. Show that if the coefficients of the connection with respect to a basis {Ua)
of vector fields are -y then the components of T and R, defined by T(UD,U,) = T6'Ua
and R(Uc,Ud)Ub - R%cdUa, are given by

T6'C

aT6c =Ire - Ac - CEc
a a a r a e a e a

R Erd - Ur('Yad) - Ud(7ar) + 7ed7rr - 76c'Trd - Cre7Sr
where [UD,Ucj = C6',°Ua. Thus in particular when (Ua} is a coordinate basis

Tee =re - rac
Robed = array - adrbe + rbdre - rbcr d.

Exercise 13. Show that T(V, U) = -T(U, V) and R(V, U) W = - R(U, V) W.

If the torsion of a connection vanishes, the connection is called symmetric. Most
connections met with in practice are symmetric; however, there are occasions where
non-symmetric connections occur naturally in geometrical circumstances, and there
have been attempts, none entirely satisfactory, to exploit the possibility of torsion
in physical theories.
Exercise 14. A manifold may be equipped with two (or more) connections. Show that
if V and t are connections on M, and if U and V are vector fields, then D(U, V) =
VvV - V V depends 3(M)-linearly on V as well as on U, and infer that D so defined
is a type (1,2) tensor field. Show that, conversely, if D is any type (1,2) tensor field
and V is a connection then t defined by Vr, V = V ,V + D(U, V) is also a connection.
Show that if the connection coefficients of V and t with respect to some basis are rybc
and yy, respectively then the components of D with respect to that basis are e - fre.
Show that the torsions of V and t, denoted by T and T respectively, are related by
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!'(U. V) = T(U, V) -+ D(U, V) - D(V, U). Thus the torsions are the same if and only if
D is symmetric. Show that, on the other hand, if V is given and D is chosen to be - 'T
then t is symmetric. 0

Covariant derivatives of tensor fields. The torsion and curvature tensors of
a linear connection satisfy certain identities which are known collectively as the
Bianchi identities. We shall shortly derive these identities, but since they involve
the covariant derivatives of the torsion and curvature we must first explain how
to define the covariant derivative of a tensor field. We shall concentrate on tensor
fields of type (0, p) and (1, p), though the same principles apply to tensor fields of
any type.

The covariant differentiation operator is extended to tensor fields on the same
principles as it was extended from vector fields to 1-forms, and to tensor fields
of type (0, 2) in Exercise 11: that is, by ensuring that appropriate forms of the
linearity and Leibniz rules of differentiation apply, which is to say, that it acts as a
derivation.

Suppose for definiteness that S is a type (1, 2) tensor field. Then for any vector
fields V, W, S(V,W) is a vector field whose covariant derivative with respect to U,
say, may be formed. In order that V1, should act as a derivation, this covariant
derivative should be expressible in the form

Vt,(s(v,w)) = (Vr,S)(V,W) + S(Vt,V,IV) + S(V,V(IW).
By making (Vt,S)(V,W) the subject of this relation, we obtain the appropriate
definition of the covariant derivative of S:

(Vtrs)(V,W) = Vt,(s(v,w)) - S(VtrV,W) - S(V,V(,W).
Suppose, more generally, that S is a type (p,q) tensor field with p = 0 or 1.

In order to treat the cases p = 0 and p = I on the same footing it is convenient
here to extend the operation of covariant differentiation to functions also by the
rule Vt,f = Uf. Then the covariant derivative VtrS is defined by

(VUS)(V1,V2,.. ,Vq)
q_

= Vtr(S(V1,V2,...,Vq)) - LS(VI,V2,...,VtrVk,...,Vq).
k=1

The value of this definition is that, as well as respecting the rules of differenti-
ation, it also preserves the tensorial nature of S.
Exercise 15. Confirm that VruS is a tensor field of the same type as S. O

Exercise 16. Show that with respect to coordinates

Ua as Sa,a. a,- hakasa, a. b_.

kal
if S is of type (0,q), and

k_1

= if (asb., a. a., + ruSCa, a. a, - rak aSea, as t _a c%
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if it is of type (1,q).

The coefficient aaSa,a,...a., kt ra&aSa,a,...b_,a, is usually abbreviated to
SaIaz...a,lla+ while

q

aaSba,a,...a, + rc SCa,a,...a., L..: rakaSba142...c...a.,
k-1

is usually written Sba,a,...a,lla. These quantities are called the components of the
covariant derivatives of the tensor fields. Another common notation for compo-
nents of covariant derivatives is VaSa,a,...a,, for Sala,...,Il, and VaSba,a2...g, for
Sba,a,...a,Ila Some authors write ; for 11 and a few write , but this last practice is
not recommended since the same notation is often used for the partial derivative
and confusion could be disastrous.

Exercise 17. Show that the identity type (1, I) tensor field 1 defined by 1(U) - U for all
vector fields U (whose components with respect to any basis are those of the Kronecker
d) has vanishing covariant derivative with respect to any linear connection. O

Exercise 18. Show that for any I-form 0
(T(U,V),0) = dO(U,V)4 (U, Vv e) - (V,Vt,9). o

Exercise 19. For a given vector field W the map X(M) - X (M) by V VvW is a type
(1, 1) tensor field, which may be denoted Aw. Show that

(VvAw)(U) = R(U,V)W - Aw(T(U,V)).
Show that if W =: W a<3a then Aw has components W aryb, and deduce that for a symmetric
connection

W -116c - W ahcb = RadcbW d.

Here I4'a116r has been written for W411611c O

Exercise 20. Given a type (p, q) tensor field S (p == 0 or 1) set
VS(V,V1.V2,...,V,) -.. (VVS)(Vt,V2,...,V5).

Show that VS is a tensor field of type (P. q + 1) O

Exercise 21. If A is a type (1,1) tensor field and S a type (1, r) tensor field, one may
define a new type (I,r) tensor field A(S) by

A(S)(Vt,V2,.. A(S(V,,V2, t',)) L S(Vt,V2i...,A(Vk),...,v )
k =l

(adapting the model provided by the covariant derivative of a tensor field). Using the fact
that W R(U,V)IV, for fixed U, V, is a type (1, 1) tensor field, show that

V,,VvS VvV/,S Viu,vlS R(U,V)(S). o
Exercise 22. Propose a definition of the covariant derivative of a type (p, q) tensor field
for general p. Ensure that the covariantly differentiated vector tensor field is a tensor field
of the same type. Find an expression for the components of the covariantly differentiated
field. 0

The Bianchi identities. The Bianchi identities are obtained by taking covariant
derivatives of T and of R. We deal with the case of a symmetric connection, leaving
the more general case to the exercises. In the absence of torsion, by covariantly
differentiating the first symmetry relation we obtain

VI, VV VV VI,lV,Wl 0.
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Permuting the arguments U, V, W cyclically and adding the results one obtains

Vt,VvW - VUVwV - V(r[V, Wj

+ VVVwU - VvVVVW - Vv[W,UI

+ VwV ,V - VwVvU - Vw[U,V) = 0.

Substituting Vr,VvW - VvVr,W = R(U,V)W + Div,vlW from the definition of
the curvature, and the equations obtained from this by permuting the arguments
cyclically, one is left with

R(U,V)W + VIr,,vjW - Vw[U,VI

+ R(V,W)U + Vlv,wjU - VU[V,W )

+ R(W, U)V + Vlw,r,1V - Vv[W, U[ = 0.

In the absence of torsion the second and third terms in each line altogether cancel
out by the Jacobi identity, leaving

R(U,V)W + R(V,W)U + R(W,U)V =0.

This is the Ricci identity or first Bianchi identity for a symmetric connection.

Exercise 23. Show that for an arbitrary linear connection (with torsion)
R(U,V)W + R(V,W)U + R(W,U)V

_ (VuT)(V,W) 4 (VvT)(W,U) + (VwT)(U,V)
4 T(T(V,W),U) +T(T(W,U),V) +T(T(U,V),W). O

This is the more general form of the first Bianchi identity.

Exercise 24. Show that for a symmetric connection the components of the curvature
tensor with respect to a coordinate basis satisfy

e eRcea=-Rcae
Rda6c + Rdca + Rdeea = 0. O

If for every pair of vector fields U and V the torsion T(U, V) is a linear com-
bination of U and V then the connection is called semi-symmetric.

Exercise 25. Show that the "magnetic" connection on the sphere described in the intro-
duction to this chapter is semi-symmetric. O

Exercise 26. Show that for a semi-symmetric connection there is a 1-form r such
that T(U, V) = (V, r)U - (U, r)V , and show that with respect to a coordinate basis
r = (m - 1) - r Taa dx° where T6° are the components of T and in = dim M. Show that

(V(,T)(V,W) = (W,Vt,r)V - (V, Vi,r)W
and that the first Bianchi identity becomes

R(U,V)W +R(V,W)U f R(W,U)V = -dr(U,V)W - dr(V, W)U - dr(W,U)V. 0

The covariant derivative of the curvature is given by

(V(,R)(V,W )W' -Vf,VVVWW' - VVVWVVW' - VUVlV WIW'
- R(VrrV,W)W' - R(V,VrrW)W' - R(V,W)VUW'.
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Permuting the arguments U, V and W cyclically and adding the results one obtains

(VI, R) (V, IV) W' + (Vv R) (W, U)W' 1 (Vw R) (17, V) W'

= RV,W1,1J)IV' + R(I W,U),V)W'+ R((U,V1,W)W'
R(VvW,U)W' - R(VwU,V)W' - R(VpV,W)W'

+ R(VwV, U) W' + R(VuW,V)W' + R(VvU,W)W'

+ V11w,1,1,v1W' + Vllu,vl,WJW'.

By Jacobi's identity, the sum of the terms in the last line is zero. In the absence of
torsion the terms in the preceding three lines cancel in threes, leaving the second
Bianchi identity for a symmetric connection,

(V1,R)(V,W')W' + (VvR)(W,U)W' + (VwR)(U,V)W' = 0.

Note that the argument W' is unaffected by any of the rearrangements of the other
vector fields. Accordingly, it is often convenient to regard R(U, V) as defining a
type (1,1) tensor field which is alternating in the two vector field arguments U and
V. The notation has anticipated this point of view. With this understanding the
second Bianchi identity for a symmetric connection may be written

(Vt,R)(V,W) + (VvR)(W,U) + (VwR)(U,V) = 0.

Exercise 27. Show that for a symmetric connection the second Bianchi identity may be
written

R`eaep, + R',i c a i RetalIb = 0
in terms of components with respect to a coordinate basis. D

Exercise 28. Show that for an arbitrary linear connection (with torsion)
(VuR)(V, W) + (Vv R)(W, U) + (Vw R)(U, V)

= R(U,T(V,W)) + R(V,T(W,U)) + R(W,T(U,V)).

This is the more general form of the second Bianchi identity.

4. Connection Forms and Structure Equations
The formalism for covariant differentiation developed in the last section, with the
accent very much on vector fields, has a dual version, in terms of exterior forms,
which also has a variety of applications. It is described in this section. In particular,
we shall examine the consequences of the vanishing of the curvature of a connection,
which it is simpler to do using forms. The basic concepts have been introduced in
the context of the natural connection on affine space in Chapter 5, Section 7. In
fact the task for this section is essentially to repeat the argument given there but
making allowance for the possibility of non-vanishing torsion and curvature.

Let {Ua} be a local basis of vector fields on a manifold Al with connection
V, and let {ea} be the dual local basis of 1-forms. The connection forms wb
corresponding to these bases are defined by

(V, Wb*) = (VVUb,B6)

for an arbitrary vector field V. That this equation does define a 1-form (locally,
with the same domain as the U. and 96) follows from the linearity properties of Vv
with respect to V.
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Exercise 29. Show that ws where ry,,° are the coefficients of the connection with
respect to the basis {U,). a
Exercise 30. Show that the operation of covariant differentiation of a vector field W =
W 'U. may be expressed in terms of the connection forms as follows:

VVW = (V(Wa)+W°(V,wb))Ua,
or equivalently

vVw = (V(w,e°) + (W,8°)(V,wb))U,. a
From this second expression for VvW in Exercise 30 we may express the torsion of
the connection in terms of Pa and wb , as follows:

(T(V,W),ea) (VvW,ea) - (VWV,ea) - (IV,WI,ea)
V (W,Ba) + (W,eb)(V,wb)

W(V,ea) (V,eh)(W,wh) - (IV,WI,ea)
= dea(V,W) + (wh A06)(V,W).

Introducing the torsion 2-forms ea by

ea(V,W) = (T(V,W),ea),

we write the last formula entirely in terms of forms:

dBa + wb n Bh = e .

These are Cartan's first structure equations.
There is another set of structure equations involving the curvature. In order

to simplify its derivation we note that from ((4,B') = bh it follows that VVea =
(V, wb°)Bh, and so

(VVVwUh,ea) V (VwU,,ea) - (VwU4,VVea)

V(W,wb) + (V,wc)(W,wh)

From this it follows that

(R(V,W)Ub,ea) = V (W,wti) + (V,wc*)(W,wb)
-W(V,wn) - (W,wC)(V,we) - (IV,WI,wb)

dwi° (V, W) + (w n WC) (V, W).

The curvature 2-forms nb of the connection with respect to the given basis are the
defined by

nh (V,W) _ (R(V,W )Ub, ea).

The last derived formula may be written entirely in terms of forms:

dwh + w A wh = f b* .

These are Carton's second structure equations.
There are thus at least three different ways to describe connections, torsion

and curvature: abstract, tensor-analytical and exterior-analytical. To make the
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distinctions clearer we compare the alternative definitions of torsion:

T(V,W) = VvW - VWV -- (V,Wj abstract

T6-, = I Ab - Tbac tensor-analytical

6" = dea + Wh A 06 exterior-analytical.

The three are essentially equivalent. Each has its advantages, and is to be preferred
in certain contexts, and all are used in the literature.

Exercise 31. Make the same comparison for curvature. E3

The Bianchi identities. On taking the exterior derivatives of the structure equa-
tions, and substituting for dOa and dwb from them, one finds that

dea + wb n 06 = f26 A B6

dflb' +w'Af26-f2°Aw6 =0.

These are equivalent to the first and second Bianchi identities respectively.

Exercise 32. Confirm this equivalence. o

In this version the Bianchi identities may be seen as consequences of the fact
that d2 = 0. They are relations between 3-forms, which explains why in the tensor
version the identities involve cyclic sums; it also explains why the Bianchi identities
are vacuous on a 2-dimensional manifold and therefore play no part in surface
geometry.

Change of basis.
Exercise 33. Suppose that a new local basis of vector fields ((J°) is chosen, so that
U° = A;UN, where the A; are local smooth functions whose values at each point are the
entries in a non-singular matrix. Show that the connection quantities associated with the
new basis are related to those associated with the old as follows:

(A-')e°ea Z,,' =
(A_'),*dAii

+ (A ')aweAe
94 = (A ')beb Oe =

(A-')C*fl`,A4.

Confirm that the transformation rule for connection forms is equivalent to the one for
connection coefficients given in Exercise 9. a
The transformation rules for the torsion and curvature forms are therefore straight-
forward, as their tensorial character demands; while the non-tensorial nature of the
connection coefficients shows up in the exterior derivative term in the transforma-
tion rule for the connection forms.

5. Vector- and Matrix-Valued Forms

The reader may have noticed that the disposition of the indices in all the equations
deduced in the previous section is exactly what one would expect in matrix multi-
plication either of a vector by a matrix or of two matrices. In fact, it is possible to
combine exterior calculus and matrix algebra so as to express these equations even
more economically.
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The idea is to regard 9° (for instance) as the ath entry in a vector of 1-forms;
and wh as the (a, b) entry in a matrix of 1-forms. More exactly, we define a vector-
valued 1-form 0 as a map from X(M) to the space of column vectors of size k, say,
with entries from 3(M), satisfying the tensorial requirements for a 1-form:

9(V + W) = 9(V)+9(W) V,W E X(M)

9(JV) = f9(V) f E 3(M).

Thus for any V, 9(V) _ (V,9) is an element of (,(M)) k' considered as a column
vector.

Evidently the definition extends to give a definition of a vector-valued p-form,
which must satisfy the usual conditions of multilinearity and skew-symmetry. Again,
a matrix-valued p-form is an 3(M)-multilinear alternating map from (X (M))p to the
space of k x k matrices with entries from 3(M). In the applications we have in mind
here, k will be m, the dimension of the manifold; but this is not an essential part of
the definition. Each component of a vector- or matrix-valued p-form is a p-form in
the ordinary sense. Moreover, if ti is a vector-valued p-form and V1, V2,. .. , V. are
vector fields then v(Vj, V2,.. . , V,) is a column vector of functions, or a vector-valued
function; and similarly for a matrix-valued p-form.

Matrix multiplication of vector- or matrix-valued forms by matrix- valued func-
tions (0-forms) is quite straightforward: if (say) 0 is a vector-valued 1-form and A
is a matrix-valued function then A9 is the vector-valued 1-form such that (A9)(W)
is the vector obtained by multiplying the vector 9(W) by the matrix A: that is to
say, (A9)(W) = A(9(W)) for all W E X(M). Thus the transformation rules under
a change of basis given in Exercise 33 may be written

B = A-'9 w = A-'dA+A°'wA
e=A -'e fl=A-'flA.

Here A` is the matrix-valued function whose value at a point is the inverse of the
matrix defined by A, which is assumed non-singular, and dA is the matrix-valued
1-form obtained by taking the exterior derivative of each entry of A.

Exercise 34. Show that if A is a matrix-valued function then the definition of dA may be
couched in terms entirely similar to those used in the definition of the exterior derivative of
an ordinary function, that is, (V, dA) = V (A), V E X (M). Show also that (for example) if
B is a vector-valued 1-form then the vector-valued 2-form dO given by dO(V, W) = V (W, 0) -
W (V, 8) - (IV, WI, 9) has for its components just the exterior derivatives of the components
of 9. Conclude that exterior calculus extends to vector- and matrix-valued forms with no
formal change at the theoretical level, and by simply operating on components at the
practical level. a

The only complications-and surprises-in this scheme occur when one has to
combine exterior and matrix multiplication in forming the products of (say) two
matrix-valued forms. The process is in fact quite straightforward: at the prac-
tical level one simply multiplies the two matrices together in the usual way, but
remembers to combine the elements using exterior multiplication. But the non-
commutativity of the two kinds of multiplication involved may lead to the frustra-
tion of expectations based on either. Thus for example the matrix exterior product
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of a matrix-valued 1-form with itself is not necessarily zero: in fact if w is a matrix-
valued I-form then for V,W E X(M)

(wA-)(V,W) = (Vw)(W,w) (W,w)(V,w)

Matrix multiplication is implied on the right hand side. With this understanding,
we write the structure equations in the form

dO4-wn8-=0
dw+wAw = 11,

the first being an equation between vector-valued 2-forms, the second an equation
between matrix-valued 2-forms.
Exercise 35. Show that the Bianchi equations may be written

dO+w n6= 11 A9
df14wnfl- f1nw=0.

Exercise 36. Let a and /3 be matrix-valued 1-forms; define (a A,61 by

IaA131(V,W) = I(V,a),(W,13)I -- I(W,a),(V,0)1
for any pair of vector fields V, W, where the square brackets on the right signify the
commutator of matrices. Show that (an/3J is a matrix-valued 1-form, and that both terms
are necessary on the right for this to be so. Show that Ip n aJ = (a A #J.
Exercise 37. Show that the second structure equation and second Bianchi identity may
be written

dw % 1JwnwJ=fl dfl+Jwnf1J=0.
Exercise 38. Suppose that OP'', Bp+s.. , B' are 1-forms, which define, by constraint,
a distribution. Combine them into an (m -- p)-vector-valued 1-form B. Show that the
conditions of Frobenius's theorem may be written dO = AAO where A is an (m-p) x (m-p)-
matrix-valued 1-form.

6. Vanishing Curvature and Torsion

The curvature and torsion of the natural connection on an affine space both vanish.
The coordinate vector fields for an affine coordinate system have two significant
properties from this point of view. In the first place, they are parallel vector fields,
so that their covariant derivatives in any direction vanish; and secondly they are
coordinate vector fields, so their brackets vanish. It follows from the first of these
properties that the curvature vanishes, and from the second that the torsion does.

In this section we shall show the converse: that if both curvature and torsion
vanish then locally at least the manifold admits a coordinate system which is affine-
like, in the sense that its coordinate vector fields are parallel.

We consider first, however, the case of a manifold with a connection whose
curvature vanishes, without making any assumptions about the torsion. A sufficient
condition for this to occur is that there should exist a local basis of vector fields
which are parallel, in the sense of having vanishing covariant derivatives as before,
but now not necessarily a coordinate basis. In fact, with respect to such a basis the
connection forms are all zero, and so the curvature vanishes (and the torsion forms
are exact although not necessarily zero). A connection with the property that there
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exists about each point a local basis of parallel vector fields is called a complete
parallelism; thus the curvature of a complete parallelism is zero. We shall show
that the converse is true. We shall do so by using the structure equations, but we
shall not be able to identify a priori which local basis of vector fields is likely to be
parallel. Even in the case of an affine space it is not apparent, when a basis of vector
fields other than an affine coordinate basis is used, that the curvature vanishes. The
strategy of the proof is to start with an arbitrary basis of vector fields and seek a
transformation to a parallel one, using the vanishing of the curvature to show that
this is possible. It is worthwhile therefore to examine first the effect of using a
non-parallel basis for a complete parallelism.

We shall use vector- and matrix-valued forms, and the notation explained im-
mediately before Exercise 34, with the old basis being non-parallel and the new one
parallel. Then w = 0 and so w = -(dA)A-'.
Exercise 39. Show that one may equally well write w = AdA-l, and check that dw +
wnw=0. o

It is to be expected that if n = 0 then f1 = 0, since both the transformation
rule, and the tensorial nature of the curvature tensor, demand it. However, the role
of the curvature may be seen in another light. We shall rewrite w = -(dA)A-1 as
dA+wA = 0. We regard this as an equation to find A, the transformation from the
non-parallel to a parallel basis. Taking the exterior derivative of this equation will
provide integrability conditions (it amounts to the standard device of differentiating
again and using the symmetry of second partial derivatives). These conditions are

(dw)A-WAdA=0,
which gives, on substituting for dA,

(dw+wAw)A=0,
that is

f1A=0.
Thus the vanishing of the curvature may be thought of as an integrability condition
for the equation dw + wA = 0.

We shall now show that when the curvature vanishes this equation is indeed
integrable. The argument is based on Frobenius's Theorem in the form version, this
time for matrix-valued forms.

Consider the manifold 0 x M,(R), where Mm(R) is the manifold of m x m
matrices (Chapter 10, Section 1, Example 6) and 0 is the open set of M on which a
local basis of vector fields is defined (and m = dim M). Let X be the matrix-valued
function on 0 x M,,,(R) whose entries are just the coordinate functions on Mm(R).
Then we define on 0 x Mm (R) a matrix-valued 1-form

µ=dX+wX.
Strictly speaking one should distinguish between forms on 0 and M,,,(R) and their
pull-backs to 0 x M,,, (R) by projection; however, no confusion should arise from this
abuse of notation. The matrix-valued 1-form p defines a distribution on 0 x
of dimension m, by constraint.
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We shall test the entries in p to see whether they satisfy the conditions of
Frobenius's theorem. Now

dp = (dw)X -- w A dX

= (dw)X - w A (p - cX)
=(dw+wnw)X--wAp,

and so when the curvature vanishes

dp = -wAp.
This amounts to the conditions of Frobenius's theorem. Integral submanifolds of
the distribution defined by p will be of dimension m. Provided they are transverse
to the M,(R) factor they will be expressible in the form X = A(x) where A is a
matrix-valued function on 0 (and x c 0). It is clear from the form of p that its
integral submanifolds are nowhere tangent to the Mm(R) factor, since p reduces
to dX on any vector tangent to the M,(R) factor, and the entries of dX are
linearly independent. Choose a point xo C 0 and consider the integral submanifold
through (x0, !m) C 0 x M, (R), where 1,,, is the identity matrix. The integral
submanifold through (xe, Fm) is thus defined by a matrix-valued function A such
that A(xo) = I,,,, and thus A is non-singular on an open neighbourhood of x0. Since
p vanishes on an integral submanifold, A satisfies dA + wA = 0. Thus the local
basis obtained by transforming by A is parallel. It follows that if a manifold has a
connection with vanishing curvature, this connection is a complete parallelism.

Exercise 40. Repeat the argument with the indices in evidence, to confirm that nothing
is lost by using matrix-valued forms. 0

If, as well as the curvature being zero, the torsion is zero then the vector fields
of a parallel basis commute, and so local coordinates may be found with the parallel
fields as coordinate basis fields (Chapter 6, Section 4). These coordinates are then
affine-like, as described above. Under these circumstances the connection is said to
be lnt.
Exercise 41. Consider, in the Euclidean plane £2, the two orthonormal vector fields

U, = cos ta, + sin ,9a2 U2 = - sin fla, + cos,9a2
with respect to orthonormal coordinates, where d is a smooth function on V. Suppose
that U, and U2 are given to be parallel vector fields. Show that the torsion of the resulting
complete parallelism satisfies T(1I,, U2) -= (t1,t9)U, +(U26)U2, so that the torsion vanishes
if and only if d is constant, in which case the basis {U1 ,U2} is obtained from the coordinate
basis by a fixed rotation. o

7. Geodesics

One may generalise most conveniently the idea of a straight line from affine spaces
to manifolds with connection by using the property of a straight line that its (1-
dimensional) tangent spaces are parallel along it. In a manifold with connection a
path whose tangent spaces are parallel along it is called a geodesic. On an affinely
parametrised straight line, in affine space, the tangent vectors form a parallel field;
generalising, one calls a curve whose tangent vectors form a parallel field with
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respect to the given connection an affnely parametrised geodesic. Thus on any
curve -y whose image is a geodesic path, D7/Dt is a multiple of ry, and on an
affinely parametrised geodesic D7/Dt = 0.

Exercise 42. Show that any geodesic may be affinely parametrised. o

In view of this result, it is seldom important to maintain the distinction between
a geodesic (path) and an affinely parametrised geodesic (curve) and we shall use
"geodesic" to mean "affinely parametrised geodesic" unless the context demands a
distinction.

Exercise 43. Show that, just as in the case of a surface (Chapter 9, Section 5), the
equations of a geodesic in local coordinates are

d' djb dry` df
dt + r6` dt dt - f dt

for some real function f, and that f = 0 if and only if the geodesic is affinely
parametrised. o
Exercise 44. Show that two different affine parametrisations of the same geodesic (path)
can differ only by an affine reparametrisation t -. at + b with a and b constant and a $ 0. a

It follows from Exercise 43 that geodesics are indifferent to torsion: two con-
nections with the same symmetric part have the same geodesics, irrespective of
their torsions. Moreover, since the geodesic equations are second order ordinary
differential equations, there is a unique geodesic with given initial point and given
initial tangent vector: that is to say, given x E M and v E T=Al there is a unique
(affinely parametrised) geodesic 7 such that ry(0) = x and 7(0) = v. However,
the existence theorem for solutions of systems of ordinary differential equations
guarantees a solution only in some neighbourhood of 0 in R; although for given
initial conditions such solution elements may be smoothly pieced together to form
a geodesic of maximal domain, there is no guarantee that the maximal domain will
be the whole of R. A manifold with connection every one of whose geodesics may
be extended to the whole of R is said to be geodesically complete. An example of
a geodesically incomplete manifold is obtained by removing a single point from the
geodesically complete manifold R'. This device may appear somewhat artificial,
but in any case where the connection is determined by a positive definite metric
this is essentially the only way of introducing incompleteness. For the space-time of
general relativity theory, on the other hand, geodesic completeness is incompatible
with other, physically reasonable, conditions.

Since geodesics have been mentioned in the same context as integral curves of
a vector field, it would be as well to emphasise that the totality of geodesics on
a manifold does not form a congruence of curves, any more than the totality of
straight lines in affine space does, because there are many geodesics through each
point of the manifold. This is not to say that one never considers congruences of
curves each of which is a geodesic-or equivalently, vector fields tangent to geodesic
congruences. The models provided by the set of (affinely parametrised) straight lines
in affine space, and the set of (affinely parametrised) great circles of the sphere, are
good guides here. The advantages of working with a congruence consisting of all
geodesics at once may be recovered by relocating the geodesics in another, larger
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manifold: this will be explained in Chapter 13.
On an affine space the straight lines are represented, in affine coordinates, by

affine functions. On a general manifold with connection it is not possible to find a
coordinate system, even locally, in which the geodesics are represented in this way;
but for each point it is possible to find a local coordinate system with respect to
which the geodesics through that point are affinely represented. Such coordinates
are called normal coordinates about the point in question. Construction of normal
coordinates is based on the properties of geodesics, and is best presented in terms
of a map known as the exponential map.

Before defining the exponential map we must point out another proferty of
geodesics. We consider geodesics with initial point a fixed point, say x- a` .P.. Then
each tangent vector v E T.M uniquely determines a geodesic, which we shall denote
1v: it is fixed by the conditions -Y,,(0) = x, 7v(0) = v. It follows from Exercise 43

that for k E R, k $ 0, rykv is obtained by reparametrising -y by t " kt; that is
to say 7kv(t) = -yv(ki). Now given any v 34 0, ryv is defined on some open interval

Thus rykv is defined on (-a/IkJ,E/IkJ). By choosing Jkl sufficiently small it
may be ensured that rykv(t) is defined for t = 1. Moreover, 7o(t) = x for all t, and
so -yo is defined on R. In fact, there is an open neighbourhood 0 of 0 E T=M such
that for each v E 0, ryv(1) is defined. (When the manifold is complete, we can take
for 0 the whole of TzM.)

The exponential map. The exponential map exp: 0 C TzM -p M is defined by

exp(v) = ryv(1).

it is a smooth map, since the geodesic equations are of a type whose solutions depend
smoothly on their initial conditions. Moreover, exp(0) = x. The exponential map
associates with each direction in TzM a segment of a geodesic w:;ic_i starts off from
x in that direction; it is designed, by fixing the parameter value a _. but varying the
initial tangent vector, to be injective, at least near 0. We shah prove, by showing
that the induced map exp. is non-singular at 0, that exp is a diffeomorphism of
some neighbourhood of 0, possibly smaller than 0, in TTM, with a ieighbourhood
of x in M. As is apparent from the example of the sphere. where c.il the geodesics
through any one point intersect again in the antipodal

'

poin-u, a.1z cannot expect
exp to be a diffeomorphism in the large; in general, nor.-var's',:'.r.g ::irvature of a
connection may cause focusing of its geodesics, in whic!. e .x-onential map
will be only a local diffeomorphism.

We shall now compute exp,:To(T=M) - T.M. =We s`iall iae:;-Jsy the tangent
space at 0 to the vector space TzM with TzM itself in the usual way: the element
v E TzM is thought of as tine tangent vector at s = 0 to the curve s sv in T.M.=Then

exp. (v) is the tangent vector at s = 0 to the image curve s - exp(sv) in M.
But

exp(sv) = "Yev(1) = 1'.(s),

whose tangent vector at s = 0 is just v. Thus

exp,(v) = v
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and therefore exp. is just the identity map of T,, M. This is certainly non-singular. It
follows from the inverse function theorem that exp has a smooth inverse defined on a
neighbourhood of z in M, and therefore defines a diffeomorphism of a neighbourhood
of 0 in T=M with a neighbourhood of x in M.
Exercise 45. The purpose of this exercise is to show that ordinary exponentiation of real
numbers is an example of an exponential map in the above sense. Writing bi(x) = xet,
show that bl is a one-parameter group of transformations of the positive real numbers R+
with generator z9/ax. Next, show that there is a unique connection on R+ with respect
to which this generator is a parallel vector field, and that this connection is given byal_ 1 a

Va/a: ax 1 x ax
(this is not, of course, the usual connection on R). Show that the geodesic ry of this
connection with initial conditions -1(0) = 1, r(0) = k is given by y(t) = ekl. Infer that the
exponential map exp: R -. R+ based at I E R+ is given by ordinary exponentiation.

Normal coordinates. The exponential map may be used to define a coordinate
system near x, since by choosing a basis one may identify T=M with R. Coordi-
nates obtained in this way are called normal coordinates about x. Thus if y is a
point sufficiently close to x, its normal coordinates are the components, with respect
to the chosen basis of T=M, of the vector v such that y. Now the geodesics
in M through x are the images by the exponential map of radial straight lines in
T=M, and are therefore represented in the form xa = vat in terms of normal coor-
dinates (za). Therefore d2j/dt2 = 0 at x on each geodesic, and inspection of the
geodesic equation reveals that the connection coefficients for a normal coordinate
system must satisfy at the point x the relation

rg,+rb =o.
This property is much used in tensor calculus to prove tensor identities involv-

ing the curvature tensor, since it simplifies the expression for the curvature tensor
at x. This is especially convenient when the connection is symmetric, since then
rb,(z) = 0 and so (for example) at x

Rabcd = aCrbd - adrjc,

from which the Ricci identity is immediate.
Exercise 46. Without assuming that the connection is symmetric, prove the full first
Bianchi identity by this method.
Exercise 47. Given any type (0,p) tensor field K, one defines its covariant differential VK
to be the type (0, p+ l) tensor field given by(V K)(V, V1 i Vs, ... , Vp) = Vv K(V1, V,, ... ,Vy)
(Exercise 20). Show that if V is symmetric and w is a p-form then dw is the alternating
part of Vw. 0

A normal coordinate neighbourhood is star-shaped with respect to its origin
x: each y in the neighbourhood may be joined to x by a geodesic segment lying
entirely within the neighbourhood. In terms of normal coordinates this segment
looks as if it were an affine line. This makes normal coordinate neighbourhoods
convenient for topological arguments: for example, on a normal neighbourhood
every closed form is exact. It is possible, by more sophisticated arguments, to
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prove the existence of neighbourhoods with the stronger property of convexity: a
convex normal neighbourhood is one in which each pair of points may be joined by
a geodesic segment lying within the neighbourhood.

8. Affine Maps and Transformations

We shall now consider transformations of a manifold with connection, and maps
between two manifolds with connection, which generalise affine transformations of,
and affine maps between, affine spaces in the sense that they preserve parallelism.

A map of manifolds with connection which preserves parallelism is called an
affine map. To be precise, a smooth map 0: M -+ M is an affine map if, for each
path in M and each pair of points x,y on the path,

re(v) m(=) o 0., o Ty,
where T and t are respectively the rules of parallel transport along the path in M
and along its image by 0 in M. As usual, 40. denotes the map of tangent vectors
induced by 0, and the condition is that the induced map "intertwine" parallel
transport on corresponding paths in the two manifolds.
Exercise 48. Show that a curve 7: I -- M is an affinely parametrised geodesic if and
only if it is an affine map, where I has the affine connection it inherits as an open subset
of R. C)

Exercise 49. Show that the composition of affine maps is affine. a
In particular, if 0: M M is affine and if 7 is a geodesic in M then 0 o ry is a

geodesic in M. It follows that if exp: T=M -+ M is the exponential map at x E M
and exp: T#(=)M -. M is the exponential map at the image point 4'(x) E M then

0 o exp = exp o .x.

Thus with respect to normal coordinates 0 is represented by a linear map.
Affine maps also preserve covariant differentiation, as one might expect. Sup-

pose that M and lit are manifolds with connections V and t respectively. Recall
that a vector field V on M is said to be 4'-related to a vector field V on M if for all
x E M, 4.=V. = Vm(=). If V is q5-related to V and W is 4'-related to W, and if 0
is affine, then DEW is 4'-related to VvW. In fact, for v E T.M and W any vector
field along a curve a such that o(0) = x and 6(0) = v,

d

dt
(re(=).e(°(t))4'.W°(t))e_o

d

Exercise 50. From the assertions in the preceding paragraph, deduce that if T and fi are
the torsion tensors and R and k the curvature tensors of V and t and if 40 is affine then
fi(V,W) is 0-related to T(V,W), and k((,V)W is 4-related to R(U,V)W. D
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Affine transformations. Suppose a connection to have been given on M, once
for all. An affine map of M to itself which is a diffeomorphism is called an affine
transformation of M.

The best strategy for studying structure-preserving maps of a manifold to it-
self is usually to investigate the generators of one-parameter groups of such maps.
This was the case for volume-preserving maps Chapter 5, Section 5) and for isome-
tries (Chapter 8, Section 2), and it is also the case for affine transformations. A
one-parameter group mt of diffeomorphisms of M is called affine if mt is an affine
transformation of M for each t. The generator X of a one-parameter group of affine
transformations is called an infinitesimal affine transformation. We shall derive the
conditions satisfied by an infinitesimal affine transformation. Since the correspond-
ing one-parameter group consists of affine transformations, for every pair of vector
fields V, W

V(d,,.v)Ot.W = V(#,.v-v)tt.W +Vv(Ot.W - W) +VvW
so that

ct (VvW) - VvW = V(m,.v-v)4t.W + Vv(dt.W - W).
Dividing by t and taking the limit as t 0 one obtains

CxVvW = Vlx,vlW + VvLxW.

It is also true, conversely, that if this condition holds then X is an infinitesimal
affine transformation, except that there is in general no guarantee that X will
generate a full one-parameter group; however it will generate a flow of local affine
transformations.
Exercise 61. Show that if X is an infinitesimal affine transformation then CxVv -
VvCx = Vlx,vl for every vector field V whenever the operators apply either to a function
or to a vector field; and deduce that the equation is true, as an equation between operators,
when applied to any tensor field. O

Exercise 62. Show that any linear combination, with constant coefficients, of infinites-
imal affine transformations is again an infinitesimal affine transformation, and that the
bracket of two infinitesimal affine transformations is again one. O

Exercise 53. Show that the condition for X = X *a. to be an infinitesimal affine trans-
formation, when expressed in terms of local coordinates, is

: d
o d ax` d data, _

axax° + Bra f d° + 8s° r°d - asd
tae + X azd - 0. 0

Exercise 64. Show that if X is an infinitesimal affine transformation then CxT = 0 and
CxR=O. 0
Exercise 65. Let M be a manifold with connection V, and let 0 be a diffeomorphism of M,
not assumed affine. For any vector fields V, W on M set VVW = O.-t(V#.v#.W). Show
that V is a connection on M. Show that for any one-parameter group of diffeomorphisms
mt, not assumed affine, of M the tensor field D = d/dt(VO' - V)t_0 satisfies

D(V,W) = CxVvW - VvCxW - Vlx,vlW,
where X is the infinitesimal generator of mt; and so deduce again the condition for X to
be an infinitesimal affine transformation. O

By Exercise 52 the set of infinitesimal affine transformations is a subspace (over
R) of the space of all vector fields on M and is closed under bracket. We now show
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that it is a finite dimensional subspace, an important property which it shares with
the space of infinitesimal isometries of a Riemannian or pseudo-Riemannian mani-
fold, for example; thus, like a space of infinitesimal isometries, it is a Lie algebra.
(There are, however, many examples of spaces of infinitesimal generators of trans-
formations preserving some geometrical structure which are not finite dimensional:
volume preserving transformations, and symplectic transformations-the "isome-
tries" of a closed, non-degenerate 2-form-are examples.)

The infinitesimal affine transformations of an m-dimensional affine space con-
stitute an extreme case. They consist of the vector fields which are linear (but
not necessarily homogeneous) when expressed in terms of affine coordinates. They
certainly form a linear space, whose dimension is just m2 (dimension of the homo-
geneous vector fields) plus m (dimension of the constant vector fields). It may be
anticipated, therefore, that the dimension of the space of infinitesimal affine trans-
formations of a manifold M with connection, which we shall denok.e A(M), is at
most m2 + m where m = dim M. This we shall now prove; and we shall also show
that if dim A(M) = m2 -+ m then the connection on M is flat, so that it looks locally
at least just like the connection on affine space.

The proof is based on the fact that, if 6: M -, M is an affine transformation
which leaves a point x e M fixed, and if exp is the exponential map at x, then

6 o exp = exp oo..,

where 0.Z is a linear map of T=M to itself. Thus 0 is determined, at least so far
as its transformation of a normal coordinate neighbourhood is concerned, by the
linear map 0.Z, that is, by an m x m matrix. In particular, if 4k(x) = x and 0.. is
the identity on T=M then 6 ;s the identity on a neighbourhood of x.
Exercise 56. Show that if X is the generator of a one-parameter group ¢t and X. = 0, so
that 6, (x) = x for all t, then fit.: T.M - . T=M is the exponential of the linear map whose
matrix with respect to a coordinate basis of T=M is ((9Xa/ax')(z), where X = Xaaa.
Deduce that if X is an infinitesimal generator of affine transformations, and if X= = 0,
then in terms of normal coordinates at x, X = Xb zbaa where Xb = (aX as/xb)(x). Q

Suppose that X = Xada E A(M). If both Xa and (dX(,/dxb) vanish at a
point in one coordinate system they do in all. By the exercise, if Xa(x) = 0 and
(8Xa/dxb)(x) = 0 in terms of normal coordinates then X vanishes on the normal
coordinate neighbourhood. Let 0 be the set of points at which both (Xa) and
(8Xa/dxb) vanish. Then 0 is open, because if x E 0 then X vanishes on a normal
neighbourhood of x; but 0 is defined by equations and is therefore also closed. In
a connected space a subset which is both open and closed is either empty or the
whole space. Thus if M is connected it follows that any X E A which vanishes
simultaneously with the matrix of partial derivatives of its components must be
identically zero.

Choose now a point x E M and a normal coordinate system based at x; and
define a map A(M) - R"' ® (the space of m x m matrices over R) by
x (Xa(x), (8Xa/8xb)(x)), where X = Xada. This is a linear map. It follows
from the result in the previous paragraph that its kernel is the zero vector field.
Thus the map is injective and so the dimension of A(M) must be finite and cannot
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exceed that of R' ED which is m + m2.
Suppose that dim A(M) = m + m2. Then, in particular, every vector field in a

normal neighbourhood of x c M which is linear with respect to normal coordinates
is an infinitesimal affine transformation. Thus the equation obtained from that in
Exercise 53 by taking X° = dh? holds throughout the normal neighbourhood: it
is

r` + xdarab _ 0.
ah axd

It follows that ray = 0 at x, so the torsion certainly vanishes there; and by differ-
entiating with respect to xd, that arch/axd = 0 at z, so that the curvature also
vanishes at x. This applies at each point of M, and so the connection is flat.

9. The Levi-Civita Connection on a (Pseudo-)Riemannian Manifold

In Section 5 of Chapter 9 we showed that there is a connection on a surface, defined
initially in terms of the extrinsic geometry of the surface, but in fact uniquely
determined by the properties

(1) that it is symmetric--it has no torsion; and
(2) that parallel transport preserves the metric.

By a simple generalisation of the arguments there we show now that there is a unique
symmetric metric-preserving connection for any (pseudo-)Riemannian manifold, the
Levi-Civita connection.

Let M be a manifold with metric g of any signature. The condition that parallel
transport along a path from x to y preserve the metric properties of the manifold-
that is, preserve all scalar products-is that

gy(T y,:v, Ty,xw) = gx(v, w)

for every v,w E T.M.=Equivalently, this condition may be written
d

= 0Wt (g(V,W))

whenever V and W are parallel vector fields along a curve. For arbitrary vector
fields V and W given along a curve, the same condition is

d
dt(g(V,W))=g(Dt'W) *glV, Dt

In terms of covariant derivatives this conditionn may be rewritten

U(g(V,W )) = g(V(j V,W) + g(V, VUW)

for any U,V,W E X(M). Because VU is a derivation, this amounts to

Vug = 0.

The two conditions satisfied by a symmetric connection which preserves the metric
may therefore be written

DUV -VvU=(U,Vl
VUg = 0 for all U,V E X(M).
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Exercise 57. Show that these conditions entail the relation
g(VUV, W) = 1 {U(g(V, W)) + V (g(U, W)) - W (g(U, V))

4 g(IU,VI,W) - g(fU,WI,V) - g(U,(V,WI)}. O

Exercise 58. Show that in local coordinates the connection coefficients of a symmetric
metric-preserving connection are given by

rb. =-
god

\8zcb
d

+ 3 c (3 d
o

Since no covariant derivatives appear on the right hand side of the relation
stated in Exercise 57, this relation serves to define VUV. To establish that V so
defined is actually a connection it is necessary to check that it satisfies the conditions

(1) Vu+vW = VuW + VvW
(2) VIuV = fVuV
(3) Vu(V + W) = VUV + VUW
(4) Vv(fW) = fVvW + (Vf)W.

which are satisfied by all linear connections. For example,

g(VJuV,W) = fg(V(I V,W)+ 2(Vf)g(U,W) - 2(Wf)g(U,V)
-- 2g((Vf)U,W) + Zg((Wf)U,V)

= fg(VuV,W),
which establishs property (2). Furthermore, Vug = 0, because

g(VuV,W) + g(V,VuW )

= U(g(V,W)) + 2( V (g(U,W)) -W(g(U,V))

+ g(IU,V1,W) - g(IU,WI,V) g(U,IV,W I)
+ W (g (U, V)) - V (g(U,W ))

+ g(IU,W1,V) - g(IU,V1,W) - g(U,(W,VI)}
U(g(V,W)).

Exercise 59. Complete the verification that V defined in Exercise 57 is a symmetric
connection. 0
Exercise 60. By considering their transformation properties, show that

i ad
rbc -

2
g (abecd + acgbd - adgbc )

are the coefficients of a connection in a coordinate basis. O

The uniqueness of the connection defined in Exercise 57 is an immediate con-
sequence of the formula given there, since two connections V, t both satisfying the
conditions immediately preceeding the exercise must have g(VuV,W) = g(VuV,W)
for all U, V, W and so be identical. The formula in Exercise 57 therefore defines a
unique symmetric metric-preserving connection: this is the Levi-Civita connection
for g.

The coefficients of connection in a coordinate basis displayed in Exercise 58
are called the Christoffel symbols of the second kind. They are often written
rbc = { e } =gad Ibc, dl, where 1bc, dl =

z
(abg,d + 8cgbd -- 8dgbc) are the Christoffel

symbols of the first kind.
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Exercise 61. The curvature tensor of a Levi-Civita connection satisfies the identities
g(R(U1,U2)V,,V2) = -g(R(U1,U2)V2,V1)

and
g(R(V1iV2)U1,U2) =g(R(U1,U2)V1,V2).

Verify these identities with the help of normal coordinates. O

Exercise 62. Show that the curvature tensor of a Levi-Civita connection on an m-
dimensional manifold has -m'(m' - 1) linearly independent components. O

Exercise 63. Write out Lagrange's equations d/dt(aL/ai°) - aL/ax* = 0 for the La-
grangian L(z°,i°) = =goe(z°)xbze and show that they are linear combinations of the
geodesic equations for the Levi-Civita connection obtained from the metric with compo-
nents gbc. o
This gives a quick way of computing the Levi-Civita connection, since finding La-
grange's equations is simpler than evaluating the Christoffel symbols from scratch.
Exercise 64. Find the equations of geodesics for the (spherically symmetric static) metric

ds' = e'°dt' - e2Adr2 - r2(d19' + sin' 19dv'),
where v, .1 are functions of r alone. Writing zl,z',zs,z4 for r,0,9,1 respectively, show
that the non-zero Christoffel symbols are

r1, = A' ri = -rc-2a rss = -rsin219e-2A r44 = v'e'I"-AI

r,2 = ra, = 1 rss = -sinScos19r

r j = r 1 = 1 r , = r332 = Cot 19
r

r14 = r441 =
V,

(where A' = dA/dr, v' = dv/dr). Compute the components of the curvature tensor in an
orthonormal frame whose vectors point in the coordinate directions. O

Exercise 66. Show that the components gab of the inverse or dual metric satisfy
ag°e_ °a a e °
az +9

Deduce that for any type (1,p) tensor field S

g'`S°be Of = (gecSabc...,)iJ. O

The Ricci tensor and curvature scalar. From the curvature tensor of a Levi-
Civita connection we construct a type (1, 1) tensor called the Ricci tensor and a
function called the curvature scalar.

The trace of the map U R( , U) is a type (0, 2) tensor field, given explicitly
by (V,W) ,--, (R(V,UJW,8`) where {Uc} is any local vector field basis and {e`} the
dual 1-form basis. This tensor field is symmetric, for

(R(V,UJW,9c) - (R(W,Uc)V,8c) = (R(V,W)Uc,8c)
by the first Bianchi identity; but R(V,W) is skew-symmetric with respect to g
(Exercise 61) and its trace is therefore zero (Chapter 8, Exercise 8). We define a
type (1,1) tensor field R', the Ricci tensor, by

g(V, R*(W )) = (R(V, UC)W,OC).

Then R' is symmetric with respect to g. Its trace p = (R*(Uj,8c) is the curvature
scalar of the connection.
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Exercise 66. Show that the components of R" are given by R'° = Show that
p=R,C. o

Exercise 67. For a surface, R(U,V)W -= K(g(V,W)U - g(U,W)V), where K is the
Caussian curvature. Compute the Ricci tensor and curvature in terms of K. o
Exercise 68. By taking suitable contractions of the second Bianchi identity show that
the Ricci tensor and curvature satisfy

2ptla = 0. o

The tensor R" - s pl is called the Einstein tensor. In the field equations
of general relativity the Einstein tensor is identified as a multiple of the energy-
momentum tensor of matter. The property of the Einstein tensor exhibited in the
last exercise is an important factor in this identification.
Exercise 69. Let A be a type (1, 1) tensor which is symmetric with respect to g; set

RA(U,V)W - -g(A(V),W)U -g(V,W)A(U)+g(A(U),W)V +g(U,W)A(V).
Show that RA has all the algebraic symmetries of the curvature of a Levi-Civita connection.
Show that the corresponding "Ricci tensor" and "curvature scalar" are given in terms of
A by

and deduce that
R (m - 2) A + (tr A)/ PA = 2(m - 1) tr A

RA (U,V)W.+
-I R (V))

P (g(V,W)U - g(U,W)V) = 0.
--1) (m

O

10. Conformal Geometry

The idea of a conformal rescaling of a (pseudo-) Riemannian metric was introduced
in the last chapter, Section 8. We now describe some of the effects on the associated
connection of making a conformal rescaling of a metric, with a view particularly to
picking out geometric objects which are unaffected.

The first point we make is that a non-homothetic conformal transformation
does not preserve the connection, nor the geodesics, although in the pseudo-
Riemannian case it does preserve the null geodesics, meanwhile generally altering
the affine parameters on them. Suppose that g is a metric obtained from g by a con-
formal resealing. It is convenient to set e'°g. Then the Levi-Civita connection

for is given by

z{if (g(v,w)) + v(9(U,w)) -w(4(U,V))

+ g(IU,vl,w) -- g(IU,wl,v) -- 4(U,Iv,WI)}
9(V,,V,W) + (UR)9(V,W) + (Vo)9(U,W) - (Wa)9(U,V)

= g(VuV 4 (IJa)V -i (Va) U - g(U,V)grad a,W)

so that
'u,V - V ,V 4 (Ua) V + (Va) U - g(U,V)grad a.
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Now a vector field V is geodesic tangent with respect to V if and only if VvV is a
multiple of V, and in particular the geodesics are affinely parametrised if and only
if VvV = 0. With respect to t,

VvV = VvV + 2(Va)V - g(V,V)grada.

Because of the last term, a conformal change cannot in general preserve geodesics.
However, if V is null, then

DyV - VvV + 2(Va)V,

so that VvV is still proportional to V. But it need not vanish, so that the affine
property of V is spoilt, unless it happens that Va = 0 (which cannot be true for
all null geodesics unless a is constant). Thus a conformal change preserves null
geodesics but not affine parametrisation.

The other important fact is the invariance under conformal change of the Weyl
conformal curvature tensor C of a Riemannian or pseudo-Riemannian structure on
a manifold of dimension m > 2, defined in the following exercise.

Exercise TO. By using the formula for the Levi-Civita connection V given above, show
that the curvature tensors R and k of the connections V and t are related by ft = R+RA,
where RA is the tensor defined in Exercise 69 and A is the type (1, 1) tensor given by

A(V) = Vv grad a - (Va) grad a - g (grad a, grad a) V.

Deduce that if
C(U,V)W = R(U,V)W

+ (m 1 2) (g(R*(V ),W )U + g(V, W)R*(U) - g(R'(U), W )V - g(U, W)R*(V ))

P

- 1)(m - 2) (g(V,W)U - g(U,W)V)

and C is the corresponding tensor constructed from k then C = C. O

The tensor C is the Weyl conformal curvature tensor of the metric g: the result
of the exercise is that it is conformally invariant, that is, unchanged by a conformal
rescaling. The Weyl tensor has zero trace on every pair of indices, as well as the
algebraic symmetries of the curvature tensor. There has been an extensive search for
other conformal invariants, and various algorithms for constructing them are known,
but there is no known procedure for finding all those which may be constructed in
a space of given dimension.

Summary of Chapter 11
A rule of parallel transport along a path in a manifold M is a collection of non-
singular linear maps Ty,,: T, M -b TM, for every pair of points x, y on the path,
such that Ty,2 o T2,, = Ty,, for every point z on the path. A rule of parallel
transport in M is fixed when a rule is given along each path in it. A vector field W
is parallel along a path if for any x and each y on the path WY = T y,,W=.

If a is a curve through x and W is a vector field specified along or then the
absolute derivative of W along a at x -- a(0) is DW/Dt = d/ds{T,,ol,?W(s)}a_v.

A linear connection V is the assignment, to each x E M and to each vector
field W defined near x, of a linear map VW : T, .M --. T, M such that for any curve
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or through x the absolute derivative of W along or is VQW. For any v E T=M, V,W
is called the covariant derivative of W with respect to v. In the common domain of
vector fields V and W, VvW is the vector field with the same domain defined by
(VvW)z = Vv, W. It is assumed that if V and W are smooth then VvW is smooth.
The covariant derivative has the properties

V((r+v)W = Vr,W + VvW V ,(V + W) = VUV + DUW

VfvW = fVvW Vv(fW) = fVvW + (Vf)W.

A linear connection gives rise to a rule of parallel transport determined by solution of
the equations VoW = 0. Let {Ua} he a local basis for vector fields. The coefficients
of linear connection with respect to this basis are the functions - defined by
Or,, Ub = 'y a U.. If {Ua} is a coordinate basis then rbc is written for the connection
coefficients, and VvW = VbW"IIb(3a, where Wallb = abWa + I a Wc.

The covariant derivative of a function is its directional derivative, and the
covariant derivative of a 1-form is defined so that the covariant derivative of a
pairing is a derivation: (W, Ova) = V (W, a) - (VvW,a). The covariant derivative
of a tensor field of type (p,q) is also defined so that it is a derivation.

The torsion of a linear connection is the type (1,2) tensor field T and the
curvature the type (1,3) tensor field R defined by

T(U,V)= V,V -vvU -- IU,VJ
R (U,V)W - V1,VvW - VyV1,W - VIU,vIW.

The connection is called symmetric if its torsion vanishes. Relative to a coordinate
basis T and R are given by

T6c -rd - I'bc
Rahcd = acrhd - adrbc + rh'dte - nccre°r.

The curvature and torsion satisfy

T(V,U) - --T(U,V) R(V,U)W = -R(U,V)W.

For a symmetric connection the curvature satisfies the Bianchi identities

R(U,V)W + R(V,W)U + R(W,U)V = 0
(vr,R)(V, W) + (VvR)(W,U) + (VwR)(U,V) - 0.

Relative to a coordinate basis, for a symmetric connection,
d cab

Al. cal, = -- R cba

Rdcab + Rdhca + Rdabc - 0

RdeahlIc + Rdecallb + Rdebclla = 0.

More general versions of the Bianchi identities, involving the torsion, hold for non-
symmetric connections.

Let (9a) be the basis for 1-forms dual to the local basis {Ua} for vector fields.
The connection forms wh are defined by (V,wh) _ (VyUb,9a), for every vector field
V. The torsion 1-forms Oa are defined by ea(V,W) = (T(V,W),9a). Thecurvature
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2-forms l16 are defined by flb(V, W) = (R(V,W)Ub,B°). The forms 8° and 0° are
identified as entries in (column) vectors 9 and O, the forms wb and flb as entries in
(square) matrices w and ft. In this notation Cartan's structure equations are

dB + w A O = O dw + 21w n w = fl,

and their exterior derivatives, which are equivalent to the Bianchi identities, are

dO+wAO=flA0 dfl+(wnflf =0.

If A is a matrix-valued function specifying a change of basis B = A-10, then
w = A-'dA + A`wA, O = A-'e and fl = A-iflA. Exploiting this formalism
one can show from Frobenius's theorem that if a manifold has a connection with
vanishing curvature, then the connection is a complete parallelism, which means
that there exists about each point a local basis of parallel vector fields. If, further,
the connection is symmetric then there is a local coordinate system in which the
coordinate fields are parallel; the connection is then flat.

A geodesic is a path whose tangent spaces are parallel along it. An afIinely
parametrised geodesic is a curve with geodesic image whose tangent vector is par-
allely transported along it. The tangent vector field to an affinely parametrised
geodesic -y satisfies C/77 =- 0. Any geodesic may be afftnely parametrised. In local
coordinates the equations of an affinely parametrised geodesic are

d2 I dt° d-yb

c
+nc - 0.

dt dt

The exponential map at x is defined by exp(v) = where 7 is the geodesic
with x and v. It is a diffeomorphism on some neighbourhood
of 0 E T.M.TIf exp is globally defined on TM whatever the choice of x then M
is called geodesically complete. Exp maps affine coordinates in TZM, with origin
0, into coordinates around x, called normal coordinates, in which each geodesic
through x has the form I (tx°); in these coordinates rec(x) + r 6(x) = 0.

A map of manifolds with connection, which preserves parallelism, is called an
affine map. If X generates a one-parameter group of affine diffeomorphisms of
.M then CxVv - Ovrx = Vix,vl for any vector field V and any argument, be it
function, form, vector or tensor field. Moreover, CxT = CxR = 0. The set of
infinitesimal affine transformations is a Lie algebra, of dimension at most m2 -+ M.

On a (pseudo-) Riemannian manifold there is a unique symmetric metric-
preserving connection, that is, one with the properties VvW - VwV = jV,Wj;
Vvg = 0. This connection is called the Levi-Civita connection. It is given by

9(Vt,V,W) = 2{U(9(V,W)) + V(9(U,W)) W(9(U,V))
+ 9(IU,V],W) - g([U,Wj,V) -- g(U, jV,W))}

and in local coordinates the connection coefficients are

rti, = 29°d (abecd + 9cgbd - ()d9bc)

The curvature tensor of a Levi-Civita connection satisfies the identities

9(R(Ui,U2)V2,Vi) = -9(R(Ui,U2)V1,V2)
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and

g(R(Vi,V2)Ut,U2) = g(R(U1,U2)V1,V2).

A conformal change of metric does not preserve the connection or geodesics
unless it is homothetic, except for null geodesics (in a pseudo-Riemannian manifold),
though even then the affine parametrisation is altered. By subtracting suitable
combinations of the Ricci tensor and the curvature scalar one may construct from
the curvature tensor a conformally invariant tensor called the Weyl tensor.

Notes to Chapter 11

1. Convex normal neighbourhoods. Let M be a manifold with connection.
That each point of M lies in a convex normal neighbourhood is proved in, for
example, Helgason 19781.

2. Torsion in physical theory. A great many authors have written about the
physical significance of torsion. There is a survey article by Hehl and others in
Held 11980). The little book by Schrodinger 119541 is less comprehensive but very
readable.



12. LIE GROUPS

A group whose elements are labelled by one or more continuously variable parame-
ters may be considered also to be a manifold; one has merely to take the parameters
as coordinates. This is the basic idea of the theory of Lie groups. The groups in
question might well have been called differentiable groups, but the conventional
association with the name of Sophus Lie, who revolutionised the theory of differen-
tiable groups in the last decades of the nineteenth century, is too deeply ingrained
in the literature to admit any change.

Many examples of Lie groups have already arisen in this book. The affine group
introduced in Chapter 1 is a Lie group. So also are the rotation, Euclidean, Lorentz
and Poincare groups of Chapter 8. The one-parameter groups of transformations
introduced in Chapter 3 are (1-dimensional) Lie groups.

The discussion of these groups in this chapter differs in emphasis from that
of the preceding chapters. The groups just mentioned arose as groups of trans-
formations of other manifolds. We have hinted already that one can abstract the
group structure from the idea of a transformation group and consider the group
in its own right without regard to the manifold on which it acts. One can go fur-
ther than this, and define a Lie group abstractly in the first place, as a manifold
endowed with maps defining group multiplication and formation of inverses. This
is how the definition is usually presented nowadays. We prefer to begin with some
examples, showing how a group may be thought of as a manifold. After giving the
formal definitions we go on to consider a certain collection of vector fields on any
Lie group, called the Lie algebra of the group. It turns out that a Lie group may
be reconstructed "almost uniquely" from its Lie algebra. We discuss the extent to
which this is the case, and describe the exponential map, by which one can move
from the Lie algebra to the group. The chapter concludes with a re-examination of
some aspects of groups of transformations.

1. Introductory Examples
We begin with a fairly detailed treatment of two examples of Lie groups, in order
to motivate the definition.

Orientation-preserving isometries of the plane. Our first example is the
group E of orientation-preserving isometries of the Euclidean plane V. With
(z',x2) as Cartesian coordinates, let r((I (z) denote the translation (x',x2) -
(x' +t',x2 + 2), and let Re denote the counter-clockwise rotation (z',x2)
(x' cos 19 - zs sin d,x' sin * + z2 cos 09). Then

r(f'.E') 0 r(n'.n') = r(E'+n'.('+n')
Re o R. = Re+,P

Re 0 r((1,(2) - r((' coed-v gin 0,41 sin d+(' coo 0) o Re.
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Also, Rd+2w = Rd. Here it is conventional that the operation on the right is carried
out first. It follows that any succession of translations and rotations may by suitable
choice of f', 2 and t9 be written in the form r(fi f') o Re, with e' and 2 uniquely
determined and t9 determined modulo 21r. On the other hand, every triple t9)

determines a unique isometry rlf, (') o Ro. Thus e', f2 and t9 label the elements of
the group E, and group elements labelled by neighbouring values of these variables
produce nearby effects on F2. Thus C', E2 and r9 may be regarded as coordinates of
the elements of E, and E, with these coordinates, and the usual provisos about the
angular coordinate t9, may be considered to be a 3-dimensional manifold. Taking
into account the ranges of ', 2 and t9 one should recognise that, as a manifold, E
is diffeomorphic to R2 x S' (here S' represents the circle).

The group E thus arises in the first place as a group of transformations of
the plane, but on further consideration may be recognised as a differentiable man-
ifold in its own right. From this point of view the group-theoretical processes of
multiplication and formation of inverses are to be thought of as maps of manifolds.

Exercise 1. Write (e',e2,t9) for r(f,.f2)oRe. Verify that

(t', 2,t9)°(r)',g2, gyp) _ ({'+q' cos t9 - 172 sin t9 + t9 +jp)
and that

1 = ( coo d+C2sin t9,-{'sin t9- 2cos0,-e9). o

From this exercise it is seen that multiplication and formation of inverses are
given by smooth, indeed analytic, functions. Thus multiplication may be described
as a smooth map E x E E and formation of the inverse as a smooth map E -+ E.

We have chosen to deal with this example here because it is simple enough to
allow explicit computations, but complicated enough to exhibit the most important
features of Lie groups. It has the advantage that the group is of dimension 3, while
the manifold on which it acts is of dimension 2, so that from the outset there is
a clear distinction between them. In this respect it is more useful, as an example,
than the rotation group, which arises as a group of transformations of Es and is
itself 3-dimensional. In that case some confusion can arise between the group and
the space on which it acts, and, in particular, between the tangent spaces to the
group, on the one hand, and to (, on the other.

Matrix groups. The group GL(V) of non-singular linear transformations of a
real vector space V attains concrete form, when a basis is chosen for V, as the group
of non-singular matrices GL(n, R) acting on R". As was pointed out in Section 1 of
Chapter 10, the n x n non-singular matrices constitute an n2-dimensional manifold
with coordinate functions (xb ), where xb (g) is the entry in the ath row and bth
column of g E GL(n,R). The group multiplication is bilinear in these coordinates,
and formation of the inverse yields for each entry a quotient of polynomials, with
non-singular denominator, so that both operations may be expressed as smooth
maps. Thus GL(n,R) is a group which may at the same time be considered to be a
manifold, and whose group-theoretic operations of multiplication and formation of
inverses are given by smooth maps. The vector space R" on which the group acts
may be left out of consideration and the group considered as an object in its own
right.
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2. Definition and Further Examples
A Lie group is a group which is at the same time a manifold, in such a way that
the group operations are smooth maps. These operations are (with G as the group
and g, gl, 92 elements of it)

multiplication : G x G -+ G by (91,92)'--' 9192.
formation of inverses:

G-+Gbyg'g-
It turns out that the group structure restricts the manifold structure so much that
one may even assume the group operations to be analytic without losing any gen-
erality.

Examples. We next describe some further examples of Lie groups.
(1) The real line R, with addition as the group multiplication, is a 1-dimensional

Lie group.
(2) The unit circle S' in the complex plane, with multiplication of complex

numbers (e"9,, CO,) e'(''" {''=1 as the group multiplication, is a 1-dimensional Lie
group.

(3) Two Lie groups are said to be isomorphic if they are isomorphic as groups
and if the isomorphism is a diffeomorphism of manifolds. The group of real numbers
{ z 1 0<. z < 1 } under addition modulo I is a 1-dimensional Lie group isomorphic
to S' .

(4) If G, and G2 are Lie groups, then the product group G, x G2, with mul-
tiplication given by (g,,g2)(g1,g'2) (919,,9292'), endowed with the structure of
product manifold, is a Lie group. The torus T2 = S' x S' is an example.

(5) As we have already pointed out, the group GL(n,R) of n x n non-singular
matrices is a Lie group. Many important Lie groups are groups of matrices, that is,
subgroups of GL(n, R) for some n. For example: the special linear group SL(n, R)
of n x n matrices of determinant 1; the orthogonal group O(n) of n x n matrices g
satisfying ggT = I"; the special orthogonal group SO(n) of n x n orthogonal matrices
with determinant 1; orthogonal and special orthogonal groups corresponding to
scalar products of other signatures.

(6) The group CL(n, C) of non-singular n x n matrices with complex entries is
also a Lie group, where we take for coordinate functions the real and imaginary parts
of the entries. Subgroups of GL(n, C) also furnish important examples of Lie groups.
For example: SL(n, C), the group of n x n complex matrices of determinant 1; U(n),
the unitary group, consisting of n x n complex matrices g satisfying ggt = I,,, where
t denotes the complex conjugate transpose; SU(n), the special unitary group, which
is the subgroup of U(n) of elements with determinant 1.

(7) The affine group of an n-dimensional affine space is a Lie group, and so also
are subgroups of it which preserve additional structure, such as the Euclidean and
the Poincare groups.

Subgroups. Many of these examples are subgroups of larger Lie groups, and at
the same time submanifolds of them. It is natural to use the term "Lie subgroup" in
this context. Unfortunately, one has to be rather careful about the meaning of the
word "submanifold", as the following example shows. Let T' be the torus, defined
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now as the set { (x', x2) 10 < x', xs < 1 }, under addition defined componentwise
mod 1. Then for each real a the subset R = { (x', xs) I x2 = ax' } of Ts is a
subgroup; R is a homomorphic image of R by a I : 1 immersion; but how the
subset sits in Ts depends on whether a is rational or irrational. When a is rational
R is a closed imbedded submanifold of Ts which is actually diffeomorphic to a circle,
since the line x 2 = ax' in R2 passes through points, other than (0,0), both of whose
coordinates are integers, and the subset R therefore eventually returns to its starting
point. When a is irrational, on the other hand, R is not closed-in fact it is a dense
subset of Ts-and is an immersed but not an imbedded submanifold. In this case
the subgroup is isomorphic to R, algebraically; but topologically, it is not a nice
subset of T2 and in particular is not homeomorphic to R in its induced topology.
The topological difficulties associated with this example have already been pointed
out in the context of the theory of integrable distributions in Chapter 10, Section 7.

We define a Lie subgroup of a Lie group G to be the image in G of a Lie group
H by a 1 : I immersion. It should be noted that the topology of a Lie subgroup
is not necessarily the same as the topology induced on it as a subset of the larger
group. The case a irrational described above is a case in point. This example is
actually a paradigm, in that being a closed subset of G is a necessary and sufficient
condition for a Lie subgroup to be an imbedded submanifold, and thus to have the
same topology as is induced from the topology of C. The details of this take one
too deep into the realms of topology to be worth repeating here; however, it is as
well to be aware of the reason for the definition, and the significance of closure for
a subgroup.

3. Computations in Coordinates

Many of the constructions in the theory of Lie groups can be worked out explicitly,
using coordinates, in terms of the functions which represent the group operations,
and most of them were first discovered in this way. It is useful to be able to carry
out explicit calculations, as well as to be able to employ the more abstract methods
to be explained later in this chapter. We begin the description of computational
methods here.

Let G be a Lie group of dimension n and let (Za) be coordinate functions
defined on a neighbourhood of the identity e of G. Suppose that x°(e) = 0: this
mild restriction, which can always be complied with by a translation of coordinates,
saves a good deal of writing. Multiplication functions pa and inversion functions
1°, the former from some neighbourhood of 0 in R' x R" to R", the latter from
some neighbourhood of 0 in R" to R", are defined as follows:

x°(gh) = '41°(?(g),x`(h))

x°(g-,) - 1"(xh(g))

(when both sides make sense).

Exercise 2. Show that 4s°(f6,O) - ° and that V(f6,1`(fd)) _
`i'°(I6(fd),f`) = 0; and that Z°(e rC(nd,c')) -'L°(d'6(fd,7e),c`).
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Since the group operations may be assumed analytic, the functions W° and I°
may be expanded in Taylor series. From the results of the exercise it follows that

v(Ed,n`)
_ Ca -+' ,a + 02,

where Ok will denote terms of order k and higher. Applying this with q` = Ic(ed)
one obtains

la(eb) _ 02.

Exercise 3. Show that there are no terms in W of order 2 or higher which contain only
Es or only t) s.

From the result of this exercise one may suppose that
,ya(Eb,,7`)

=
Ca

+
na

+ a a Cbn` + 03

for some numbers c .

Exercise 4. Show that aacC' f c + O.

An analytic coordinate transformation, which leaves the coordinates of the
identity unchanged, may be expanded in a Taylor series: if (ia) are the new coor-
dinate functions, then for any g, with xa(g) = Ca,

Za(g) _ a = Ab b + Bbc£bCc + 03

say, where the matrix of coefficients (Ah) must be invertible so that the coordinate
transformation is invertible in a neighbourhood of 0.

Exercise 5. Compute the multiplication functions in the new coordinates, and show that
by a suitable choice of Bbac, which may be assumed to be symmetric in its lower indices,
the symmetric part 1(sac f or a,) of ab may be eliminated, while the skew-symmetric part
I sac - a 6) transforms tensorially by A; E3

The special choice of coordinates described in this exercise can be speci-
fied neatly in terms of the inversion functions la: it is the choice for which
la(Ca) = -{a -+ 03. By considering higher order terms one can easily convince
oneself that in a formal sense, without regard to questions of convergence, one can
choose coordinates so that 1a(Ca) = a exactly. It follows that the symmetric
part of 0, a has no invariant significance. However, the skew-symmetric part does
have such significance. We write Cba == 1(asp -_ a).

Exercise 6. Show that 2Cbc is the coefficient of the leading term in the expansion of the
commutator ghg-'h-' of group elements g and h: xa(ghg 'h ') = 2Cb,zb(g)xc(h)+0s.
Exercise 7. Show that the associativity condition g(hk) = (gh)k leads at order 3 to the
"Jacobi identity"

C 4bc" + CC Ae + C,dCbc = 0-

4. Transformation Groups
As we have already pointed out, Lie groups appeared in the first place as groups of
transformations of other manifolds, and still play this role in many applications. In
this section we describe some general features of transformation groups which do
not depend primarily on their differentiability properties.
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An action of a group C on a set M is a homomorphism G -+ S(M) where S(M)
is the group of "permutations" of M, in other words, bijective maps of M onto itself.
If 4, is an action of G on M we shall here write 0g to denote the transformation of
.M determined by g E G; in this notation the conditions that 0 be an action are

Og 0 Oh = Ogh 0, = idM.

Exercise S. Show that an action of the real line, considered as a group under addition,
on a manifold M is a one-parameter group of transformations of M. C3

Left and right actions. The content of this definition of an action depends on
the convention that if transformations are written composed, then the rightmost
transformation is to be carried out first. This is to say that if x is any element
of M, (0g o 05h)(x) means 4,g((#h(t)), and the condition for 0 to be an action is
'kg(-0h(x)) = 4gh(x). This is reflected in the custom of abbreviating 4,9(x) to gx,
leaving 46 understood, for then g(hx) = (gh)x. However, the stated condition can
he too restrictive. Suppose that M is R' and that C is a group of n x n matrices.
If 0 denotes matrix multiplication, with each matrix represented by itself, and x is
a column vector then indeed mg(x) = gx and g(hx) = (gh)x. However, if x is a row
vector then 4,5(x) must mean xg, and then (xg)h = x(gh); but written in terms of
m this becomes 00h((kg(x)) = 4gh(x), so that 4,h o 4g = 4,gh with the order of the
factors on the left opposite to what it was before.

Such situations occur sufficiently often that they must be allowed for, and
accordingly one distinguishes two kinds of group actions, left actions, where ¢gh =
0g o Oh as in the definition at the beginning of this section, and as is the case for
matrix multiplication of column vectors; and right actions, where ¢gh = Oh o 0g, as
is the case for matrix multiplication of row vectors. The simplified notations are gx
for mg(x) when 4, is a left action; xg for 4,g(z) when 0 is a right action.
Exercise 9. Verify that if 0 is a left action then g is a right action, and vice
versa. o

If a left action of G on M is given, then M is sometimes called a left C-space,
while if a right action of G on M is given, then M is sometimes called a right C-space.

Orbits and homogeneous spaces. An action 0 of G on M distinguishes certain
subgroups of C and subsets of M. The subgroups are those which leave points of M
fixed, and the subsets are those which are preserved by G. For example, if G is the
rotation group and M is e3' then the subgroup leaving the origin fixed is the whole
of G, while the subgroup leaving any other point fixed is the one-parameter group
of rotations about the radius vector to that point. The subsets of M preserved by
G are the origin and each sphere with centre at the origin.

Let 0 be an action of C on M. The set of points which may be reached from
x E M by the action of C is called the orbit, or in case of ambiguity the C-orbit, of
x, and denoted Cx (or xG if the action is a right action). This concept is an obvious
generalisation of the corresponding one for one-parameter groups of transformations
which we have used so frequently in previous chapters.

If a subset M of M lies on a single orbit, then C is said to act transitively on
M, and )J is called a homogeneous space of G. Every C-space is partitioned by
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the action of G into C-orbits, each of which is a homogeneous space of G. The set
of G-orbits for a left G-action is denoted M/C, and 7r: .M -+ M/G by x - Gx is
the projection taking each point of M into the G-orbit on which it lies. The set
of orbits for a right G-action is denoted G\M. In case M is a smooth manifold
and G a Lie transformation group of M, the set M/G may be endowed with the
quotient topology induced by the projection: a set U is open in M/G if and only if
its pre-image x- '(u) is open in M. However M/G is not in general a manifold and
need not even be a Hausdorff space. Similar comments apply in the case of a right
action.

Let (k be an action of a group C on a set M. The set of elements of C leaving
fixed a chosen element z of M is a subgroup of G called the isotropy group of x and
denoted C=. Thus G. = (g E C I Og(z) = x }.
Exercise 10. Show that points on the same orbit have conjugate isotropy groups. D

If the isotropy group of every point is the identity, then C is said to act freely
on M; in this case no element except the identity leaves any point fixed. If the
intersection of the isotropy groups of all points of M is the identity, then G is said
to act effectively on M; in this case no element except the identity leaves every
point fixed. For example, the group E; of translations and rotations of the plane
acts effectively on the plane; the subgroup of translations acts freely. In fact our
definition of an affine space in Chapter I may be paraphrased thus: an affine space is
a space on which a vector space (considered as a group) acts freely and transitively.

Exercise 11. Show that every element of E, acting on the plane, which is not a translation
or the identity has a unique fixed point. D

Let K be a subgroup of a group G. By restriction of the multiplication in G one
obtains a map K x C G which is a left action of K on C. The orbits of G under
this action are called right cosets of K in G; they are the sets Kg = { kg I k E K }
(unfortunately, some authors call them left cosets, so one should always check the
definition). Since C is partitioned by the action of K, each element of C belongs
to exactly one right coset of the subgroup K. The subgroup K also acts on G by
restriction of the multiplication C x K -* C, which is a right action of K on G; its
orbits gK are called left cosets of K in G.

Exercise 12. Let M be a left or right G-space. Show that the set of elements of G taking
a chosen point z to a chosen point on its orbit is a left or right coset of G.. D

If N is a homogeneous space of G, and x a chosen point of N, then every other
point of N is on the orbit of x, and so to every other point there is, by the exercise,
a corresponding coset of C7. Thus there is a I : I correspondence between points
of N and cosets of C7, and thus any homogeneous G-space may be identified with
a space of cosets of G,,-a left C-space with the space of left cosets G/C=, a right
C-space with the space of right cosets CT\G. For example, if G is the rotation
group SO(3) and N is a sphere S2 with centre at the origin then, for any x E N,
Cy is the group of rotations about the radius vector through x, which is the group
S'. Thus S2 = SO(3)/S'.

Actions of a group on itself. The actions of a group on itself are of great
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importance. Three of them will be defined here; they are used repeatedly in the
rest of this chapter. Taking M to be C itself in the above construction one obtains:
left translation L9: C C by h - gh for all h c G; and right translation R9: C C
by h -. hg for all h E G. Besides these, inner automorphism or conjugation is the
action of G on itself defined by 19 = 1,9 o R9 ,, so that 19(h) = ghg ,'.
Exercise 13. Show that left (right) translation is a free transitive left (right) action of C
on itself. O

Exercise 14. Show that g -. R9... is a free transitive left action of C on itself.
Exercise 15. Show that inner automorphism is a left action of C on itself. Describe the
isotropy group of any element of G under this action, and in particular the isotropy group
of the identity. Show that this action is never transitive or free, for non-trivial G. O

An automorphism of a group C is an isomorphism C C.

Exercise 16. Show that the automorphisms of C form a group under composition.

This group is denoted autG. An automorphism of a Lie group must be a
diffeomorphism. It is known that if C is a connected Lie group then aut C is itself
a Lie group.

Exercise 17. Show that for any g V G the conjugation 19 is an automorphism of G (thus
justifying the alternative name "inner automorphism" ). Show that the map C -. aut G by
g 19 is a homomorphism. Show that the inner automorphisms form a normal subgroup
of aut C. O

Exercise 18. Let V': C H be a group homomorphism. Show that for each g E G,
0 o L9 = Lo(9) ^ d', +G o R, - R#(,) o *' and d, o 1, _1 l#(,) o tI,. O

Exercise 19. Let $° he the multiplication functions for a Lie group G. Show that the
coordinate presentation of left translation by a fixed element g of G is q° ,-. *,(tb,r1`),
where r = z°(g). O

5. The Lie Algebra of a Lie Group
The elegant structure of Lie groups does not become fully apparent until actions of
the group on itself are extended to actions on tangent vectors. This structure was
discovered through the study of neighbourhoods of the identity in transformation
groups, but the approach to be described here, which has been developed during
the last half century, is more direct and perhaps simpler. The general idea is to
construct a vector field on the group, from a vector assigned at one point, by some
transitive action of the group on itself. It is customary to choose left translation
for this action.

Let C be a Lie group, and let L9 denote left translation by the element g E G,
as before. Each map L. is a diffeomorphism of the manifold G to itself; let L9.
denote the induced map of tangent spaces in the usual way. Because g ,-+ L9 is
an action, L9. has the property L9. o Lh. = (L9 o Lh). = L9h.. Now assign any
tangent vector X, at the identity element e of G. Define a tangent vector X9 at g
by left translation: X. = L9.X,. A tangent vector may be defined in this way at
every point of C, and the result is actually a smooth vector field, because of the
smoothness of group multiplication. Moreover, by the property of L. just stated,

L9.Xh :- L9.Lh-X, = L9h.Xe = X9 .
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This says that if you left translate X, from e first to h, then from there to gh, you
get the same result at gh as if you translated there directly. In other words, the
vector field X defined by this construction is taken into itself by any left translation:
thus L9.X = X.

A vector field on a Lie group which is taken into itself by left translations is
called left-invariant. Conversely, any left-invariant vector field X may be recon-
structed by the method above from X,, its value at e, since X. = Lg. X, by virtue
of its left invariance.

If X and Y are left-invariant vector fields on a Lie group G, so is kX + lY
where k, l (--. R, because of the linearity of L9.. The left-invariant vector fields on
G therefore constitute a vector space, which is denoted .9. Since a left-invariant
vector field is determined completely by its value at e, or indeed at any point of G,
the dimension of C is the same as the dimension of any tangent space to G, which
is just the dimension of G itself. It is often convenient to identify 9 with TG, the
tangent space at the identity of G, by the correspondence between left-invariant
vector fields and their values at e.

Since the brackets of L9-related vector fields are L9-related, if X and Y are
left-invariant then Lo. [X, Y) = IL,- X, L9.Yl = IX, Y J, so that the bracket of left-
invariant vector fields is left-invariant. It follows that the left-invariant vector fields
on a Lie group G form a finite-dimensional vector space equipped with a bilinear
skew-symmetric product or bracket operation which satisfies the Jacobi identity.
Such a structure is called a Lie algebra. The Lie algebra g is called the Lie algebra of
C. We have discussed Lie algebras before in the context of groups of transformations:
for example, Lie algebras of infinitesimal isometrics in Chapter 8. The present
construction shows how the Lie algebra of a Lie group may be defined in terms of
the group itself.

The bracket may also be defined on TAG, by (XC,YC) = 1X,Y),, where X,Y
are the left-invariant vector fields determined by X,, Y,. If (Xa) is a basis for C
then jXh, X,) must be a linear combination of basis vectors, say (Xb, X,1 = C6aX5,
where the Cb are numbers. These numbers are called the structure constants of 5,
in the chosen basis. We shall show eventually that these numbers are the same as
those defined in Section 3, immediately before Exercise 6.

Exercise 20. Show that under change of basis the structure constants transform as a
tensor of the indicated type.
Exercise 21. Show from the skew-symmetry of the bracket that

C° = -Ca

c5 be

and from the Jacobi identity that
C6CCa+CCCdeb+GaCC=0.

Exercise 22. Let E be the group of orientation-preserving isometrics of the plane, de-
scribed in Section 1, and let be the coordinates for E introduced there. Con-
struct the left-invariant vector fields whose values at the identity are a/c)l;',

and calculate the structure constants with these vector fields as basis
for the Lie algebra C.

The Lie algebra of a matrix group. It is useful to be able to compute the
Lie algebra explicitly for a matrix group. The key to such computations is the
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identification of the tangent space at any point of a matrix group with a vector
space of matrices. First let G be GL(n, R) and let (xb) be the coordinate functions
on G, described earlier. Let -y be any curve in G, with coordinate expression
'yy (t) = xb (-y(t)), and set y(0) = g. If f is any function on G, then

dt (f ry)(0) axb'in (0),

the partial derivatives being evaluated at (xb(g)). The (0) are merely numbers,
which form an n x n array: in other words, there is an n x n matrix, A, an element
of M,(R), such that Ab = j6(0). Thus every tangent vector to GL(n,R) at g
may be written in coordinates Aba/axb for some A E Mn(R). To check that the
whole of Mn (R) may be reached in this way, one has merely to observe that if g
is a non-singular matrix and A any matrix then g + to is non-singular for small
enough ItI, and that the curve t i-. g + to in GL(n, R) has tangent vector A68/8xb
at g. This argument shows that the tangent space to GL(n,R) at any point may
be identified with Mn(R). We shall use this result most often when the point in
question is the unit matrix, the identity of the group.

Now let G be a Lie group of matrices, in other words a Lie subgroup of GL(n, R)
for some n. If the curve y lies in G, then its tangent vectors must be tangent to G.
We may regard G as an (immersed) submanifold of GL(n,R), so that its tangent
space at any one point is a subspace of the tangent space to GL(n, R). Thus
the tangent spaces to G may be identified as vector subspaces of Mn(R). It is not
difficult to find conditions determining these subspaces from the conditions satisfied
by elements of G. For example, if G is O(n) or SO(n) then ry(t) . (t)T = In for each
t. Differentiation with respect to t yields 7(t)7(t)T + 7(t)7(t)T = 0, so that if -y is
a curve at the identity, with y(0) = In, then 7(0) + ry(0)T = 0; the tangent space
to O(n) or SO(n) at the identity may therefore be identified with the vector space
of antisymmetric n x n matrices.
Exercise 23. Show that the tangent space to U(n) at the identity comprises all skew-
Hermitian matrices, that is, all complex n x n matrices A satisfying A + At = 0. o
Exercise 24. If -y is a curve in SL(n, R) then det -y(t) = 1 for each t. Using the formula
for the derivative of a determinant show that 0 = d/dt(det y(t))(0) = tr(7(0)'y(0)-t), and
infer that the tangent space to SL(n, R) at the identity comprises all trace-free n x n
matrices. o

The identification of the Lie algebra g with TeG bears fruit if one computes
the commutator of Lie algebra elements. To do this it is first necessary to compute
the left-invariant vector fields.

Let h be any point of GL(n,R), 7 a curve at h, j(0) the tangent vector to y

at h, and f any function on the grop. For any g E GL(nI, R),

I

dtf ry(t))t=0 axb Wt- `xn(9)76(t))t=o = xc19)1b10)aZb

the partial derivatives being evaluated at xb (gh). The first expression gives pre-
cisely the directional derivative of f along the vector Lg.' (0), and so from the last
expression

L9.176 (0) sib) = xc (9)76 (0)
axb
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It follows that if the tangent spaces at h and gh are both identified with
then the linear map L.. is represented by left matrix multiplication by g. Now to
any matrix (Xee) there corresponds a tangent vector Xba/axb to GL(n,R) at the
identity. This tangent vector determines a left-invariant vector field X given by

X9 Ly (a_)
= Ze(g)Xsaxb

or equivalently

X = XC'X'
49

b

This is the form which any left-invariant vector field takes when it is expressed in
terms of standard coordinates on GL(n, R).
Exercise 25. Show that if X = x,Xba/8xs and Y = x'Y`8/axb are two left-invariant
vector fields on GL(n, R) then

(X, YJ = cG(XdY° - Ya X6 )a/ax;. o

Thus the matrix corresponding to (X, YJ is just the commutator of the matrices
corresponding to X and Y. In this way the Lie algebra of GL(n, R) may be identified
with MR(R) equipped with the bracket operation of the commutator of matrices.
Exercise 20. A basis for the Lie algebra of GL(n,R) comprises matrices EP with entry
unity in the p th row and q th column and all other entries zero. Show that (Eo, E;( _
6r°Ep' - 6; E,'. t]

Consider now a Lie group C of matrices, which is a Lie subgroup of CL(n, R).
If X is a left-invariant vector field on CL(n, R) such that X. E TIG, then the
restriction of X to C, regarded as a submanifold of CL(n, R), is everywhere tangent
to C, and is left-invariant under the action of G. Every left-invariant vector field
on C may be regarded in this way. Since the bracket of two vector fields tangent to
a submanifold is also tangent to the same submanifold it follows that the bracket
operation in the Lie algebra 9 of G responds to the commutator of matrices exactly
as before. Thus g, when identified with a subspace of M,,(R) via TAG, must be
closed under formation of commutators.
Exercise 27. Confirm that the space of antisymmetric n x n matrices (the Lie algebra of
0(n)), the space of skew-Hermitian n x n complex matrices (the Lie algebra of U(n)) and
the space of trace-free n x n matrices (the Lie algebra of SL(n, R)) are all closed under
formation of commutators. O

Exercise 28. Show that, just as the map of induced by left translation in
GL(n, R) corresponds to left matrix multiplication, so the map induced by right translation
corresponds to right matrix multiplication and the map induced by inner automorphism
corresponds to matrix conjugation, for any matrix Lie group. O

6. Left-invariant Forms
Not surprisingly, the left-invariant forms on a Lie group constitute the vector space
dual to the vector space of left-invariant vector fields. The formulae have only to be
adapted to the fact that maps of cotangent spaces are contragredient to the maps
of manifolds which induce them.
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Let C be any Lie group, and let L. denote left translation by g E C, as before.
Then Lg' pulls covectors back from gh to h, say, and to map covectors from h to
gh one must use Lg- I '. Let a, denote a covector at e, and define ag = Lg-1 . ae.

A cotangent vector is defined in this way at every point of C, and the result is a
smooth 1-form.
Exercise 29. Show that, with a thus defined, ayh = L'- I at, and that therefore L,'a =
a for all g, h E G.

The 1-form a is a left-invariant 1-form on G.
Exercise 30. Show that if X is a left-invariant vector field and a a left-invariant 1-form
on C then (X" a,) = (X a.) for all g E C. a

Since Lg' is linear, left-invariant 1-forms on G constitute a vector space. So in
fact do left-invariant p-forms, which satisfy Lg'w = w for all g E G. It follows from
the last exercise that if the vector field X and the 1-form a are left-invariant then
(X, a) is constant on G. Consequently the vector space of left-invariant 1-forms
may be identified with the dual gC' of the Lie algebra 9 (considered as a vector
space).

If X, Y E C and a E 5' then the formula for the exterior derivative of a 1-form
yields

da(X,Y) _ ((X,Y1,a),

when one takes account of the constancy of (X, a) and (Y, a). In particular, if {X,}
is a basis for 9 and {a°} the dual basis for g' then

dda°(Xb, X.) = -Cti (Xd, Cbc

where the Cb are the structure constants for C.

Exercise 31. Show that if a is a left-invariant 1-form on C, then da is a left-invariant
2-form. Show that if {a°} is a basis for 9' then

da° = - 1'C,ca° A a`. o
These equations are called the Maurer-Carton equations for C.
Exercise 32. Show that the 1-forms a+ on CL(n,R) given by o:1, = =,'(g-')dx'l, con-
stitute a basis for left-invariant 1-forms on this group. a
These 1-forms are often combined into a single matrix-valued 1-form, written g- 'dg.

7. One-parameter Subgroups

A one-parameter subgroup of a Lie group G is a smooth homomorphism of Lie
groups 0: R G where R is the real line with its additive Lie group structure (the
nomenclature survives from the time when coordinates on Lie groups were called
parameters-"one-dimensional subgroup" would serve just as well). Thus 0 is a
smooth curve in G such that

10(a + t) =As)4i(t) for all a,t E R
¢(0) = e.
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Exercise 33. Show that rotations about a fixed axis, parametrised by angle of rotation,
constitute a one-parameter subgroup of SO(3). a
Exercise 34. Show that if V is a vector space, regarded as a (commutative) Lie group,
then for any v E V the map t -. tv is a one-parameter subgroup of V, and that every
one-parameter subgroup of V is of this form. a

If M is a manifold on which G acts to the left, say, and if 0 is a one-parameter
subgroup of G, then 0 defines a one-parameter group of diffeomorphisms of M by
Og(x) = m(t)x, and the ideas of Chapters 3 and 10 may again be put to use. In
particular the actions of G on itself may be combined with one-parameter subgroups
of G: if 0 is a one-parameter subgroup of G, then R.(t), L#(e) and I#(t) are all one-
parameter groups of diffeomorphisms of G. Moreover, left and right translations
commute, so that for any g E G, Lo o R#(t) = RO(j) o Lo. It follows that the
vector field X which is the infinitesimal generator of the one-parameter group of
diffeomorphisms R#(t) satisfies L,. X = X for every g: in other words, it is a left-
invariant vector field.

Exercise 36. Show that the generators of left translations are right-invariant. a
Conversely, any left-invariant vector field on G generates a one-parameter group

of right translations. Let X be a left-invariant vector field and 0 its integral curve at
e, so that 0(0) = e. The smoothness of X ensures that 0 is defined on some interval
of R containing 0, say jti < c. The group structure of G then makes it possible
to extend 0 indefinitely, as follows. Apply the diffeomorphism L. to everything in
sight: t p-+ g4>(t) is the integral curve of L9.X at g. But X is left-invariant, so this
actually gives the integral curve of X at g. Thus left translation of 0 yields bits of
integral curves of X all over C. By piecing these bits together one may extend each
integral curve indefinitely: choose g = 4>(s), 1,91 < c, and then the integral curve
through e may be extended to all Iti < 2c, and so on.

Now t '-+ 4>(s + t) is the integral curve of X at 4>(s), by the congruence property
of integral curves; but this integral curve is t - qS(s)4>(t) by left-invariance, so
4>(s + t) = O(s)O(t) and 0 is a one-parameter subgroup of G. Moreover, since the
integral curve of X through g is i k-+ gm(t) = RO(j)g, X generates the one-parameter
group of right translations Rm(t). Since X, determines the vector field X, it also
determines 0, and conversely: 4'(O) = X..

If X is a left-invariant vector field so is rX, for any constant r. Multiplica-
tion of X by a constant factor does not change its integral curves as point sets, it
only reparametrises them. The relation between the one-parameter subgroups cor-
responding to rX and X is given by ¢,X (t) = Ox(ri), where the subscript indicates
the generator (of the one-parameter group of right translations).

Exercise 30. Show that if X is a left-invariant vector field and Y a right-invariant vector
field then (X, Y( = 0. a

If G is a matrix group and X a left-invariant vector field on G, and if 0 is
an integral curve of X, then 0 must satisfy do/dt = 4'A where A is the matrix
corresponding to Xe under the identification of TeG with a space of matrices. Thus,
differentiating repeatedly, dk4>/dtk = cAk. If 0 is the one-parameter subgroup
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corresponding to X then 0(0) = I,,, so that

A2+
which is just the matrix exponential exp(tA).

Having got this far one is not hard put to it to recognise that the exponential
can be defined whether G is a matrix group or not; one has only to get the domain
right.

8. The Exponential Map

Let C be a Lie group and g its Lie algebra. The exponenteai map exp: C -. G is
given by

expX = (kx(1)

where X is any element of 5 and Ox is the one-parameter subgroup of G with
tangent vector Xe at e.

Interchanging r and t in the formula for change of parametrisation and then
setting r = I one finds that

exptX = Oix(1) = 00),

and therefore exp tX is the one-parameter subgroup of G whose action by right
translation is generated by the left-invariant vector field X. Moreover,exp(s+t)X =
expsXexptX; in particular, expO = e and exp(-X) = (expX)-'.

The tangent space at 0 to the vector space 9 may be identified with 9 itself,
and the tangent space at e to the group G may also be identified with g, so that
the map exp. of vectors induced by exp at 0 is a map 9 - C. To compute exp. X
one may take any curve in 5 whose tangent vector at 0 is X and find the tangent
vector at e to the image of this curve in G. The ray t -+ tX is a suitable curve
in 5; its image in G is t '--' exptX, whose tangent vector at e is again X. Thus
at 0 in g, exp, is the identity map. It follows from the inverse function theorem
that exp is a diffeomorphism of some open neighbourhood of 0 in 9 onto some open
neighbourhood of e in C.

This is reminiscent of the exponential map associated with a connection, as
defined in Chapter 11. In fact one may define a connection on a Lie group with the
aid of left translation, by using L,,-,.:TG -. Ti,G to define parallel translation.
This parallel translation is path independent, so one has in fact defined a com-
plete parallelism; the corresponding connection therefore has zero curvature, but
in general it is not a symmetric connection: the components of its torsion tensor
with respect to a basis of left-invariant vector fields are the structure constants of
the Lie algebra. Now any integral curve of a left-invariant vector field has parallel
tangent vectors, according to this connection, and is therefore a geodesic. Thus the
exponential map defined above is just the exponential map of the connection based
at the identity.

We may define normal coordinates on the group, in a neighbourhood of the
identity, by first choosing a basis, say {Xa}, for 9. Then for any g close enough
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to the identity we may write g = exp X for some X E 9, and the normal coordi-
nates xa(g) are given by xa(g) = t;° where X = f°Xa. Note that with respect to
normal coordinates x°(g-1) = -x°(g), since (exp X)-1 = exp(-X). Thus normal
coordinates have the special property described in the paragraph following Exer-
cise 5. Note also that if one expands the multiplication functions *° for normal
coordinates in series, in the form (see Exercise 3 and the following remarks)

a6Wrl` +...
then the array of coefficients sec must be skew-symmetric in b and c. This follows
from the one-parameter subgroup property exp sXexp tX = exp(a + t)X: for if
X = (°X° then

x°(expaXexptX) = 1Y°(afb,tC`)

= at:° + t£° + ata* cb£e,.,

= x°(exp(s + t)X) = (s + tg°,

whence asp f bCc = 0 for every (E°). That the ab, are actually the structure constants
is the content of Exercise 38 below.
Exercise 37. Let V be a vector space, considered as additive group G, so that 9, as
tangent space at 0, may be identified with V. Verify that exp is a diffeomorphism of V
onto V. 0

The result of this exercise holds for some other groups, but the exponential
map for the circle group t e eit shows that the exponential map need not be 1 : 1,
and it may not even be surjective, as may be seen from the following example.

Exponentiation in SL(2,R). The group SL(2,R) of 2 x 2 matrices with real
entries and unit determinant is a 3-dimensional Lie group. Its Lie algebra SC(2,R)
comprises 2 x 2 matrices with trace zero. If X E SC(2,R) then exptX is the
solution to the equation d/dt(exptX) = (exptX)X with exp0 = 12. Differentiating
again, one sees that exptX is the solution to d2/dt2(exptX) _ (exptX)X2 with
exp 0 = 12 and d/dt (exp tX) (0) = X. This second order equation is easy to solve
because if

X =
(u V

w -u)

then

x2 = (u2 + vw
l 0

0
= (u2u2 + vw

+ vw)12.

There are three cases, depending on the value of (u2 + vw).
(1) u2 + vw > 0: then

( coshpt + °P- sinhpt `sinhpt
exp t X = l P sing pt cosh pt - sinhpt

where p = u2 + vw. Call this the hyperbolic case.
(2) u2 + vw = 0: then

exptX= r I+to tv 1

l tw 1-to)
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Call this the parabolic case.
(3) u2 + vw < 0: then

cos pt -} v sin pt , sin pt
exp tX = ( v sin pt cos pt - sin pt )

where p = u2 + vw). Call this the elliptic case.
Now observe that

in the hyperbolic case, tr(exptX) > 2
in the parabolic case, tr(exp tX) = 2
in the elliptic case, -2 < tr(exptX) < 2.

Thus any element of SL(2, R) which is an exponential must have trace at least -2.
However, there are elements of SL(2, R) with trace less than -2, for example

02 02 )

The exponential map is therefore not surjective in this group.

9. Homomorphisrns of Lie Groups and their Lie Algebras

The idea of the exponential map may be used to simplify results about homomor-
phisms. In the first place, if !b: C -* H is a homomorphism of Lie groups and exp tX
is a one-parameter subgroup of C then tO(exp tX) is a one-parameter subgroup of
if. Moreover,

V,(Rexptx9) - P(gexpiX) _ ;O(g)O(exptX) = R0(exptX)V,(9)

so that
? o Rexp tx - R,I,(exp tX) o 0-

Consequently the generator of right translations by O(exptX) is ?P-related to X.
We shall denote by 0. X the generator of right translations by t i(exp tX). Then 0.
is a map of left-invariant vector fields on C to left-invariant vector fields on H. The
vector field V;. X could equally well be defined as the left-invariant vector field on
H whose value at the identity is t/i.eXe. Either way, we have defined a linear map
,G.:9 --. N (as vector spaces).

Now tG- relatedness preserves brackets, so that 10.X,tl.Y1 = V'.IX,Y1. Thus
ui.:9C N is a Lie algebra homomorphism. Furthermore, tP(exptX) = exp(tO.X),
and this for any X E 9, so that

t(i o exp -= exp ot/i..

Of course the exp on the left acts in 9, that on the right in N. This formula may
be remembered wth the help of the diagram

exp exp

C H
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The adjoint representation. If 0: C -- His an isomorphism of Lie groups then
the induced map tb.: 9 -+ )i is an isomorphism of Lie algebras; and in particular if '
is an automorphism of a Lie group C then rb. is an automorphism of its Lie algebra.
An important application of this result is obtained by specialising to the case of the
inner automorphisms of C, that is, to the conjugation maps ],:g, gg'g-1. The
automorphism of .9 induced by 19 is denoted ad g so that for X E 9

adg(X) = 19.X.

It follows from the general theory that

exp(adg(X)) = 19(expX) = gexpXg-'.

Since g - 19 is a homomorphism C --+ autG (Exercise 17), I9.Ih. = I9h., or

ad g ad h = ad gh.

Thus ad is a left action of G on 9. Moreover, for each g E C, ad g is an auto-
morphism of g; that is to say, it is a non-singular linear transformation of g and
satisfies

ladg(X),adg(Y)I adg([X,Yl).

We summarise these properties by saying that ad is a representation of G on g: it
is called the adjoint representation.

In the case of a Lie group G of matrices, when 9 is identified with a space of
matrices, ad corresponds simply to matrix conjugation: ad g(X) = gXg - '.

Using the expression of 19 as L9 o R9-,, or equivalently R9-, o L. (since right
and left translations commute), we deduce that for a left-invariant vector field Y

adg(Y) = 19.Y - R9-,.L9.Y = Rg-,.Y.

We shall use this important formula in a later chapter; we also draw an interesting
deduction from it here. Suppose that X is another left-invariant vector field. Then
X is the generator of the one-parameter group Rexptx It follows from the result
above that

ad(exptX)(Y) = R(exptx)-I - Y =

On differentiating the right hand expression with respect to t and setting t = 0 one
obtains the Lie derivative CxY, or I X, Y1: thus

dt
(ad(exptX)(Y))i_(1

Exercise 38. Show that with respect to normal coordinates,
(ad(exptX)(Y))' = r)° +

where X = VX. and Y r1°X,,, and the a' are the coefficients in the multiplication
functions; deduce that as - Cs,, the structure constants. O

This result has a nice interpretation in terms of homomorphisms of Lie groups
and their Lie algebras. The group of automorphisms of a Lie algebra g is itself a
Lie group, which we write aut 9. Then ad: C - aut.9 is a homomorphism of Lie
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groups. The Lie algebra A(5) of aut9 is the space of derivations of g, that is of
linear maps D: ,9 5 such that

DIY,Z1 = IDY,Z1 + IY,DZ1.

Now for any element X of g the map C C by Y IX,YI is a derivation of 9C,
by Jacobi's identity:

IX,IY,ZII = !IX,YI,Z1 +-IY,IX,ZII.

From the general theory it follows that the homomorphism ad: G --' aut 9 induces
a homomorphism ad.:9 -+ A(BC), and from the result above it is clear what this
homomorphism is:

ad.(X)(Y) = dt(ad(exptX)(Y))(0) _ (X,Y1.

Thus ad. is the map which associates with each element of 5 the derivation of C
which it defines.

The adjoint representation for SO(3). The Lie algebra SO(3) of the rotation
group consists of 3 x 3 skew-symmetric matrices. A convenient basis is given by the
matrices

0 0 0 0 0 1 0 -1 0
X1= 0 0 1 X2- 0 0 0 X3= 1 0 0

O 1 0 -1 0 0 0 0 0

so that X. is the matrix whose (b, c) entry is - cabs. The exponentials of these Lie
algebra elements are the one-parameter subgroups of rotations about the coordinate
axes. Their brackets are given by

IX1,X21 = X3 IX2,X31 = X1 IX3,x11 = X2

Now SO (3) is 3-dimensional, and in many constructions it is commonly iden-
tified (or confused) with the space E3 on which SO(3) normally acts. We shall
explain the extent to which this is justified in the case of the adjoint representation.

With each element X = t:°Xa E SO(3) one associates (as in Chapter 8, Sec-
tion 5) the point C = (c°) E P. Thus the correspondence associates (c°) with
the matrix (-t:°Eab,). (It is convenient here to keep all matrix indices in the lower
position, which avoids the necessity of inserting numerous Kronecker deltas.) Then

(C°Xa,nbXhl = (e2n3 _. 1:3n2)X1 + (e3n1 - C1n3)X2 + (e'n2 - e2n1)X3

Thus the bracket of Lie algebra elements corresponding to (f °) and (n°) is the
element corresponding to their cross product.

In order to work out the adjoint representation we need the result of the fol-
lowing exercise. (The summation convention still applies for repeated indices even
though both may be in lower position.)
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Exercise 39. Show that if g = (gab) E 0(3) then fadegbd9« = EJbe9Jadet9. O

Now for any g E SO(3) (so that detg = 1) we have with the aid of the exercise

(ad9(Xa))bc = (9X"9-')b, = (9Xa9T)bc
= -Eadegbd9ce = -EJbc9fa

Thus adg(X6) is the skew-symmetric matrix corresponding to the ath column of g.
But the a th column of g is just the image of the a th basis vector under the usual
matrix action of g on vectors. Thus when S0(3) is identified with £3 the adjoint
action simply reproduces the usual action of matrices on E3.

Notice, however, from the exercise, that this is not so if one considers instead
the group 0(3), that is, if one allows reflections as well as rotations, for then the
factor det g intrudes. In fact the action of 0(3) on vectors induced from its adjoint
action on its Lie algebra (which is just S0(3) again) is f F-+ (detg)gC. Objects
which transform in this way, acquiring an extra minus sign under reflection, are
often called "axial vectors". Thus elements of $ 0 (3) behave as axial vectors under
the adjoint action of 0(3).

10. Coverings and Connectedness

A great deal is known about a Lie group if its Lie algebra is given: the algebra
is in a sense an infinitesimal version of the group, and a neighbourhood of the
identity in the group, at least, can be reconstructed from the algebra by means of
the exponential map. However, the algebra alone does not completely determine
the group, as is seen from the simple example of the Lie groups R and S', which
have isomorphic Lie algebras but are not isomorphic groups.

The relationship between R and S' is indicative of the general case, which is
to be described in this section. There is a homomorphism of Lie groups R -+ S'
by t '-+ es*`'; here S' is realised as the multiplicative group of complex numbers of
unit modulus. This homomorphism has two notable properties.

(1) Its kernel, comprising the set of elements of R which are mapped to the
identity in S', consists of all the integers. It is therefore a discrete subgroup of R,
which means that each of its elements lies in a neighbourhood containing no others.

(2) The homomorphism is locally an isomorphism, which means that there
are neighbourhoods of the identities 0 in R and 1 in S' which are diffeomorphic
and within which the group multiplications correspond bijectively, so long as the
products remain in these neighbourhoods. By choosing the neighbourhood of 0 in R
to be an open interval of length less than 1, one ensures that the integer translates
of this neighbourhood are pairwise disjoint, so that each element of the kernel has a
neighbourhood diffeomorphic to a given neighbourhood of the identity in V. The
same will hold for the set of inverse images of any chosen element of S'.

One may think of S' as obtained from R by identifying with each other points
which differ from one another by an integer. The process of identification does not
affect local properties but has dramatic global effects. It is an example of a covering
map, an idea which we now proceed to make precise.
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Fig. 1 Covering S' by R.

Covering maps. A smooth surjective map of manifolds ir: M -+ N is a covering
of N by M if each point y E N has a neighbourhood P such that 7r-'(P) is the
union of disjoint open sets 0 in M on each of which the restriction ?r 0- 0 -+ P is a
diffeomorphism. The neighbourhood P is said to be evenly covered. The manifold
M is called a covering space of the manifold N.

Exercise 40. Show that R -+ S' by t '-. e'' is a covering. D

Exercise 41. Show that R -. S' by t i-+ e4ireen t is not a covering. 0
Exercise 42. Show that R' -. T2 by

(x',x=) _ (x' - (x'),x2 - (x21)

is a covering (where (x) means the integer part of x). 0

A covering as here defined is a differentiable idea, invoking no group structure,
and in fact this differentiable idea can be weakened to a topological one by requir-
ing only that wr be continuous and that each restriction ir(p be a homeomorphism.
However, the additional structure introduced if it is assumed that it is a homomor-
phism of Lie groups restricts the possibilities very much; in a Lie group any point
is as good as any other, and all considerations may be reduced to the question of
what happens in a neighbourhood of the identity.

To state the general position regarding homomorphic Lie groups with isomor-
phic Lie algebras we first define a discrete subgroup. A subgroup K of a Lie group
G is discrete if each k E K has a neighbourhood (in G) which contains no element of
K other than k. The general position is as follows. If 0: G - H is a homomorphism
of Lie groups, if G is connected, and if 0.: 5 -+ N is an isomorphism, then the kernel
of , is a discrete normal subgroup of G, and 0 is a covering map. The key to the
proof is that, by the inverse function theorem, since 0. is an isomorphism, 0 maps
a neighbourhood of the identity in G diffeomorphically onto a neighbourhood of the
identity in H. By the homogeneity of Lie groups and the homomorphism property
of 0 this is, as it turns out, enough to generate the requisite neighbourhoods of other
points of G, to prove discreteness of the kernel, and to provide even coverings. An
example of this situation is the two-to-one covering of SO(3) by SU(2) described
in Chapter 8.

It is natural to ask if there are Lie groups H which cannot be multiply covered,
in the way still allowed by this result: if the stated conditions are satisfied, what
further condition must be imposed to ensure that 0 is an isomorphism? The answer
is that H must be simply connected, a term we now explain.
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Simple connectedness. A manifold M is called simply connected if every closed
curve ry in the manifold can be smoothly shrunk to a point, that is, if there is
a smooth map j:[0, 11 x (0,1( - M such that 7(1,t) = 7(t) and t '-+ ry(0,t) is a
constant curve. The real line R is simply connected, but the circle S' is not, because
it is itself the image of a closed curve which cannot, within S', be smoothly shrunk
to a point. The real number space R' is simply connected, and so is S" for n > 2.
The torus, the cylinder, and the projective spaces, all of which are derived from
simply connected spaces by making identifications, are not simply connected.

Suppose now that 7r: M - N is a covering of N, and that N is simply connected.
It is not difficult to show that it must be a diffeomorphism. Suppose that there are
distinct points x, y E M such that ir(x) = ?r (y). Any curve in M joining x toy must
project into a closed curve in N, which by assumption can be shrunk smoothly to
7r(x); each intermediate curve in the shrinking process can be lifted to a unique
curve in M, by the local diffeomorphism property of coverings, and the curves in M
thus obtained constitute a smooth deformation of the original curve, and must all
pass through y. But the smoothly shrinking curve in N must eventually lie within a
neighbourhood of 7r(x) which is evenly covered, and the lifted curve must lie in the
corresponding diffeomorphic neighbourhood of x. It can therefore no longer reach
y, which projects onto the same point as x and so cannot lie in this neighbourhood
of x. This contradicts the assumption of distinct points of M mapping to the same
point of N, and shows that it must after all be a diffeomorphism. In the case where
M = G and N = H are Lie groups and x = iG is a homomorphism as before, it
follows that 0 must be an isomorphism.

On the other hand, it is possible to construct, for any connected manifold
N, a simply connected covering space, unique up to diffeomorphism, in effect by
unwinding those closed curves in N which cannot be smoothly shrunk to points.
But if N has the property that each covering of it is a diffeomorphism, then it is
diffeomorphic to its simply connected covering, and hence is itself simply connected.

The conclusion of these arguments, so far as Lie groups are concerned, is that
if VJ: G --+ H is a homomorphism of Lie groups, if G is connected, if H is simply
connected, and if 0.:. -, N is an isomorphism, then V) is an isomorphism. However,
a situation which arises often in practice, which is not covered by this result, is that
two Lie groups are given which are known to have isomorphic Lie algebras but are
not known ab initio to be homomorphic groups. In this context, by "isomorphic"
we mean isomorphic as Lie algebras, not just as vector spaces. This is in contrast
to the situation so far discussed, for the fact that a group homomorphism induces
a homomorphism of Lie algebras and not just of vector spaces, though it has been
mentioned, has not been made use of. It is in fact possible, if C is simply connected
and 1I: C -+ N is an isomorphism of Lie algebras, to construct a homomorphism of
Lie groups V): G H such that 10. = T. Consequently if G and H are Lie groups
with isomorphic Lie algebras and G is simply connected then G covers H and H is
the quotient of G by a discrete normal subgroup.

As we have already mentioned, the group SU(2) is a covering group of SO(3); it
is in fact the simply connected cover, since as a topological space it is just Ss. Thus
SO(3) is not simply connected. This topological fact about SO(3) and its relation to
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SU(2) is at the bottom of the explanation of intrinsic spin in quantum mechanics.
The group SL(2, C) plays the same role in relation to the proper orthochronous
Lorentz group as SU(2) does for SO(3) and this has important consequences in
relativity.

Finally, we mention Ado's theorem, which asserts that any finite-dimensional
Lie algebra is isomorphic to a subalgebra of for some n, whence it can
be shown that any Lie algebra is isomorphic to the Lie algebra of a Lie group.
Consequently, any Lie algebra is isomorphic to the Lie algebra of a unique simply
connected Lie group, and any other connected Lie group with Lie algebra isomorphic
to this one is a quotient of the first group by a discrete normal subgroup.

11. Lie Algebras of Transformation Groups

In this section, continuing the development of the theory of transformation groups,
we show that given an action of a Lie group G on a manifold A, there is, as one might
expect, a homomorphism from the Lie algebra of G to the algebra of generators of
one-parameter groups of transformations of M, in other words, vector fields on A.

We suppose for definiteness that G acts to the right on M, and denote the
action by 0, so that for each g E G, 09 is a diffeomorphism of M. For any X E 5,
the Lie algebra of G, 4'exptX is a one-parameter group of diffeomorphisms of M; we
call the infinitesimal generator of this one-parameter group of transformations the
fundamental vector field corresponding to X E 9, and denote it X.

For purposes of calculation it is sometimes convenient to fix x E M and vary
g E G rather than the other way about; we write 0= for the map C - M by g
(k9(x), so that 4=(g) = 4i9(x). This is analogous to the switch from transformation
to orbit which we have frequently employed when discussing one-parameter groups.
Then for any X E C the fundamental vector X1 is the tangent at t = 0 to the curve
t " Wexptx(x) _ 0.(exptX). It follows that X= _ 0.. X,, and therefore that the
map X -. X is linear.

We shall next evaluate where g is any element of G and k is any fun-
damental vector field arising from the action. Now O9 X is the generator of the
one-parameter group 09 o Oexp ex o 0g - ; using the fact that ¢ is a right action one
may express this as follows:

4'g O mexp tX o wg t = mg o oexp tX o 4'g- I _ 469- 1 (exp tX)g.

In other words, 4'g X is the generator of the one-parameter group of transformations
of M corresponding to the one-parameter subgroup Ig-. (exp tX) of G. But by the
results of Section 9

19-. oexp = expolg.-.. = expoadg-'.

Thus m9.X is the fundamental vector field on M corresponding to the element
adg-'(X) of 9:

09.X = adg-'(X).
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If also Y E 9 and Y is the corresponding fundamental vector field then the
bracket IX, YJ may be computed as the Lie derivative LX Y:

CXY
= dt(0eXP(-cx).Y)e.o =

d
(ad(exptX)(Y))t_o.

But as we proved in Section 9

d (ad(exptX)(Y))t=0 = [X,Y1.

Thus
(X,YJ = (X,YI

It follows that the set of fundamental vector fields generated by a right action of a
Lie group G on a manifold M is a (finite-dimensional) Lie algebra of vector fields
on M, which is a homomorphic image of C.

Exercise 43. Show that in the case of a left action, when k is defined analogously, the
corresponding result is -(X,Y], and then X -+ -X is a Lie algebra homomor-
phism. O

12. Symmetry Groups and Momentum in Mechanics

It was pointed out in Chapter 6 (Exercise 38) that if w is a closed 2-form of maximal
rank on an even dimensional manifold (actually an affine space in Chapter 6, but it
makes little difference), if h is a function, and if Vh is the vector field determined by
Vh Jw = -dh, then with respect to coordinates in which w takes the standard form
dpa A dqa the integral curves of Vh satisfy Hamilton's equations for the Hamiltonian
function h. An even dimensional manifold M with closed maximal rank 2-form w
is thus the natural environment for a generalised form of Hamiltonian mechanics.
Such a structure is called a symplectic manifold. We shall examine here group
actions on a symplectic manifold preserving the symplectic structure.

Let G be a Lie group acting on a symplectic manifold. Its action is said to be
a symplectic action if for every g E G,

In this case, for every X E Q
CXw=0.

But then since w is closed d(X Jw) = 0. Thus k Jw is locally exact: we suppose
that it is actually exact, so that there is some function Jx such that

X Jw = -dJx.

(The minus sign is conventional, like that in the definition of the Hamiltonian vector
field.) Note that Jx is determined only up to an additive constant. Since X -. X is
a linear map, it follows that Jx depends linearly on X (this requires some fixing of
constants, which may be achieved by specifying that Jx (xo) = 0 for all X, where xo
is some chosen point of M, for example). Then for each x E M the map X .-. Jx (x)
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may be regarded as a linear functional on g and therefore as an element of its dual
space g*. So this symplectic action defines a map M such that

X Jw = -d(X,J)

where (X,J) denotes the function x (X,J(x)) = JX(z) on M. The map J,
which is determined up to the addition of a constant element of g% is called the
momentum map associated with the action: this is because it is a generalisation of
linear and angular momentum in elementary mechanics, as we shall shortly show.

Suppose first, however, that h is a Hamiltonian function and that $o'h = h for
all g E G. Then Xh = 0 for all X E 5 and as a consequence

(X,VhJ) = Vh(X, J) = -Vh J(X JW) = XJ(Vh Jw) = -Xh = 0.

Thus VhJ = 0: in other words, if a group acts symplectically and defines a momen-
tum map, and if it also acts so as to leave a Hamiltonian function invariant, then
the momentum is conserved by the corresponding Hamiltonian vector field. In this
case one says that G is a group of symmetries of the Hamiltonian system; this result
is a general form of the correlation between symmetries and conserved quantities in
Hamiltonian mechanics.

The momentum map obeys a transformation law under the action of C, which
we shall now derive. For any g E G

(X1 J) = (X1 J) _ (XJw)

_ -09-i.XJW = -adg(X)Jw = (adg(X),J)

where we have used the fact that Oo'w = w, and a formula from the previous
subsection which holds under the assumption that G acts to the right. We express
this conclusion in terms of J and g alone by utilising the action of G on g* generated
from the adjoint representation by duality. Thus we define ad g' (p) for p E 5' by
(X, ad g' (p)) = (ad g(X ), p) for all X E 9; then

09'J = adg'(J).
To understand this equation it is important to realise that on the left-hand side 0o'
acts on J via its argument (in M), while on the right-hand side ad g' acts on J via
its value (in 9*).
Exercise 44. Deduce from the transformation law for the momentum map that for any
X,Y E 5, X(Y,J) = ((X,YJ,J). o

It may be the case that w is exact, say w = dB; we then speak of an exact
symplectic manifold. If the action then preserves B we call it an exact symplectic
action. In this case the momentum map has a straightforward expression in terms
of 0 and there is no problem of indeterminacy up to additive constants. For if
,CX9 = 0 then

X Jw = X JdO = -d(X,O)

and so we may take
(X,J)
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We now give the examples which explain why the momentum map has its name.
First, let N = £2n = £" x £", with coordinates (ga,pa), and let 9 = p,dga.

Then M, equipped with dB, is an exact symplectic manifold. Think of the first
factor of M, with coordinates (q"), as representing configuration space, and the
second factor, with coordinates (pa), as representing momentum space. Let G = R"
acting on M by (ga,pa) - (qa + va,pa). This is an exact symplectic action. If
X = (Ca) E 5 = R" then k = Eaa/aqa and so JX(ga,pa) = pofa. Thus in
particular if e = (ea) is a unit vector then JX is the component of linear momentum
in the {-direction. Thus J corresponds to linear momentum in this case. Since G
is commutative, ad g is the identity, and the transformation rule for J says that
momentum is translation invariant. If Xh = 0 then h is invariant under translations
in the direction corresponding to X, and the formula VhJX = 0 shows that the
component of momentum in the direction of the invariance translation is constant.

Second, let M = £6 = £3 x £3 with B = padga as before (but now n =
3). Let G = SO(3) acting by 0o(q,p) _ (gq,gp) (since this is a left action the
transformation law for J will have to be modified in this case). Then representing
0 as pTdq it follows that this is an exact symplectic action. Using the basis for
SO (3) given at the end of Section 9, one obtains

2 a 3 a a aX1 -q -q +p2---p3-
aq3 aq2 ap3 3P2

with corresponding expressions for X2 and X3. Thus

(X1,B) = g2P3 - 93P2,

the first component of angular momentum; likewise, (X2, 6) and (X3, 9) are the
second and third components of angular momentum. More generally, if X E SO (3)
corresponds to a unit vector in £3 (in the manner explained in Section 9), then JX
is the component of angular momentum in that direction. Thus J corresponds to
angular momentum. Since we are dealing with a left action the transformation law
for J reads

Oy'J = adg-1'J
As we pointed out in Section 9, when SO(3) is identified with £3 the adjoint rep-
resentation corresponds to the ordinary action of SO(3); and since (g- 1)T = g the
action ad g-1' on the dual is again the ordinary action of S0(3). So the transfor-
mation law says that angular momentum transforms as a vector under rotations
(but again, if reflections are allowed, one has to modify this to say that angular mo-
mentum transforms as an axial vector). Finally, a Hamiltonian h such that Xh = 0
is invariant under rotations about the axis corresponding to X, and the angular
momentum component in that direction is conserved.

The coadjoint action. The coadjoint action of a Lie group C on g', the vector
space dual to its Lie algebra, is the right action defined by g H ad g*. As we
have shown above, the study of symmetry groups of Hamiltonian systems leads
to a consideration of this action, via the momentum map. It follows from the
transformation formula for J that each orbit of the action of G in M is mapped
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by J into an orbit of the coadjoint action of C in J9'. It is therefore of interest to
study the orbits of the coadjoint action. We shall show that each orbit has its own
naturally defined symplectic structure.

For any X E C we define a vector field on 9' as the generator of the one-
parameter group ad(exptX)' in the usual way; we shall denote this vector field
X' to avoid confusion. The linear structure of g' allows one to give a simple
description of X' by evaluating it on linear functions. Every linear function on 9'
is determined by an element of JC and is given by p (Z,p), p E 5', Z E 9. We
denote by fz the linear function corresponding to Z. Then

Xpfz = dt((Z,ad(exptX)'p))t.0

= jt(ad(exptX)Z,p)t.o

= (IX,ZI,P) = flx,zl(P)
The orbit of p E g9' under the coadjoint action is a submanifold of g' whose

tangent space at p consists of all vectors of the form X; where X E 5. In general,
the map X'-, Xp is not injective. Its kernel, that is, the set of elements X E 9 for
which Xp = 0, may be found from the formula just proved: for Xy = 0 if and only
if Xy vanishes on all linear functions. Thus the kernel of X Xp is the subspace
9,, of g consisting of those elements X such that (IX,ZJ,p) = 0 for all Z E 9. In
fact 9,, is a subalgebra of 9: if X,Y E ,, and Z E 9 then (IIX,Y),ZJ,p) = 0
by the Jacobi identity. It is the Lie algebra of the isotropy group of p under the
coadjoint action. The tangent space to the orbit of p is isomorphic to C/CP.

We next define a skew bilinear form f1p on the tangent space at p to the orbit
of p by setting

np(XP,Y,) = ((X,YJ,p).

This form has maximal rank, for if np(X;, Yp) = 0 for all Y;, then (IX, YJ, p) = 0
for all Y, whence X E Jp and Xy = 0. Using the same definition pointwise over
the whole orbit we obtain a 2-form on the orbit. This 2-form, fl, has the property
that

n(X',Y') = flx,YI.
We show that it is closed. In fact

dn(X',Y.,Z') = X'f1(Y',Z') t Y'f1(z',X') + Z'f1(X',Y')
- n(IX',Y'I,z') - n(IY',z'I,X') - n(Iz',X'I,Y')

= X' fly,zl + Y' flz,xl + Z' flx.yl

- f1lX,YI.zI - fl(Y,zl,xl - fllz,xl.Yl
2 {flx.ly,zll + fiy.lz,x)l + flz.(X,Yll) = 0

by the Jacobi identity. Since the vector fields X' span the tangent space to the
orbit at each point of it, this is enough to show that f1 is closed.

Thus each orbit of the coadjoint action in g% equipped with the 2-form 1`1
defined above, is a symplectic manifold. The coadjoint action is a symplectic action:
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for any g E G, with 45 denoting the action, we have

(109 *n4 (X;,Yp) = f1(09.X',0y.Y')0'(P)
il(ad g-'(X)',adg-'(Y)(P)

_ (lad g-'(X),adg-'(Y)l,adg'(p))
= (adg-'(X,Yl,adg'(P))

= (IX,YI,P) = np(Xp,Y; )

Finally, we show how this structure is related to a given symplectic action of
G via the momentum map. From the transformation law for the momentum map
it follows that for any X E 5 and x E M

J. X: = dt (J(Oexp txx))i=o = dt
(ad(exp tX)'J(x))t.o =

(where f( is the fundamental vector field on M generated from X by the group
action). Moreover, from Exercise 44,

X(Y,J) (IX,YI,J).

Thus regarding J as a map from the orbit of x E M to the orbit of J(x) E 5' we
have

(J*n):(X=,Y=) = 1lJ(=)(J.X=,J.Yx) = nJ(=)(Xj(.),YJ(=))

(IX,YI,J(x)) = X=(Y,J)
_ -X= J(YY Jw:) = w=(X=,Y=).

The conclusion is that J' fl coincides with the restriction of w to the orbit. In
particular, if the symplectic action of G on M happens to be transitive then J maps
M symplectically into a coadjoint orbit in 5'.

Summary of Chapter 12
A Lie group is a group which is at the same time a differentiable manifold, such
that multiplication and the formation of inverses are smooth operations. Exam-
ples include R, S1, T2, GL(n,R), O(n), GL(n,C), U(n) and many other familiar
groups.

Lie groups are often encountered in the role of transformation groups. An
action of a group G on a set M is an assignment of a transformation 0g of M to
each g E G such that either 0gh = Og o Oh (left action) or 0gh = Oh o 0g (right
action). The orbit of x E M is the set { 0g(x) I g E G ); its isotropy group the set
{ g c G I .0g(x) = x }. If the whole of M is one single orbit then G acts transitively
and M is a homogeneous space. If the isotropy group of every point is the identity
then C acts freely; if the intersection of all isotropy groups is the identity then C
acts effectively. Any homogeneous space of G may be identified with the space of
cosets of the isotropy group of any one of its points in C.

A Lie group acts smoothly on itself by left translation Lg: h gh and by
right translation Rg: h hg. Left (right) translation is a free transitive left (right)
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action. Conjugation is the left action L. g o Rg- , ; it is an automorphism of the group,
also called inner automorphism.

A vector field X on a Lie group is left-invariant if Lg.X = X for all g. A left-
invariant vector field is determined by its value at any one point, usually the identity
e. The space of left-invariant vector fields on G is linear and finite dimensional
(equal in dimension to the dimension of C), and is closed under bracket. It is
the Lie algebra of C, denoted C. If {X°} is a basis for 9 then IXb,XcI = C6*,X°
where the numbers C' are the structure constants of the Lie algebra. When G is
a group of matrices its Lie algebra may be identified as a space of matrices closed
under matrix commutator; for example, the Lie algebra of 0(n) or SO(n) is the
space of n x n skew-symmetric matrices. Dually one defines left-invariant forms by
Lga = a; the space of left-invariant 1-forms is dual to the Lie algebra. If {a°}
is a basis of left-invariant 1-forms then da° _ 2Cbcab n ac, the Maurer-Cartan
equations.

Each left-invariant vector field X determines a one-parameter subgroup of G,
denoted exptX since in the case of a matrix group it is the matrix exponential.
The integral curve of X through g is then i gexptX. The exponential map
9 - . C by X F-. exp X is a diffeomorphism of an open neighbourhood of 0 in
5 onto an open neighbourhood of a in G. It may be used to introduce normal
coordinates (x°) into the group, with respect to which x°(g-') = -x°(g) and
x°(gh) = x°(g) + x°(h) + for g, h sufficiently close to e. If
0: G -+ II is a homomorphism of Lie groups then Ooexp = exp oty.. Using the inner
automorphism 1g = L9 o R9,-I one defines the adjoint representation of G on 5 by
ad g(X) = Ig. X. Then exp(ad g(X)) = I. exp X. Further, ad g is an automorphism
of 5, and g F-f ad g a homomorphism of C into the group of automorphisms of Jr
(this is the significance of the term representation). From the left-invariance of Y
it follows that adg(Y) = Rg_,.Y whence d/dt(ad(exptX)(Y))t_0 = [X,YJ. In the
case of the group SO(3) the Lie algebra, being 3-dimensional, may be identified
with £3, and the adjoint representation corresponds to the usual matrix action; but
under 0(3) the elements of the algebra transform as axial vectors.

The Lie algebra of a Lie group determines the group in a neighbourhood of
the identity, but not globally. There is a unique simply connected Lie group with
the given algebra (unique, that is, up to isomorphism); every other Lie group with
isomorphic algebra is a quotient of this one by a discrete normal subgroup.

When a group G acts on a manifold M, to the right say, each element X of
its Lie algebra determines a vector field X on M which is the generator of the one-
parameter group of transformations of M induced by exptX. The map X is

linear and preserves brackets, and q5g. = adg-'(X).
One situation in which these results are repeatedly used is the consideration of

symmetry in Hamiltonian mechanics. The arena is an even-dimensional manifold
with maximal rank closed 2-form w-a symplectic manifold. The vector field Vh de-
termined by Vh Jw = -dh corresponds to Hamilton's equations for the Hamiltonian
h. If C acts on M symplectically, so that Ckw = 0 for all X E 5 and if further k Jw
is exact for all X E C (not just closed), then one may define a momentum map J by
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X Jw = -d(X, J). This map generalises linear momentum (G = R") and angular
momentum (G = SO(3)). It satisfies the transformation law 49'J = adg'(J) (for
a right action) where g '--' ad g' is the coadjoint action of G on 9 Each orbit of
the coadjoint action has its own naturally defined symplectic structure, and when
G acts transitively (and symplectically) on M, its momentum map (assuming it has
one) is a symplectic map of M into an orbit in g%

Notes to Chapter 12

1. Analyticity of group operations. The result that the operations of multi-
plication and the formation of inverses in any Lie group are analytic is proved in
Montgomery and Zippin 11955].

2. The automorphism group of a Lie group. The assertion made near the
end of Section 4, that the automorphism group of a simply connected Lie group is
in turn a Lie group, is proved by, for example, Warner (1971).

3. Lie algebras and Lie groups. A proof of the theorem that every real Lie
algebra is the Lie algebra of some Lie group, referred to in Section 10, is given in
Cartan [19361.



13. THE TANGENT AND COTANGENT BUNDLES

The collection of all the tangent vectors at all the points of a differentiable manifold,
in other words the union of all its tangent spaces, may in turn be given the structure
of a differentiable manifold. It is often convenient to regard the tangent vectors to
a manifold as points of a "larger" manifold in this manner: for example, if the
original manifold is the space of configurations of a time-independent mechanical
system with finitely many degrees of freedom then the manifold of tangent vectors
is the space of configurations and generalised velocities, that is, the space on which
the Lagrangian function of the system is defined.

1. The Tangent Bundle

For a given differentiable manifold M we denote by TM the set of all tangent vectors
v at all points z E M, in other words the union UzEM T=M of the tangent spaces to
M. This space, together with an appropriate differentiable structure which will be
explained in greater detail in this section, is called the tangent bundle of M: or to
be more precise, as a space it is the bundle space of the tangent bundle of M.

We show first that TM is itself a differentiable manifold. An atlas for TM may
be constructed out of an atlas for M as follows. For a chart (P,+') on M, let b be
the subset of TM consisting of those tangent vectors whose points of tangency lie in
P: thus P = U=Ep TAM. Then if v e A it may be expressed in the form vada where
the da are the coordinate vector fields associated with the coordinates on P. The
coordinates of the tangent vector v are taken to be the coordinates (xa) of its point
of tangency, as given by the chart (P, V)), and the components (va) of v; we write
these coordinates collectively (xa, va); they are 2m in number, where m = dim M.

Exercise 1. Write down explicitly the map t,: ,P -- R2' thus defined. Show that (P)
is an open subset of R2` and that t"G is a bijective map of P onto r,b(P). Show that if
{(Pa, llla)} is an atlas for M then the sets P. cover T.M. o

To confirm that {(AQ, ,k.,)) is an atlas for TM one has to check that its coordi-
nate transformations are smooth. Suppose that (P, r[i) and (Q, 0) are charts of the
atlas for M, with P n Q non-empty. Set X = ¢ o 0 - The appropriate coordinate
transformation , o -1 on T .M over P n Q will consist of the transformation of
coordinates of points of tangency together with the corresponding transformation
of tangent vector components. For any denote smooth map 1: R' --+ R' we shall
denote by 0' the Jacobian matrix of 4b, as in Chapter 2. Then o 1 is given by

for (xa, Va) E +%i(P n Q) C R2'". This is evidently smooth, since X is. Thus
is indeed an atlas for TM whenever {(PQ,tGa)} is an atlas for M; so that
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TM, equipped with the completion of this atlas, is a differentiable manifold. Of
course, an arbitrary chart from the complete atlas will not come from a chart on
.M in the convenient way that (P.,>%ia) comes from (PQ,0a): it is usually sufficient,
however, and most convenient, to deal only with those charts on TM which do.

Exercise 2. Show that the map r:TM -+ M by r(v) = x if v E T:M is smooth and
surjective, and that for each z E M, r-1(x) = T.M C TM is an imbedded submanifold of
TM. a

This map it is called the tangent bundle projection.
The tangent spaces at different points of M are identical, in the sense that each

is isomorphic to R " and hence to every other. On the other hand, the realisation of
such an isomorphism between two tangent spaces depends on the choice of a basis
for each space, and in general there will be no obvious candidates to choose: in this
sense, the tangent spaces are distinct. Were it not for this complication one might
imagine that TM was simply M x R"', the product of the two manifolds, with it
projection onto the first factor. But if this were the case then one could find, for any
manifold M, smooth nowhere-vanishing vector fields defined on the whole of M (by
fixing a nowhere-zero vector £ C. R' and choosing at each x E M the vector in TTM
corresponding to ). However, the two-sphere, to give one example, supports no
smooth nowhere-vanishing globally defined vector field, as one may easily convince
oneself by trying to construct one (though a proof is not so straightforward).

Thus the tangent bundle of a manifold need not be a product, as a whole.
The most that one can say in general is that TM is locally a product, as follows.
Given any point x in M there is a neighbourhood P of x such that r-'(P) is
diffeomorphic to the product P x R'. In fact if P is a coordinate patch then the
map r-'(P) -+ P x R"' by v -' (r(v),(v°)), where 0 ° are the components of v
with respect to the coordinate fields on P, defines such a local product structure.
Of course, two coordinate neighbourhoods P and Q of x produce different product
decompositions of r-'(P n Q).

Exercise 3. Let (Pa) be coordinate patches on M and define maps ]?a:+ 1(Pa) R."'
by '4 (v) = (v;), the vector of components of v with respect to the coordinate vector fields
on Pa. Thus the local product decomposition r-1(Pa) --+ P. x R' is given by (r,Wa).
Show that if a i4 Q and Pan Pp is non-empty then for z E P. n Pp, d+p(v) = Xap(z)T.(v),
where Xap is the coordinate transformation function on PanP0, and matrix multiplication
by the Jacobian matrix is implied on the right-hand side but not summation over a. Show
that the "transition functions" Xap: Pa n Pp -+ GL(m,R) satisfy Xpa = (X.,,) -' and
Xapx,, = Xa, on P. n Pp n P., when a, Q, -y are distinct and the triple intersection is
non-empty.

The tangent bundle TM is thus a differentiable manifold of a rather special
kind: it has a projection map r:TM -* M, the "fibres" r-'(x) are all diffeomor-
phic (to R'") and TM is a local product manifold with transition functions (which
relate different local product decompositions) taking their values in a Lie group
(GL(m,R)). These are the essential features of what is known as a fibre bundle, of
which more in Chapter 14. When it is desirable to emphasise that all these features
are essential parts of the fibre bundle structure of the tangent bundle, one calls TM
the bundle space and M the base. For each x E M, r - ' (x) is called the fibre over x.
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The set of cotangent vectors on M, or the union of its cotangent spaces, may also
be made into a differentiable manifold, which is also a fibre bundle, the cotangent
bundle T'M of M.
Exercise 4. By adapting the argument given for TM show that T' M is a differentiable
manifold of dimension 2 dim M = 2m. Show that the map r which sends each cotangent
vector to the point of M at which it acts is a smooth, surjective map T'M M, the
projection. Show that the fibres r- r (x) are all diffeomorphic to R' and that T' M is a lo-
cal product manifold whose transition functions are (Xap)", where, for g E GL(m,R),
g" is the inverse of the transpose of g. Show that (Xaa)" and that
(Xgp)x(X;, )x = (Xa.,)" on appropriate domains. a

The differential geometry of TM, and of T' M, is affected by the fact that each
has this structure of a fibre bundle. It is also flavoured by the option one always has
of regarding a point of TM (T' M) as a tangent (cotangent) vector to M, and vice
versa. Thus geometrical constructions on TM or T* .M may often be interpreted on
two levels, in terms of the bundle itself, or in terms of structures on M. Again,
many geometric objects on M have an alternative form of existence in which they
are interpreted as geometric objects, perhaps of a superficially quite different kind,
on TM or T' M. We now begin to give examples of these ideas, first in TM.

In the sequel it will be necessary from time to time to show explicitly the point
of attachment of a tangent vector v to M when considering it as a point of TM. We
shall therefore sometimes write (x, v) for a generic point of TM, where v E T=M, or
in other words x =. ir(v).

2. Lifts

A curve a in M with a vector field V defined along it generates a curve t -
(o(t),V (t)) in TM, whose projection is just a. In particular, since every curve has a
vector field naturally defined along it, namely its field of tangent vectors, every curve
a in M determines a curve (a, o) in TM, which we call its natural lift. The projection
map x: TM -+ M, being smooth, induces linear maps Since
every curve in M through ir(v) may be obtained as the projection of a curve in TM
through v, a. is surjective. On the other hand, since curves in the fibre over ir(v)
project onto the constant curve ;r(v), n. maps vectors tangent to the fibre to zero.
Such vectors are said to he vertical and the subspace of consisting of vectors
tangent to the fibre, which by dimension is precisely the kernel of ir., is called its
vertical subspace.

Exercise 5. This exercise is concerned with the coordinate vector basis (8/8x°, a/av°)
for coordinates (x°,v°) adapted to the local product structure of T.M. Show that the
vertical subspace at a point is spanned by (a/av°). Show that a coordinate transformation
induced by a change of coordinates in M does not affect this conclusion. Show that, on
the other hand, the subspace of spanned by {a/ax°} is not invariant under changes
of coordinates of this kind. 0

The point of Exercise 5 is that, while the bundle structure of TM picks out
the vertical subspaces in an invariant way, it does not invariantly distinguish a
complementary subspace at each point. This is another manifestation of the fact
that TM is not in general a product manifold.



330 Chapter 13

The fibres of TM are vector spaces and therefore have the usual affine structure
of vector spaces so far as vectors tangent to them are concerned. Thus given a
vertical vector w E M we can define a vertical vector field all over the fibre
through v by affine parallelism. Moreover, a point of a vector space may equally
well be thought of as a vector tangent to it at the origin, or indeed at any other
point. Thus given any u E T,r(v)M one may define a vertical vector at v (or at
any other point in the fibre) by regarding u as tangent to T, (v) M at the origin and
applying affine parallel translation to bring it to v. The vector field thus obtained
is called the vertical lift of u from 7r(v) to v and is denoted ut.

Exercise 6. Show that ut is the tangent at t = 0 to the curve t - v + to in the fibre
through v. Show that if u = u°a/ar° with respect to coordinates (x3) on M then ut =
u°a/av°. t]
Exercise 7. Show that for any vector field V on M, the transformations mg:TM - TM
by Ot(v) = v + form a one-parameter group mapping each fibre to itself, whose
infinitesimal generator is the vector field V 1 whose value at each point v is just the vertical
lift of to v. 17

We define next another way of lifting a vector field, say W, from M to TM,
which leads not to a vertical vector field but to one which projects onto W. Given
a point v E TM, let a be the integral curve of W with a(0) = w(v) and let V be the
vector field along a obtained by Lie transport of v by W. Then (a, V) defines a curve
in TM through v; its tangent vector there evidently projects onto 0(0) =
We therefore define W, the complete lift of W to TM, as follows: W,, is the tangent
vector at t = 0 to the curve (a, V).

T .M

Fig. 1 The complete lift construction.

Exercise 8. Show that the flow on TM generated by W is given by mt(v) = Ot.v,
,r o , = Ot o r, where 0 is the flow generated by W. t]
Exercise 9. Show that if W = W °a/ax* then

a ,awe aW=W* 5;' + v sib 5'j;
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This is an appropriate point at which to make some comments about maps
of manifolds and of tangent bundles. One can build out of a map 40: M - N of
manifolds an induced map T'4': T M -* T .W of tangent bundles by combining into
one object all the maps of tangent spaces induced by .: that is, for each v E TM,

T(b(v) _ &.*(v)v.

Exercise 10. Show that TO is a smooth map of manifolds and satisfies nx oTo = Oo rM,
where aM and trx are the projections on M and N. Show that if 0:.M -+ N and 0:.M -' P
then T(o o tG) = To o TtG.

The map To respects the bundle structure of TM and TX in the sense that if
v and v' belong to the same fibre of TM then their images T46(v) and T4(v') belong
to the same fibre of TN; this is the content of the property irx oTo = 0oirM. More
generally, a map 4,: TM -. TN which preserves fibres in this way is called a bundle
map: 4, is a bundle map if and only if there is a smooth map 0: M -+ X such that
7r,v o4D =0 orrM.

Fig. 2 A bundle map.

Exercise 11. Show that a map 0: TM -+ TM which maps each fibre to itself is a partic-
ular case of a bundle map in which the corresponding map of the base is just the identity
map of M. O

The transformations of the one-parameter group generated by V 1 are examples.
We say that a vector field V on TA is projectable if there is a vector field on

M which is ir-related to V. When V is projectable we write 7r.V for the a-related
field on M.

Exercise 12. Show that a vector field on TM (assumed complete, for simplicity) is pro-
jectable if and only if its one-parameter group consists of bundle maps.

The one-parameter group of a complete lift consists of bundle maps.

Exercise 13. Show that, for vector fields V, W on M,

[Vt,WT)=o [v,WII=IV,WET 1v,wl=1V;Wi.



332 Chapter 13

Exercise 14. The corresponding lifts from M to T' .M are defined as follows. Let a be
a 1-form on M: its vertical lift at is the vector field which generates the one-parameter
group p p + ta,lal (p E T* M). Let W be a vector field on M: its complete lift W to
T' .M is the vector field which generates the flow fir: p (p). Show that if a°dx°
and W - W'(9. then

at = a°a/apa and W = W °a/ax° - ps(alVn/49x°)a/ap°.
(Here the coordinates of a generic point p E T' M are (x°, p°) where p = p°dx°.) Show
that r. a i= 0 and r. W= W. o
Exercise 15. Show that on T' M

«T pt) - o Iv,«tl = (C, «)T Iv,W) = Iv;wl. o

Another construction on 7'M, which exploits the linear structure of its fibres,
leads to the definition of the dilation field A. A one-parameter group of dilation
maps be is defined by biv = erv for all t E R; A is its infinitesimal generator. The
dilation field is of considerable use when one wants to deal with objects on TM
which are homogeneous in the fibre coordinates va.

Exercise 16. Show that A = v°a/av°. 0
Exercise 17. Show that the vector field p°a/ap° on T* M may be similarly described,
globally, in terms of a one-parameter group of dilations of the fibres. 0
Exercise 18. Show that, on TM, [A, V iJ - -- V 1 and IA, VI = 0. 0

In effect, V 1 is homogeneous of degree -1 and V homogeneous of degree 0 in
the fibre coordinates; these results are related to Euler's theorem on homogeneous
functions. The dilation field is a convenient example of a vertical vector field which
is not a vertical lift.

The reader may have noticed that, although we defined the vertical lift for
a vector at a point of M, we defined the complete lift only for vector fields. A
comparison of the definitions will make it clear why: the complete lift depends on
the action of the flow generated by a vector field on M and this in turn depends, not
just on the value of the vector field at a point, but on its values in a neighbourhood
of the point. The vertical lift, on the other hand, is a truly pointwise construction.

In fact, for each v E TM the vertical lift gives an isomorphism of Tf(v)M with
the vertical subspace of With this in mind, one may construct a type (1,1)
tensor field on TM which represents the projection of vectors, namely the tensor
field S defined by

(ir. w) t for all w E

the lift being to v also. Notice that the vertical subspace of is distinguished
by being simultaneously the kernel and the image of the linear map -4

M. Thus SZ = S o S = 0. In terms of local coordinates, S _ a/8va ®` dxa. The
tensor field S, considered as defining linear maps of tangent spaces, is sometimes
called the vertical endomorphism.

Exercise 19. Any type (1, 1) tensor field A on M may be lifted to give a type (1,1)
tensor field At on TM by setting A.'(w) = show that S = It where I is
the identity tensor field on M. 13
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Exercise 20. It follows from Chapter 10, Exercise 17 that for any tensor field A of type
(1, 1) on any manifold the rule

NA(V,W) = A2(IV,W1) + IA(V),A(W)J - A(IA(V),WI) - A(IV,A(W)I),
where V, W are any vector fields, defines a tensor field NA of type (1, 2). Show that Ns = 0
(as a tensor field of type (1,2) on TM). (Since for any local basis of vector fields {V,}
on M the vector fields {VJ,l7,} form a local basis of vector fields on TM, it is sufficient
to show that Ns vanishes when its arguments are vertical or complete lifts.) Show that,
conversely, if a manifold admits a type (1, 1) tensor field S whose kernel and image (as
a linear map of tangent spaces) coincide everywhere, and which satisfies Ns = 0, then
the image subspaces form a distribution which is integrable in the sense of Frobenius's
theorem. Show further that local coordinates (z°, v°) may be found such that the integral
manifolds are given by z° - constant and S takes the form 8/av° 0 dz°. 13

Such a construction is not available on the cotangent bundle, but the cotangent
bundle does nevertheless carry a canonical object which is closely related to its
projection map; it happens that in the case of the cotangent bundle this object is a
I-form. The canonical 1-form 0 is defined as follows: for w E TpT' M

(r.w,P)

The definition simply takes advantage of the fact that a point p of T' .M is a cotan-
gent vector to M. In terms of local coordinates (x°,p,),

C(3711

=
P.

apaB) = 0,

and therefore 0 - p,dx°.
Thus d0 = dp, A dra. The 2-form d0 is therefore already in the Darbdux form in
terms of standard coordinates on 7" M (see Section 6 of Chapter 6).
Exercise 21. (On T .M.) Show that Cw 1 S - 0 and CeS -_ -S. Show that if V is vertical
and CvS = 0 then V is a vertical lift. 0
Exercise 22. (On T'M.) Show that CaO 1= r'n and 4e0 = 0. 0
Exercise 23. Show that for any complete lift W on TM, CWS = 0, and for any complete
lift iiion T'M,Cp.O=0. 0

3. Connections and the Tangent Bundle
We show how a connection on M may be described by structures on TM.

We may use the connection, together with the observation that a curve in M
with a vector field along it defines a curve in TM, to define a new process for lifting
curves from M to TM. Let or be a curve in M, v a point of TM with 7r(v) = a(0).
Let V be the vector field along a obtained by parallel translation of v. Then we call
the curve ah in TM defined by o"(t) = (a(t), V (t)) the horizontal lift of a through
v. Evidently 7r o o1i == a. By means of this construction for curves we may also
define a horizontal lift of vectors tangent to M, that is, a map T=M -+ as
follows. Given u E TTM let a be a curve through z such that 6r(0) = u. Now if V
is parallel along a and V(0) = v then at a(0) = z

V°(o) . rb,(x)ubUc = 0
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and so the tangent vector to ah at t = 0 is
\1

°(o) ayo + va(0) aaa = u° C a - rtic(x)veava 1

Note first of all that this is independent of the choice of a (subject to the condition
that its initial tangent vector be u), and so the rule is adequate to define a map
from T=M We denote by uh the image of u, which we call the horizontal
lift of u to The following conditions are satisfied by the horizontal lift:

(1) 7r.uh = u
(2) uh depends linearly on u
(3) uh = 0 if and only ifu=0.

The map u uh is thus a linear map T,r(v)M -+ which is injective, having
7r. as a left inverse. Its image is a subspace of isomorphic to and
complementary to the vertical subspace; we call this the horizontal subspace defined
by the connection (the reason for the use of the word "horizontal" to describe this
general construction should now be clear).

Exercise 24. Show that the horizontal subspaces have the vector fields H. = 8/aza -
rsav'8/8v` as local bases, so that these and the vertical vector fields V. = 8/8va form a
local basis of vector fields on TM adapted to the connection. Show that the dual basis of
1-forms is (Ba,0a) where Ba = dz° and ma = dva + r u dzc. 0
Exercise 25. Show that if W'' is the horizontal lift of any vector field W on M then
[A, w"] = o. o

Thus a connection on M defines a distribution of subspaces on TM which is hor-
izontal, in the sense of being complementary to the vertical subspace at each point,
and which satisfies a homogeneity condition expressed by the result of Exercise 25.
In fact this structure is equivalent to the existence of a connection. For suppose
there is given on TM a distribution of horizontal subspaces which is smooth, in the
following sense. Since these subspaces are horizontal, that is, complementary to the
vertical, the map 1M when restricted to the horizontal subspace
of is an isomorphism. The horizontal lift is therefore well-defined, so that
given any vector field W on M there is a unique horizontal vector field W h such
that ,r.Wh = W. The smoothness condition we require is that the horizontal lifts
of smooth (local) vector fields be smooth. Now given a local coordinate system on
.M with corresponding coordinates (xa, va) on TM, we may write

(
a h _ a - r a

axa) axe eavb

where ra are local functions on TM. But by assumption IA,Wh) = 0 for all
horizontal lifts and therefore

e a a b a
= o

so that
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This means that as functions of v° the I'n are homogeneous of the first order; but
they are also smooth functions, and in particular smooth at v` = 0, and the only
first order homogeneous functions on R' smooth everywhere including the origin
are linear functions. Thus

r" =rbva ea

where the r ; are now local functions on M.
Exercise 26. Show that under a coordinate transformation on M, and the corresponding
induced coordinate transformation on TM, the functions rr; transform as the components
of a connection. D

Note the importance of the homogeneity condition: it is not sufficient to give a
distribution of horizontal subspaces; unless the homogeneity condition is satisfied
the horizontal distribution will not define a connection.

We next describe how to represent the covariant derivative as an operation on
TM. As a guide, note that the complete lift of a vector field is defined in terms
of Lie transport, and that IV , W T) = (V, W I T = (CvW )T gives the corresponding
derivative operation. Now the horizontal lift is defined analogously in terms of
parallel transport. It should seem appropriate, therefore, to consider, for any pair
of vector fields V, W on M the vector field IVh,Wtl. This is a vertical vector field,
since ir.Vh = V, a.WI = 0, and therefore a.(V",WT) = IV,O) = 0. Furthermore,

fo,IV",W'II = IIA,V"I,WTI + (V",IA,WTII

= 0+IVh,-WTI = -IV",WTI
and therefore (arguing just as we did to show the linearity of r; above) it follows
that IVh,WTI is actually the vertical lift of a vector field on M. We denote this
vector field V (V, W ), so as not to prejudge the issue too blatantly. Clearly V (V, W )
is linear (over R) in both arguments. To determine whether this procedure defines
a covariant derivative we have to examine the effect of multiplying V or W by a
function f on M.
Exercise 27. Show that (fV)" = (f o ir)V" and (1V)T = (f o a)V r. Show that for any
projectable vector field U on TM, U(f o w) _ ((a.U) f) o x, while for any vertical vector
field U,U(foi)=0. a

Thus
V(fV,W)1 = I(f o ir)V",WT) (f o A)IV",WTI - WT(f ox)Vh

(f o7r)IV",W'l = (fV(V,W))'
and

V(V, fW)T = IV",(f oir)WTI = (fo1r)IV",WTI+V"(f o,r)WT

_ (fo r)IV",WTI +(Vfoir)WT

= (fV(V,W) + (Vf)W)1.

Thus V(V, W) = VvW satisfies the conditions of a covariant differentiation operator
on M. (It is worth spending a moment realising where a similar argument purporting
to show that IV, W Tl defines a connection-which could not be correct, of course-
breaks down.)
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Exercise 28. Show that IHa, V6] = rF;V, (Ha and V. are defined in Exercise 24). o

It follows that the covariant differentiation operator defined by (VvW) I =IV h, W II
is the one appropriate to the connection we started with.

Curvature. The horizontal distribution defining a connection need not be in-
tegrable in the sense of Frobenius's theorem: the bracket of two horizontal vector
fields need not be horizontal. In fact the departure from integrability is given by the
curvature of the connection. Consider the bracket of two horizontal lifts (Uh, v hi,
where U, V are vector fields on M: it projects onto [U,VI, and so its horizontal
component is IU,VIh. Thus IU,VIh - IUh,Vh] is vertical. We set

R(U, V) = IU,VIh - IUh,Vhl;

then R(U, V) is a vertical vector field, R-linear and skew-symmetric in U and V.
Moreover IA, R(U, V)] = 0, so that R(U, V) has components which depend linearly
on va. It is closely related to the curvature of the connection. In fact

(VUVvW-VVVuW - VIU,vjW)t

= [uh,(vVW)t] -- [Vh,(Vt,W)t] - [IU,Vlh,WT]

[U6,1Vh,Wi1] - [Vh,IUh,W']] - [[U,V]",Wt]

[[Uh,Vh],Wt] [IU,Vlh,Wt] = [WI,R(U,V)I

(using Jacobi's identity to rearrange the double bracket terms).

Exercise 29. Show that (Ha, Had _ - R'Cabv`a/av', and thus that

IU,V]h _ 1Uh,Vh) = R6ca6U°Vev`a OvQ.

Exercise 30. Describe how to construct the torsion of the connection in a similar way. o

Note that the horizontal distribution is integrable if and only if the curvature
vanishes, in which case the horizontal subspaces are tangent to submanifolds of TM.

4. The Geodesic Spray

We suppose now that the connection is symmetric.
If 7 is a geodesic of the connection then, since its tangent vector is parallel

along it, its natural lift (-I, ry) to TM is a horizontal curve. If i(O) = v then the
tangent vector to the natural lift projects onto v so that it is actually the horizontal
lift vh of v to We therefore consider the vector field r on TM given by

hrU=v

(horizontal lift of v to The integral curves of r consist precisely of the
natural lifts to TM of all geodesics of the connection: from the fact that ,r.rn = v.
it follows that the integral curves of r are natural lifts of curves in M; from the fact
that r is horizontal it follows that these curves are geodesics. The vector field r is
called the geodesic spray.
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Exercise 31. Suppose that a vector field r on TM has the property that, for every v E
T ,M, jr. r. = v. Show that in local coordinates r = v°a/ax, + r,a/av° for some functions
r° locally defined on TM, and that the integral curves of r are the natural lifts of solutions
of the equations i° = r"(xe, i`). 0

Any vector field r satisfying the condition ,r.rv = v, which may be equivalently
written s(r) = 0, is called a second-order differential equation field. A geodesic
spray satisfies an additional homogeneity condition, which derives from the affine
reparametrisation property of geodesics. If ry is a geodesic then, for constant k,
I -y(kt) is the geodesic through -1(0) with initial tangent vector k r(()). We
set k = e° and denote the natural lift of y by ry-, and then this may be written
7(e°t) = b,j(t), where b is the one-parameter group of dilations of the fibres of
T.M. But - is an integral curve of r, and so by differentiation e°r = ba.r, from
which it follows that

IA,rl = c, r -=
d r.

Exercise 32. Check, by writing r = v°H, and computing 10, r) directly. 0

We shall show that, conversely, a second-order differential equation field r
satisfying I0, r) = r is the geodesic spray of a symmetric connection. To do so, we
shall have to construct the horizontal distribution defining the connection. A clue
as to how this may be done is provided by the following exercise.
Exercise 33. Show that if r is the geodesic spray of a symmetric connection, whose basic
horizontal vector fields are H,, then (CrS)(V,) = V. but (CrS)(H,) = -H,. Show that a
vector w tangent to TM is vertical if and only if (CrS)(w) = w and horizontal if and only
if (CrS)(w) = -w. 0

Thus when the connection is known the direct sum decomposition of the tangent
spaces to TM into vertical and horizontal subspaces may be defined in terms of
CrS: as a linear map of tangent spaces CrS has eigenvalues ±1, its eigenspace at
any point corresponding to the eigenvalue +1 being the vertical subspace and its
eigenspace corresponding to the eigenvalue -1 being the horizontal subspace.

When only a second-order differential equation field r is known, one may use
this construction to define the horizontal distribution, once it has been confirmed
that CrS still has these properties. We show first that, for any vertical vector field
V, (CrS)(V) = V. It is sufficient to do this when V is a vertical lift, since the given
equation is tensorial and the vertical lifts span the vertical subspace at each point.
Now

(frS)(U') = [r,s(U1)1 -- s(Ir,u')) = s(Iu',r)).
On the other hand, since the Lie derivative of S by a vertical lift is zero,

0 = (Cws)(r) = Iul,s(r)) - S(lu',r))
and so

Thus
s(I u', r)) = [tit, s(r)) = lut, Al = ut.

(CrS)(1.1') = U'
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as required. Conversely, if for some vector field W on TM, (CrS)(W) = W, then
S(W) = S((CrS)(W)) _ -(CrS)(S(W)) (using the fact that, since Ss = 0,
S o CrS = -CrS o S). But since S(W) is vertical, (CrS)(S(W)) = S(W), whence
S(W) = -S(W) = 0 and W is therefore vertical. This establishes that CrS has
eigenvalue +1 with the vertical subspace as eigenspace.

Consider next (CrS)(U) for any complete lift U. Using a similar argument to
the one for UT

(Crs)(U) = Ir,s(U)I -s(Ir,UI) = Ir,utl+s(IU,r)).
On the other hand

o = 4 5(r) = IU,s(r)I - s(UU,rl)
= IU, Al - s(IU, rl) = - s(IU, rl).

(Notice, in passing, that this shows that IU, rl is vertical.) Thus

(CrS)(U) = Ir,U1).

Now in the- earlier argument it was shown that S(IU1, rl) = U1, or in other words,
s(U+Ir,Ut)) = 0; thus U + )F, UtJ, or equally U+(CrS)(U), is vertical. It follows,
by what we have already proved, that

(CrS)(U + (CrS)(U)) = U + (CrS)((J)

whence
(CrS)2(U) = (J.

Thus (CrS)' is the identity tensor on TM: it is certainly the identity on vertical
vectors, and these together with complete lifts span the tangent space to TM at
each point.

Consider now the tensor fields P and Q on TM given by

P = i (1 - CrS) Q = z (I + CrS).

It follows from the fact that (CrS)' = I that P and Q have the following properties:

P2=P Q2=Q
PoQ=QoP=O P+Q=1.

Such tensor fields are projection operators corresponding to a direct sum decompo-
sition of tangent spaces: at each point of TM, the kernel of P coincides with the
image of Q, and vice versa; the kernels of P and Q are complementary subspaces.
We have already established that the kernel of P is the vertical subspace. We call
the kernel of Q the horizontal subspace determined by F.

Note that we have not used any homogeneity property of r in this argument,
only the fact that it is a second-order differential equation field. This construction
of a horizontal distribution works for any second-order differential equation field.

We have still to show that if r is a spray then the horizontal distribution
thus defined is a connection (that is, that it satisfies the homogeneity condition
IUh, Al = 0); that it is symmetric; and that r is its geodesic spray.
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For the first, we may define the horizontal lift of any vector field U on M as
the horizontal projection of any vector field on TM that projects onto U: U for
example. Then

U" = Q((j) = z (U + (trs)(U)) = s (U + (r, Utl).
Thus when 10, r1 = I'

Io,U"I = 1((A,ul + (A,(r,Utll)

= I([(A,r1,Ut1 +-(r,(o,Utl)
z(Ir,UI(-. (r,Ut1) = o.

Thus homogeneity is established. For symmetry, observe that

(U",vtl-Ivh,UtI
_ IIr,Ull,vtl - Iv,Utl - (Ir,vtl,Utl)
= I([r,[UI,vI)I -4- (U,vlt - Iv,Ult) = (U,vlt,

and so the connection is symmetric. Finally, since it is already known that r is a
spray we have only to show that it is horizontal to show that it is the geodesic spray
of the connection. Now

(,crs)(r) = fr, s(r)I - s(Ir, rl) = (r, 01= -r
and so r is horizontal.

In effect, we have shown that a symmetric connection is uniquely determined
by its geodesic spray, and we have shown how to reconstruct the connection from
the spray. It is also important to note, for later use, that the construction of a
horizontal distribution described above will work for any second-order differential
equation field, not only for a spray--though it will be a connection only for a spray.

5. The Exponential Map and Jacobi Fields
The exponential map (Chapter I], Section 7) is the map TZM - M defined by

exp(v) = v E TZM

where ry is the geodesic satisfying -f. (0) _= x and y(O) - v. In terms of the geodesic
spray, whose flow is %t, say, one may redefine exp as follows. Regard TZM as a fibre
of TM. There will be some neighbourhood of 0 in TZM on which 71(v), the flow
through parameter value 1, is defined, since 7t(0) is defined for all t. Combining
the map 7i with projection gives the exponential:

exp rroil.
In Section 7 of Chapter I I we showed that exp is a diffeomorphism on a neigh-

bourhood of 0 in TM by computing exp. at 0 and showing it to be the identity.
In the present context, the argument goes like this. For u E TZM, exp, u is the
tangent at t = 0 to the curve t - exp(tu). Now

exp(tu) = ir(ryi(tu)) - ir(ryt(u))
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since r is a spray, and so
exp.(u) = a.r = u

as required.
The exponential map will not necessarily be a diffeomorphism of the whole of

T.M. We describe how it may fail to be so, at the infinitesimal level, by examining
exp.,,, for w E T.M different from 0, and showing how it can fail to be an isomor-
phism. Note that we can describe exp.,,, as follows. For any vector u tangent to
T.M at w E TTM C TM (that is, any vertical vector at w),

exp.w(u) = ,r. ° ii-
w(u)-Now i1.w(u) is the vector at j, (w) obtained by Lie transport of u by the flow of r.
Thus exp.w is given by Lie transport followed by projection, and is applied to ver-
tical vectors. In general, vertical vectors do not stay vertical when Lie transported.
However, exp.w will fail to be an isomorphism if there is a vertical vector u at w
for which j1.w(u) is also vertical.

Lie transport by the flow of r is of interest in its own right. We shall call a
vector field defined along an integral curve of r by Lie transport a Jacobi field. The
same term is applied to the projected field along the geodesic obtained by projecting
the integral curve. Suppose that J is a Jacobi field along the integral curve (ry,'y)
of r. We write

J = AaHa +µaVv.
Then the condition CrJ = 0 is equivalent to

r(AU)H. + A- fir, HaI + r(t a)Va + µalr, Val = 0.

Now r = va Ha, whence

jr, Ha) = VbIHb, HaI Ha(vb)Hh = RdcabvbvcVd + rcvcHb

(r, Val = ub(Hb, VaI H. = rabvbVV - H.
using the symmetry of the connection; and therefore along the curve, where va = 7,
we have

AaHa + Rdcab Aa- -(Vd + Fb Aa"YcHb + /AaVa + rab/Adi Vc - lAaHa = 0.

Equating horizontal and vertical components to zero separately, we obtain
a = a + rbacAb yc

%Aa + rbcµbic + Rabcd''Acry' d = 0.

We denote by A the vector field 7r. J along ry in M, so that A = AaCI/Coxa; then these
equations may be written

is = V.;A

V.rzA + R(A,-,)ry = 0.

The second-order differential equation is known as Jacobi's equation. It is it linear
equation, as was to be expected from its construction. Any solution is called a
Jacobi field along -1. The solutions constitute a 2(dim M)-dimensional vector space;
a Jacobi field A is determined by its initial value and the initial value of its covariant
derivative V.7A (at ry(0) say).
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Exercise 34. The Jacobi field A along 'y with initial conditions AM = 7(0), (V.iA)(0) = 0
is just -y, while the one with initial conditions A(0) = 0, (V,A)(0) = (0) is given by
AN = t7(t). O

This discussion may be summarised by saying that exp.,,, fails to be an isomor-
phism if there is a non-zero Jacobi field along the geodesic fixed by ry' (0) = w which
vanishes at -y(0) and -y(1). Clearly, affine reparametrisation makes no significant
difference. Points x and y on a geodesic in M are said to be conjugate if there is a
Jacobi field, not identically zero, which vanishes at x and at y.

A Lie transported vector field may be thought of as defining connecting vectors
between neighbouring integral curves of the vector field with respect to which it is
transported. Consequently a Jacobi field (along a geodesic in M) may be thought
of as defining connecting vectors between neighbouring geodesics.

Fig. 3 Two geodesics and a field of connecting vectors.

Let us be more explicit. Suppose that J is a Jacobi field in TM along the
integral curve (-y, y) of r. Let a be a curve in TM through (-y(0), ry' (0)) with tangent
vector J(O) there. For each fixed s in a neighbourhood of 0 the curve t '-4 it (U(s))
is an integral curve of r, and so t v- a(=y(a(s))) is a geodesic. One therefore
obtains, by varying s, a one-parameter family of geodesics, with -y corresponding
to s = 0. For each fixed t, on the other hand, the tangent vector to the curve
s "ry(a(s)) at s = 0 is it. (&(0)) = it. (J(0)) = J(t). Thus the Jacobi field 7r.J
in M is the field of tangent vectors to the transverse curves, joining points of the
same affine parameter value on the one-parameter family of geodesics, where they
cross the central geodesic -y. Two points on a geodesic are conjugate, therefore, if
(roughly speaking) there is a one-parameter family of geodesics emanating from the
first which focuses at the second.

Cross-sections and geodesic fields. A vector field on M has been described up
to now as a "choice of tangent vector at each point of M". The terminology suggests
that there is potentially a map involved in this definition, though it has not been
clear what the image space should be. This question can be cleared'up with the
help of the tangent bundle. A vector field V on M defines a map M - TM by
x' -+ V. This map has the special property that the image of x lies in the fibre over
x. Such a map is called a cross-section of the tangent bundle or, more correctly,
a cross-section of a: TM - M: if, as may happen, a manifold is a fibre bundle in
more than one way, it is necessary to make it clear which fibre the image belongs
to. The property which defines a cross-section may be most succinctly expressed as
follows: a map o: M TM is a cross-section if x o a is the identity map of M.
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Exercise 35. Show that every cross-section of TM determines a vector field on M, which
is smooth provided that the cross-section is smooth as a map of differentiable rr.anifolds.
Show likewise that 1-forms correspond to cross-sections of T' M. 13

A vector field V on M is geodesic (that is, has geodesics for all of its integral
curves) if and only if r is tangent to the cross-section o which defines V. (Here the
section is thought of as defining a submanifold of TM.) For suppose that ry is an
integral curve of V. Then a(- (t)) = (1(t),V.r(t)) = (-i(t),7(t)) is the natural lift of
y. Therefore the natural lift of -y lies in the section, and V is geodesic if and only
if the natural lifts of its integral curves are integral curves of r.

Exercise 36. Show that if V is geodesic then the vector fields V , V" and r all coincide
with a.V on the image of the section a. o

One may use this observation as a guide to constructing geodesic fields, at least
locally. For suppose that S is a submanifold of TM, of dimension dim M - 1, which
is transverse to r. Define a new dim M-dimensional submanifold S by operating on
points of S with j: thus S = { ryt(v) J ( E R, v E S }, for those v for which 7t(v)
is defined. Then provided that S intersects each fibre of TM in one and only one
point it will define a section of TM, which will be geodesic. Thus S will define a
geodesic section near enough to S. However, the tangent space to S may contain
vertical vectors if one goes sufficiently far from S, in which case the geodesic field
develops "singularities".

6. Symmetries of the Geodesic Spray

A diffeomorphism of TM which maps a geodesic spray to itself is called a symmetry
of the spray. As usual the symmetries of greatest interest are the infinitesimal ones,
that is, the vector fields which generate flows of symmetries. A vector field W is an
infinitesimal symmetry of the geodesic spray r if and only if

CWr=jw,rJ=o.

We shall deal first with the case in which the generator is a complete lift. It
turns out, perhaps not very surprisingly, that a complete lift X of a vector field
X on M is an infinitesimal symmetry of the geodesic spray r if and only if X is
an infinitesimal affine transformation of the corresponding affine connection. We
embody the necessary computations in a series of exercises. The first four exercises
characterise an infinitesimal affine transformation in terms of properties of lifts.
Recall that X is an infinitesimal affine transformation of M if and only if Cx(VvW)-
Vv (CxW) - VIx,viW = O for all vector fields V and W on M (Chapter 11, Section 8).

Exercise 37. With the help of Jacobi's identity, and the relations (V,W') = (V,WJT
(Exercise 13) and JV",W'I = (VvW )t (the argument following Exercise 26), show that X
is an infinitesimal affine transformation of M if and only if J(X,V"J - (X,VJ",W tJ = 0 (on
TM) for all vector fields V and W on M. o
Exercise 38. Show that for any vector fields V and W on M, ,r.(JV, W"J) = IV, W1. Infer
that (V , W"J - (V, W ]h is vertical. a
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Exercise 39. Show that a vertical vector field on TM which commutes with every vertical
lift must itself be a vertical lift. Deduce from the results of the previous two exercises that
X is an infinitesimal affine transformation of M if and only if, for all vector fields V on M,
(X, V"( - (X, V I" is a vertical lift. 0
Exercise 40. From the results of Exercises 18 and 25, deduce that for any vector fields
X and V on M, (A, IX,V hl - [X, VI"( = 0, where A is the dilation vector field. Infer that
X is an infinitesimal affine transformation of M if and only if IX,V"I = (X,VIh for every
V. 0

In the next exercise, CrS is evaluated on vertical and horizontal vectors:
for this recall that, because the Lie derivative is a derivation, (Cv(CrS))(W) _
Cv((CrS)(W)) - (CrS)(CvW) for any vector fields V and W on T.M.
Exercise 41. With the help of Exercise 35 show that, for any vector fields V and W on
M, (C,(CrS))(W') = 0. Show similarly that (4 (CrS))(W") = -2Q((V,W"I) (Q is one
of the projection operators defined in Section 4). Infer that Ck(CrS) = 0 if and only if
(X, V"I is horizontal for every V. 0

From Exercise 40 it now follows that CX(CrS) = 0 if and only if (X,Vh) =
(X, VIh for every V. Combining this with the result of Exercise 41 one may infer
immediately that CX(CrS) = 0 if and only if X is an infinitesimal affine transfor-
mation of M. The next two exercises translate this into the desired condition for a
symmetry.

Exercise 42. From the result of Exercise 23, show that for any vector field V on M,
Cv (CrS) = Clp rjS. Deduce, with the help of Exercise 21, that X is an infinitesimal affine
transformation of M if and only if IX, rl is a vertical lift. 0
Exercise 43. Recall that IA, rl = r (Section 4). With the help of Exercise 18 and Jacobi's
identity deduce that, for any vector field V on M, IA, IV, rII = IV, r1. Again appealing
to Exercise 18, which shows for a vertical lift U1 that IA,U11 = -U1, conclude from the
result of the previous exercise that X is an infinitesimal affine transformation of M if and
only if (X, rl = 0. 0

Our definition of a symmetry of a spray allows for the possibility of symmetries
which are not bundle maps, and which therefore (in the terminology of mechanics)
thoroughly mix up positions and velocities. There are infinitely many such maps,
not often very interesting. One point is worth making, however. We have defined a
Jacobi field as a vector field along an integral curve of r which is Lie transported
along it by the flow of r. Now any infinitesimal symmetry W of r satisfies CrW = 0
and therefore defines a Jacobi field on every geodesic.

Exercise 44. Let W = a°N° +µ°V° be a vector field on T.M. Show, using the symmetry
of the connection, that the necessary and sufficient conditions for W to be a symmetry of
r are

P = r(a°) + rOcabVc

r(µ°) + R°scda°v`.1.d = 0. 0
Exercise 46. Show that an infinitesimal affine transformation is a Jacobi field along any
geodesic. 0
Exercise 46. Show that r has no non-zero vertical infinitesimal symmetries. Show that,
more generally, if W is vertical and (W,rl is vertical also, then W = 0. 0
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7. Projective Transformations

Until now we have been dealing entirely with affinely parametrised geodesics. We
now relax this definition a little and consider geodesic paths: that is to say, we allow
more general parametrisations. A representative curve -y of a geodesic path satisfies
Vii = k7, where k is some function along 'y; it follows that there is a reparametri-
sation of -y which makes it into an affinely parametrised geodesic (Chapter 11,
Section 7). The collection of geodesic paths on M defines a structure on TM a little
more complicated than the geodesic spray; we now describe this structure and some
of the transformations of TM which leave it unchanged.

Consider, first of all, the natural lift of a representative curve ry of a geodesic
path to TM: it is a curve (ry, V) where V =ry and

V°(t) + rbc(7(t))vb(t)V`(t) = k(t)Va(t).

Its tangent vector at v = V (t) is

v°
a

+ (kv° - rscvbv`)
a

= OH, + kv°V°
8v°

and therefore belongs to the 2-dimensional subspace of T T M spanned by r and A.
Now r and A span a 2-dimensional distribution on TM, less the zero section, which
is integrable, by Frobenius's Theorem, because 10, rl = r. Suppose that ('Y, V) is
any curve lying in an integral submanifold of this distribution. Its tangent vector
at each point is a linear combination of r and A, say

°2s° +V°a
°°

= rr +s0 = rV°ai° + (aV° -

r and a are functions along the curve. Then

ry° = rV° V° = av° - rrscVbv`,

whence

and so

ry° = rV° + r(sV° - rrbcVbV`)

ry° + rrc-s - _ (i/r + a)7°.

Thus provided that r is nowhere zero the projected curve is a non-affinely
parametrised geodesic; the original curve is not its natural lift in this case (un-
less r = 1) but a dilated version of it. We take the distribution D spanned by r and
0 as the object in TM corresponding to the geodesic paths.

Notice, first of all, that the distribution D may contain geodesic sprays other
than r. In fact if t = r + f A satisfies [A, Fl = t then f will be a spray; this occurs
for

Af=f
Thus f must be a function on TM homogeneous of degree 1 in the fibre coordinates,
and since it must be smooth at v° = 0 it must be linear in them. Thus f = 0°0°
for some locally defined functions 0° on M, which are in fact the coefficients of a
1-form on M.
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Exercise 47. Show, by considering coordinate transformations, that this is so. Show also
that if 0 is a 1-form on M, then the function on TM given by ¢(v) = (,r. v, satisfies

A - 3 and has the coordinate presentation ¢,v°. a

Thus f = r + 450 is a geodesic spray which has the same geodesic paths as does r,
and any geodesic spray with this property must have this form.

Exercise 48. Show that the components rac of the symmetric connection defined by t
are given in terms of those of r by

r;c = rbc + O,b° + OAS. o

Two symmetric connections (geodesic sprays) which define the same set of
geodesic paths are said to be projectively related. The expression for the components
of projectively related connections given in the exercise is classical.

We consider next the transformations of M whose induced transformations of
TM preserve D. The conditions for a vector field W on TM to generate transfor-
mations which preserve D are these:

IW,rl=ar+bA
IW, Al = cr + d0

for functions a, b, c, d on T M.
If W = V is a complete lift then the second condition is satisfied automatically

(with c _ d = 0). Since IV, rl is necessarily vertical, a = 0 in the first condition;
and since la, IV, rII = IV, rl it follows that b = for some 1-form m on M. The
only surviving condition is thus

IV,r) = o.
If V satisfies this condition then it generates transformations which preserve
geodesic paths, that is, map geodesics on M to geodesics on M, albeit with loss
of affine parametrisation. Such transformations are called projective transforma-
tions of M. Af lne transformations are a special case.
Exercise 49. Investigate the projective transformations of an affine space. 0
Exercise 50. Show that if V is a projective transformation of M, and )V, r) _ ¢0, then
(,CV(CrS))(WT) = 0, while (Cp(CrS))(W") = -((W,¢) o R)A - 3Wt, for any vector field
W on M. By adapting the argument concerning affine transformations show that V is a
projective transformation if and only if, for every U,W E X(M),

[Cv,Vw)U - Viv,wlU = -I((U,0)W + (W,0)U).

8. Euler-Lagrange Fields

We have dealt up to now with the geodesic spray of an arbitrary symmetric con-
nection: we want next to consider the Levi-Civita connection of a metric from the
present point of view. Now a metric on M may be used to construct a function
on TM called, by analogy with dynamics, its kinetic energy; the equations for the
geodesics of the Levi-Civita connection are the Euler-Lagrange equations obtained
when the energy is taken for Lagrangian function. In this section we shall describe
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how the theory of Euler-Lagrange equations may be set up on the tangent bundle;
properties of the Levi-Civita connection follow as a special case.

By the Euler-Lagrange equations we mean the equations of dynamics, derived
from a function L, the Lagrangian, which (for an autonomous system) is a func-
tion of "generalised coordinates" (conventionally denoted (qa)) and "generalised
velocities" (ga); the equations are usually written

d 8L 8L

dt ago
aqa = o.

When the t-derivative is performed explicitly, provided that the matrix of second
partial derivatives (a2L/aga8g6) is everywhere non-singular, the Euler-Lagrange
equations may be expressed in the form

ga = Aa(g6,4`)

for certain functions Aa. When L is the kinetic energy minus the potential energy
of a dynamical system these are the equations of motion of the system.

We shall interpret generalised coordinates as coordinates on a manifold M, the
configuration space of the system, and generalised velocities as the corresponding
fibre coordinates on T.M. A Lagrangian is then simply a function on T.M. We seek
a canonical and coordinate-independent way of constructing a second-order differ-
ential equation field from a Lagrangian which satisfies a non-degeneracy condition
corresponding to the non-singularity of the matrix of second partial derivatives men-
tioned above. We shall call this second-order differential equation field, whose pro-
jected integral curves will satisfy the Euler-Lagrange equations, the Euler-Lagrange
field of the given Lagrangian.

The construction involves the use of the two canonical geometric objects on
TM which we introduced earlier, the vertical endomorphism S and the dilation
field A. It will also make use of the construction of a horizontal distribution from
a second-order differential equation field.

First, we observe that S may be made to act on cotangent vectors to TM by
duality: for any v e TM we define a linear map S;, : T,; T M - T,; TM by

(w,S.(a)) = w E a E T,;TM.

Exercise 61. Show that (CwS') = (CwS)' for any vector field W. o

Then given any 1-form 9 on TM there is a corresponding 1-form S'(9); note
that S' (9) vanishes on vertical vectors. In this way we can define, for any function
L on TM, first a 1-form S'(dL), and then a 2-form WL = d(S'(dL)); these are
called the Carton forms associated with L.

Exercise 52. Compute the Cartan forms in coordinates. D

The function L is said to be a non-degenerate Lagrangian if wL has maximum
rank, that is to say, if the m-fold exterior product wL A WL A ... A wL is nowhere
vanishing. The Cartan 2-form itself is then also called non-degenerate. In this case
the map of vector fields to forms defined by v '- VJWL is an isomorphism.
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Exercise 63. Show that L is non-degenerate if and only if the matrix (a'LI,9v' 49v6) is
everywhere non-singular. 0

The energy associated with a Lagrangian L is the function EL on TM defined
by

EL = 0(L) - L.

In the case of a non-degenerate Lagrangian there is a unique vector field r such

that
r JWL = -dEL.

We shall show that r is a second-order differential equation field and that its pro-
jected integral curves satisfy the Euler-Lagrange equations: it is the Euler-Lagrange
field of L.

We shall first show that r is a second-order differential equation field by showing
that S(r) = A. To do so, we must establish a basic property of the Cartan 2-form:
for any vector fields V and W on TM,

WL(S(V),W) +WL(V,S(W)) = 0.

In fact, from the definition of wL and the formula for an exterior derivative it follows
that

WL(S(V),W)

S(V)((W,S-(dL))) --W((S(V),S-(dL))) - (IS(V),W1,S-(dL))
= S(V)S(W)(L) - s(IS(V),WI)(L)

since S2 = 0. Thus

WL(S(V),W) +WL(V,S(W))
= S(V)S(W)(L) S(W)S(V)(L) - S(IS(V),WI)(L) - S(IV,S(W)I)(L)

= (Is(V),s(w)I - s(Is(V),W1) - S(IV,S(W)I)(L).
The vector field operating on L in this final expression vanishes, as was shown in
Exercise 20, and the result is therefore established. To show that s(r) = A we
substitute r for V in this identity: then

WL(s(r),w) _ -W,,(r,s(w)) = S(W)(EL)
= I.S(W),AI(L) + A(S(W)(L)) - S(W)(L)

_ --(fAS)(W)(L) - s(I, ,W1)(L) + A(S(W)(L)) - S(W)(L)
= S(W)(L) - s(IA,W1)(L) + A(S(W)(L)) - S(W)(L)

A((W,s'(dL))) - (I A,Wj,s'(dL)) =wL(A,W).
This holds for every vector field W, whence (S(r) -- 0) JWL = 0; but since WL is
non-degenerate this means that

S(1)=0.
We show now that the projected integral curves of r satisfy the Euler-Lagrange

equations for L. We shall derive these equations in a coordinate free form; this
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requires a further transformation of the equation defining r. By substituting S(r)
for A in the definition of EL we obtain

EL = S(f)(L) - L = (r, S' (dL)) - L.

Thus rJd(S'(dL)) +d(rJS'(dL)) = dL
or

Cr(S'(dL)) = dL.
It follows that

(CrS')(dL) + S' (d(r(L))) = (CrS)' (dL) + S' (d(r(L))) = dL.
This equation is an identity on vertical vector fields since, for any second-order
differential equation field r, CrS acts as the identity on vertical vector fields, and
for any 1-form 0, S'(6) vanishes on vertical vector fields. If, however, the equation
is evaluated with argument V h, the horizontal lift of a vector field V on M to TM
with respect to the horizontal distribution defined by r, one obtains

-Vh(L) + V i (r(L)) = V h(L).

But 2Vh = IV', F] + V; thus

r(V t (L)) - V (L) = 0.

This is a coordinate free version of the Euler-Lagrange equations: if V = 8/8qe is
a coordinate vector field on M, it becomes

d 8L 8L
d ava) 8q' _

where d/dt means differentiation along any integral curve of r.
Exercise 54. Show that the energy EL is a constant of the motion, that is, that r(EL) _
0. o
Exercise bb. Let g be a metric on M and L the function on TM defined by L(v) =

Show that A(L) = 2L, that EL = L, and that the corresponding Euler-
field r is a spray. Show that r(L) = 0 and deduce that r is the geodesic spray

of the Levi-Civita connection of g. o
Exercise 56. Show that the Euler-Lagrange field r and Cartan 2-form WL of any non-
degenerate Lagrangian satisfy CrwL = 0. 0
Exercise 67. By taking the Lie derivative with respect to r of the identity wL(S(V(S(W)
wL(V,S(W)) = 0, show that the projection operators P and Q for the horizontal distribu-
tion defined by r satisfy

(L(P(V ),W) +wL(V,P(W)) = 'L(V,W)
WL(Q(V ),W) +(L(V,Q(W)) = WL(V,W)

wt(P(V ),W) = (L(V,Q(W ))
Deduce that WL vanishes when both of its arguments are vertical, and when both of its
arguments are horizontal. Show that with respect to a local basis of 1-forms {8, #')
adapted to the horizontal distribution (as described in Exercise 24 in the case of a spray)
WL is given by

WL = s a e0° AOb.
a

o
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Symmetries. A vector field V on TM which generates transformations preserving
wL and EL, in the sense that Cvwt. = 0 and V (EL) = 0, is called a Carton symmetry
of the Lagrangian system. A Cartan symmetry is necessarily a symmetry of the
Euler-Lagrange field r, for

IV,rIJWL = Cv(rJWL) .- FJCVWL = -d(V(EL)) = 0

and therefore by the non-degeneracy of wL

IV, rI - 0.

The transformations of the flow generated by V therefore permute the integral
curves of r. If V is a Cartan symmetry then Cv(S'(dL)) is closed; if it is exact,
say Cv(S'(dL)) = df, we call V an exact Carton symmetry; then

V JWL = Lv (S' (dL)) - d(V, S-(dL))

_= d(f S(V)(L)) = -dF

say; and
r(F) - I'J(V JwL) = - V JdEL = 0

so that F is a constant of the motion. Thus to every exact Cartan symmetry there
corresponds a constant of the motion. Conversely, if F is a constant of the motion
then the vector field V defined by V JWL = -dF is an exact Cartan symmetry.
There is thus a I : 1 correspondence between exact Cartan symmetries and constants
of the motion. This is an important result, since knowledge of constants of the
motion helps one to integrate the Euler-Lagrange equations, and much of classical
mechanics is concerned with quantities such as energy, momentum and angular
momentum which are constants under suitable hypotheses (see also the related
discussion in Chapter 12). The correspondence of symmetries and constants which
we have just derived is a general form of a class of results of which the first was
found by E. Noether; it may be described as a generalised Noether theorem. The
original Noether theorem covered the case in which V is the complete lift of a vector
field on M, a so-called point symmetry of the system.

Exercise 58. Show that if, for a vector field W on M, W (L) = 0 then W is a Cartan
symmetry.
Exercise 59. Let g be a metric on M and r its Levi-Civita spray, in other words the
Euler-Lagrange field of the Lagrangian function L where L(v) = 3g(v,v). Show that W
is a Cartan symmetry if and only if W is an isometry of g.
Exercise 60. Let g be a metric on M, T(v) = zg(v,v) its "kinetic energy", and 0 a
function on M, the "potential energy". Let L = T 0 o a. Show that if a vector field W
on M is an isometry of g and satisfies W (O) = 0 then W is a Cartan symmetry, and the
corresponding constant of the motion F is given by F(v) _r g(v,

This is the usual situation encountered in Lagrangian dynamics.

9. The Harniltonian Formulation
A non-degenerate Cartan 2-form defined on TM gives it a symplectic structure (as
defined in the final section of Chapter 12). When Darboux coordinates (Section 6
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of Chapter 6) are chosen, the equations for the integral curves of r will take the
Hamiltonian rather than the Euler-Lagrange form. However, passage from the
Lagrangian to the Hamiltonian formulation is better expressed in a different way
which exploits the fact remarked on in Section 2 above that the canonical 2-form
dB on the cotangent bundle is already in Darboux form when expressed in terms of
coordinates induced from coordinates on the base.

Given a non-degenerate Lagrangian L on TM we define a bundle map L: T .M -
T' M inducing the identity on M, as follows: for each v E TM, L(v) is the cotangent
vector at a(v) = x defined by

(u, L(v)) = ut (L) for all u E T=M,

where the vertical lift is to v. The linearity of the vertical lift ensures that L(v) is
indeed a cotangent vector. The map L is called the Legendre map associated with
L.

We shall show that the pull-back L'8 of the canonical 1-form 0 on T' .M is just
the Cartan 1-form of L. For v E TM and w E M,

(w,L'B) = (L.w,0) = (r.L.w,L(v))
_ (1r.w,L(v)) = (a.w)t(L)
= (w,S'(dL)),

as required; we have used the fact that roL = a where r: T* ,M -+ M is the cotangent
bundle projection.

If L is a diffeomorphism then wL = L' (do) must have maximum rank, since d6
has: thus a necessary condition for L to be a diffeomorphism is that wy should be
non-degenerate. When L is a diffeomorphism, the vector field V = L.I on T'M
satisfies

V JdO = L.rJdO = L-*(I'JwL) = -dh

where h is the function defined by h = Er, o L- 1. This is the Hamiltonian function
corresponding to the Lagrangian L, and the correspondence between Lagrangian
and Hamiltonian formulations is clear.

Summary of Chapter 13
The tangent (cotangent) bundle TM (T'M) of a differentiable manifold M is the
collection of all its tangent (cotangent) vectors regarded as a differentiable manifold.
Coordinates may be defined on TM by taking charts (P, 0) on M and ascribing to
each v E TM whose point of tangency lies in P the coordinates (x°,v°), where
(x°) are the coordinates of the point of tangency and (vs) the components of v
with respect to the coordinate vector fields; a similar construction works for T.M.'Tangent

and cotangent bundles are examples of fibre bundles: each has a smooth
projection map which maps it surjectively onto M, and each is locally a product
manifold, that is, locally diffeomorphic to P x R'" where P is an open subset of M.
The transition functions, which relate different local product decompositions, take
their values in GL(rn, R).
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A vector field V on M may be lifted to a vector field on TM in (at least)
two ways. First, the vertical lift V1 is the generator of the one-parameter group
v '-+ v + tV*( ) of transformations of TM; ,r. V T - 0, whence the name. Second, the
complete lift V is the generator of the flow v Ot.v (where m is the flow of V);
n.V = V. For any V, W on M, I VT,WII = 0; WIJ = IV,W)1; w,wI =1 11.
On T* ,M there are vertical lifts of 1-forms and complete lifts of vector fields from
M, satisfying JQ1_81J - 0; 1V,atJ = (Cvo)1; (V,W) = (V,W]. The dilation field
0 is the generator of the one-parameter group of dilations v i-+ etv of T.M. The
type (1,1) tensor field S on TM defined by (7r.w)T is called the vertical
endomorphism: the subspace of vertical vectors at each point is simultaneously its
kernel and its image. The 1-form 0 on T' .M defined by (w, Be) _ (r. w, p) is called
the canonical 1-form; its exterior derivative is already in Darboux form in terms
of standard coordinates. These constructions and geometric objects are the basic
features of the differential geometry of tangent and cotangent bundles.

A connection on M is equivalent to a distribution on TM which is horizontal
in the sense of being everywhere complementary to the vertical, and homogeneous
in the sense that JO,Whj - 0 where Wt' is the horizontal lift of W, that is, the
unique horizontal vector field which projects onto W. The horizontal curves rep-
resent curves in M with parallel vector fields defined along them. The covariant
differentiation operator is defined by (VvW)T = FVh,W11. Curvature R and tor-
sion T are given by (R(U,V)W)t = J1VT,R(U,V)1, where R(U,V) is the vertical
vector field 1U,V1h - (Uh,Vh1; T(U,V)T = JUh,VIJ - IVh,U11- JU,VIt.

A vector field r on TM with the property ir.T = v is called a second-order
differential equation field, because the projections of its integral curves are solutions
of a system of second-order ordinary differential equations. A particular case is the
spray of a symmetric connection, whose integral curves project onto the geodesics.
The condition for a vector field to be a second-order differential equation field may
be written S(I') = 0; a spray must satisfy, in addition, IO, I = r. For any second-
order differential equation field I', (CrS)2 is the identity tensor on TM. The tensor
fields P =

s
(1- CrS) and Q = 1(1 + CrS) are complementary projection operators

and their kernels give a direct sum decomposition of the tangent space at each
point: that of P is the vertical subspace, so that of Q is horizontal. Thus every
second-order differential equation field defines a horizontal distribution. When I' is
a spray this distribution defines a connection, which is symmetric, and has 1' for its
spray; otherwise the distribution is not homogeneous.

The exponential map is given by exp(v) = a(ry,(v)) where ry is the flow of the
spray r. A Jacobi field is a vector field along an integral curve of r obtained by Lie
transport of a given vector at one point of it. The projected vector field satisfies
O7'a + R(A,j)' = 0 along the geodesic -y. A Jacobi field may be thought of as
defining connecting vectors between neighbouring geodesics.

A vector field V on M defines a map o: M TM by x p-+ V. It is a cross-section
of the projection 7r: TM -+ M; that is, it satisfies x o o = id M, the identity on M.
Every cross-section of TM defines a vector field; every cross-section of r: T' M M

defines a 1-form on M. A vector field is geodesic if and only if the spray r is tangent
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to the cross-section which defines it.
A symmetry of a spray r is the infinitesimal generator of a flow of transforma-

tions of TM which map f to itself: so a symmetry W satisfies 1W, r) = 0. If V is a
symmetry then the vector field V on M is an affine transformation, and conversely.
If 0 is a 1-form on M, 4, the fibre-linear function on TM it defines, and V a vector
field on M which satisfies 1V, r1 = 4,o then V preserves the 2-dimensional distri-
bution spanned by r and A; all sprays in this distribution have the same geodesic
paths as r but with different affine parametrisations; V is an infinitesimal projective
transformation of M.

A function L on TM is often called, in the context of dynamics, a Lagrangian.
It defines a 1-form S'(dL) and a 2-form wt = d(S'(dL)), its Cartan forms. A
Lagrangian is non-degenerate if its Cartan 2-form is non-degenerate, that is, has
maximum rank. The vector field r defined by r JwL = -dEL, where EL = A(L)-L
is the energy, is a second-order differential equation field, whose projected integral
curves satisfy the Euler-Lagrange equations of L: it is called the Euler-Lagrange
field. A vector field V which satisfies LVWL = 0 and V(EL) = 0 is a Cartan
symmetry:. it satisfies iV, r] = 0. To every constant of the motion there corre-
sponds a Cartan symmetry. When L(v) = zg(v,v), where g is a metric on M, the
Euler-Lagrange field is the spray of the Levi-Civita connection, and W is a Cartan
symmetry if and only if W is an isometry.

The Legendre map L: TM -. T' M of a Lagrangian L is defined by (u, L(v)) _
ut(L). If L is a diffeomorphism, then L is non-degenerate, L'9 is the Cartan 1-form,
and L. r is the Hamiltonian vector field corresponding to the Hamiltonian function
EL o L-'.



14. FIBRE BUNDLES

As we have shown in Chapter 13, the manifold TM of tangent vectors to a given
manifold M has a special structure which may be conveniently described in terms
of the projection map which takes each tangent vector to the point of the original
manifold at which it is tangent. The set of points of TM which are mapped by the
projection to a particular point of the original manifold M is just the tangent space
to M at that point: all tangent spaces are copies of the same standard space (R')
but not canonically so, though a common identification may be made throughout a
suitable open subset of the original manifold, for example a coordinate neighbour-
hood. These are the basic features of what is known as a fibre bundle: roughly
speaking a fibre bundle consists of two manifolds, a "larger" and a "smaller", the
larger (the bundle space) being a union of "fibres", one for each point of the smaller
manifold (the base space); the fibres are all alike, but not necessarily all the same. A
product of two manifolds (base and fibre) is a particular case of a fibre bundle, but
in general a fibre bundle will be a product only locally, as is the case for the tangent
bundle of a differentiable manifold. The projection map, from bundle space to base
space, maps each fibre to the associated point of the base. A final component of
the definition of a fibre bundle concerns generalisation of the transformation law
for the components of a tangent vector with respect to a local basis of vector fields
when that basis is changed.

It will be clear that the definition of a fibre bundle (as distinct from the object
itself) is a fairly complex matter. The tangent bundle is an accessible and use-
ful paradigm, and the reader may find it helpful to have this reasonably familiar
example in mind when it comes to the general definitions.

1. Fibrations

There are sufficiently many circumstances in which manifolds occur with structures
of projection and local product decomposition similar to those enjoyed by TM and
T' M to make it profitable to abstract these features into a definition. We shall give
the definition in two stages: we deal first with a general situation, which we call a
fibration, and specialise afterwards to the case of a fibre bundle.

A fibration consists of four things: a differentiable manifold B called the bundle
space, a differentiable manifold M called the base space, a differentiable manifold
3 called the standard fibre, and a smooth map ir:8 -k M called the projection,
satisfying the following conditions:

(1) rr is surjective
(2) for each point x E M, 7r-1(x) is an imbedded submanifold of B which is

diffeomorphic to jr; ?r -I (x) is the fibre over z
(3) Tr defines a local product structure on B in the sense that each point of

M has a neighbourhood 0 with a diffeomorphism 0:7r-r(0) -- 0 x F such that
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111 o f/, = r, where 111: 0 x 3 -. 0 is projection onto the first factor.

Exercise 1. Show that dim B = dim .M + dim jr. o

To emphasise that all components are strictly necessary in the specification of
a fibration, it is usual to talk of

"the fibration r: B L M",

though mention of the standard fibre may be omitted since it is usually easily
inferred from the other information. Depending on the circumstances, a fibration
may be regarded in (at least) two different lights. Either one may consider w as the
fundamental object, in which case the fibration is a form of decomposition of B; or
one may consider Jr as the fundamental object, in which case the fibration gives a
new manifold built over M. A quotient space of an affine space is an example of
a fibration seen from the first point of view, the product of (say) two affine spaces
one from the second.

In the case of the tangent and cotangent bundles the fibres are vector spaces.
Note that this will not necessarily be the case for a general fibration, since according
to the definition neither the standard fibre nor the individual fibres need have any
special structure beyond being manifolds. This step is taken in order to broaden the
definition. Nevertheless in most cases of interest the fibres will have some additional
structure, though not necessarily that of a vector space. We shall now explain how
this idea of additional structure in the fibre may be brought into play.

There is more to the vectorial structure of the tangent and cotangent bundles
than the mere fact that their fibres are vector spaces. After all, a coordinate patch
in any differentiable manifold is modelled on the vector space RI: but the vector
space structure of RI does not play any role in the manifold. The fact that the
various maps relating fibres, such as the transition functions, are linear maps is
also a key factor in the structure of the tangent and cotangent bundles. We shall
therefore describe next how these concepts arise in general.

Let r: B -+ M be a fibration, with standard fibre jr, and let {OQ} be a covering
of M by open sets over each of which r-1(OQ) is diffeomorphic to O x Jr. (The
suffix a serves as an identifier of the open set and is not to be summed over: the
summation convention is therefore in abeyance for the present.) For each a there is
a diffeomorphism 0.: r-1(0o) 0Q x 3 such that n1 o Q = r. We may therefore
write

+GQ(b) = (x, WQ,=(b))

where b E r-1(0.) and x = r(b); then *Q,=:r-1(x) - 3 is a diffeomorphism of
the fibre over z with the standard fibre. If A 54 a and . n Op is non-empty then for
any x E . n Op the fibre over x is identified with the standard fibre in two different
ways: by 1YQ,= and by 'Pp,,. This difference is represented by the diffeomorphism
of I given by +YQ,Z o 4F#,_' 1. Thus -to each point x of 0a n Op there corresponds a
diffeomorphism of 7, and we therefore have a map 1YQp from O n Op into the group
of diffeomorphisms of jr, called the transition function on . n Op, and defined by



Section 1 355

Exercise 2. Show that the transition functions satisfy

'1'Ba(x) _ 'aB(z)-I X E Oa n Op

*-B 0 4p,(x) ='a.,(x) Z E Oa n Op n O,
provided in the latter case that a, fl, and ry are distinct and Oa n Op n 0, is non-empty. E3

(The qualifications at the end of this exercise may be partially avoided by the
convention that W, is the identity transformation of 3 if a = /3.)

In cases of interest, the standard fibre I has some additional structure: it may
be a vector space, a Euclidean space or a Lie group, for example. The diffeomor-
phisms of 3 which preserve this structure usually form a Lie group G in their turn.
The structure of the fibration r: B -+ M is compatible with this structure of the
standard fibre if each fibre of B has the same structure as I (that is, if it is a vector
space when 3 is a vector space, and so on), and if is an isomorphism (in the
appropriate sense), for each a and z, for some covering (Oa) of M The transition
functions then take their values in G. When this occurs, for a Lie group G, the
fibration is called a fibre bundle, and G is called the group of the bundle.

Reconstructing a bundle from its transition functions. The transition func-
tions may be thought of as playing something of the role of the coordinate trans-
formations in an atlas for a manifold; this provides an alternative way of thinking
of the bundle. In fact, if the transition functions for a given covering {0.} of M
are known, then the bundle may be reconstructed, using a construction very rem-
iniscent of the definition of a contravariant or covariant vector in classical tensor
calculus. That is to say, each element of the bundle space is to be considered as
an assignment to each point x of M, and to each 0a containing x, of an element
of jr, subject to the appropriate transformation law. To be a little more precise:
consider the set of triples {(x, a, l;)}, where x E M, 0,, is an open set of the given
covering which contains x, and t; E 1. The transition functions Yap associated
with the covering being assumed known, and assumed also to satisfy the conditions
given in Exercise 2 above, we define a relation -- on the set of such triples by setting
(x; a, C) - (y, /3, q) if x = y and if q = 'Yp,, (x) C. This relation is an equivalence
relation by virtue of the conditions assumed for each equivalence class is taken
to be a point of 8. We shall not discuss the question of the differentiable structure
of B from this point of view, but the other factors in the definition of a fibre bundle
are clear enough. Denote by (x, a, £i the equivalence class of (x, a, C); then

(1) n(Ix,a,CI) = x
(2) 1r- l (x) may be identified with I by fixing a and mapping (x, a, C1 to C
(3) x -'(O.,) may be identified with 0,, x I by mapping (x, a, £J to (x, e).

Exercise S. Show that the transition functions for the bundle so reconstructed are just
those we started with. a

The additional structure of I may be transferred to the bundle provided that
the transition functions take their va!ues in the group G of structure-preserving
diffeomorphisms of jr: for then two elements Ix, a, ] and ix, a, C'J in the fibre over
x may be combined by combining and ' in the appropriate way; this will be
independent of which two representative elements are chosen in the equivalence
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class, provided that they both have the same value for the set index a, since the
transition functions will respect the law of combination. Suppose, for example,
that .7 is a Euclidean space, so that for any one may form the scalar product
£ ', and suppose that transition functions are given which take their values in the
orthogonal group of appropriate dimension. Define a scalar product on it-1(x) by

(x, a, f ] ' (x, a, 0 = C . '
This makes sense because if

Ix, 0,171 Ix, a, E1 and I x, Q, r1'I - Ix, a,

then 17 = Wpa(x)C and 17' _ %l+ptr(x)l:'

where Wpa(x) is an orthogonal transformation of 1, and so

17

This discussion may be summarised by saying that a fibre bundle consists of a
collection of "trivial" pieces 0Q x .7 which are glued together above the intersections
Oa n Op but with the possible addition of a warp or twist to the 3-factors in
the glueing process; the transition functions codify this twisting. As an example,
apparently rather different from the tangent and cotangent bundles which have
been our main examples to date, we now show that the usual recipe for making a
Mobius band-take a strip of paper, twist one end through 180° relative to the other
end and glue-is an instance of the construction of a fibre bundle from transition
functions. We take for M the circle, for 3 the real line, and for G the two-element
group {+-1, -1), acting on R by multiplication. We cover the circle by two open
subsets 01, 02, each diffeomorphic to an open interval, so that 01 n 02 is the union
of two disjoint pieces, say P and Q (each again diffeomorphic to an open interval).
We set W14(x) = +1 if x E P and ti4'12(x) = -1 if x E Q. The transition function
conditions are satisfied. The resulting fibre bundle is the (infinite) Mobius band.

Trivial bundles. The simplest way of forming a fibre bundle with base manifold
.M and fibre 3 is to take the product manifold M x I as bundle space, with projection
onto the first factor as projection. This is called the trivial bundle with base M
and fibre jr. Every bundle is locally like a trivial bundle, via a local trivialication
7r-1(0) 0 x jr. A bundle which is globally, and not just locally, a product is
simply said to be trivial: to be precise, the bundle x: B M with standard fibre 3
is a trivial bundle if there is a diffeornorphism 0: B , M x I such that fil o 0 = Ir.
Thus a bundle is a trivial bundle if it is diffeornorphic to the trivial bundle with the
same base and fibre, by a diffeomorphism which respects the projections.

Note the small but important (and potentially confusing) distinction between
the statements "this is a trivial bundle" and "this is the trivial bundle". The
point is that a bundle may be trivial without this being obvious from the way it
is presented. Thus a manifold M covered by a single coordinate patch has trivial
tangent bundle, but there is a certain difference between "the set of tangent vectors
to M" and "the set of pairs (x, i;) where x e M and E R'"", though each tangent
vector to M corresponds uniquely to a pair (x, l;) (namely its point of tangency
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and its components with respect to universal coordinates). Part of the problem is
(as is so often the case) that the correspondence is not canonical but coordinate
dependent: a different coordinate system, provided it is still universal, gives rise to
a different diffeomorphism of TM with M x R'. It may happen, in fact, that there
is a diffeomorphism of TM with M x R' respecting the projections, even though
M does not have a universal coordinate patch. Such a TM is still trivial.
Exercise 4. Show that a tangent bundle TM is trivial if and only if there is a set of
globally defined smooth vector fields on M which at each point form a basis for the tangent
space there. The circle and the torus have trivial tangent bundles. By considering left
invariant vector fields, show that the tangent bundle of any Lie group C is necessarily
trivial. Show that this trivialisation is given explicitly by the map TG G x T.G by
v-. (g,Ly-,.v). o
Exercise 5. Show that T' M is trivial if and only if TM is. 0

Cross-sections. A smooth map a: M -- 8 such that n o or is the identity map
of M is called a cross-section (sometimes just section) of the bundle 1r: B M.
A cross-section of a bundle assigns to each point of the base manifold a quantity
which may be identified, though not in general canonically, as an element of the
standard fibre, and which obeys a transformation law determined by the transition
functions of the bundle. The idea of a cross-section of a bundle with standard fibre
3 is thus a generalisation of the idea of a map M - 7; the possibility that the
bundle space may not be the product M x 3 on a global scale leads to interesting
complications of a topological nature when one is dealing with cross-sections rather
than straightforward maps.
Exercise 6. Show that a smooth map M --. I may be described as a cross-section of the
trivial bundle with base M and fibre .7. o

A cross-section defines a field of quantities on M, which may be a field of
geometric quantities as in the case of the tangent or cotangent bundle, or a physical
field, for a suitable choice of bundle. Note that since there may be many different
bundles with the same base and standard fibre, when it comes to specifying the
appropriate bundle whose cross-sections will be the fields of some physical theory,
one must do more than give just the standard fibre: it is necessary to give a family
of transition functions as well, or to do something equivalent to this.

2. Vector Bundles

As we mentioned above, a fibre bundle has structure arising from some structure
of its standard fibre. We shall deal in this section with bundles in which this extra
structure is that of a vector space.

When the fibres of a fibre bundle are (real, finite dimensional) vector spaces,
and the map W = of the fibre over x to the standard fibre, which we may take to
be Rk for some k, is a linear isomorphism for each x and for some covering {Oa},
then the bundle is called a vector bundle.
Exercise 7. Show that if the standard fibre of a vector bundle is Rk, each fibre is a vector
space of dimension k, and for a suitable covering of M the transition functions take their
values in GL(k,R). D
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The tangent and cotangent bundles of a manifold are vector bundles; we shall
describe in a later section the construction out of these of further vector bundles,
whose sections are tensor fields, and which are therefore called tensor bundles. Many
kinds of physical field are represented by sections of vector bundles. Thus vector
bundles form a large and important class of fibre bundles.

Just as one may form linear combinations of vector fields and of 1-forms, so
one may form linear combinations of sections of any vector bundle. The coefficients
of such linear combinations may be functions on the base manifold. Let a: £ - M
be a vector bundle (we shall usually use £ to stand for the bundle space of a vector
bundle, hoping that in this new context there will be no confusion with Euclidean
spaces, and assume the standard fibre is Rk, where the dimension of the fibre will
be made explicit if necessary). Let a, and a2 be two cross-sections of x: £ - M
and let f and 12 be functions on M. Then f,a, + f2a2 is the cross-section whose
value at x E M is

fl(x)al(x) + !2(1)02(x);

this makes sense because it -'(x) is a vector space.

Exercise 8. Verify that fiat +f2o2, so defined, is a (smooth) cross-section of x: C -+ M. D

The space E(7r) of cross-sections of ir: £ --+ M is thus a linear space, and a module
over 3(M), the smooth functions on M.

The local triviality of a vector bundle ensures the existence of local bases of
sections. That is to say, given any point of the base, there is a neighbourhood 0 of
that point, and a set of maps {0rl,02, Ok) of 0 into 7r-' (0), each satisfying the
conditions for a section on 0, and such that for each z E 0, {al (x), 02(X), ... , ak (z) )
is a basis for the fibre over x (where k is of course the dimension of the fibre).
Indeed, the sections corresponding to a fixed basis of the standard fibre under a
local product decomposition comprise a local basis of sections. Any section may be
expressed uniquely as a linear combination of the sections making up a local basis,
over the domain of the local basis, the coefficients being smooth local functions on
that domain. Thus the vector space structure of a vector bundle allows one to fix
the components of a section relative to a local basis, and therefore to represent the
section as a k-tuple of functions: but in general this is possible only locally; different
choices of local bases of sections will give different representations.

Algebraic constructions with vector bundles. The cotangent bundle of a
manifold may be thought of as being constructed by taking a standard vector space
construction-the formation of the dual of a vector space-and applying it fibre
by fibre to the tangent bundle. Similarly the formation of the space of linear p-
forms on a vector space, when applied fibre by fibre to the tangent bundle, leads
to the construction of a new vector bundle whose sections are p-forms on the base
manifold. This process, of constructing new vector bundles from a given one by
applying vector space constructions fibre by fibre, has quite general application.
We shall describe the most important examples, beginning with one which we have
not described, even as a special case, before: the direct, or Whitney, sum of two
vector bundles.
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Let 7r1 : Cl -+ M and 7r2: £2 -+ M be two vector bundles with the same base
and with fibre dimensions k1 and k2. Their Whitney sum is a vector bundle with
the same base whose fibre dimension is k, + k2 and whose fibre over x E M is
the direct sum of those of the component bundles, 7r 1(x) ®7rz'(x). In order to
specify the Whitney sum completely we must describe its local product structure.
It will not necessarily be the case that a covering of M, over each open set of which
one of the vector bundles is a product, will serve the same purpose for the other.
However, it is possible to construct an open covering of M, {OQ}, such that both
vector bundles are products over each 04, by choosing a covering of M trivialising
the first bundle, and another trivialising the second, and taking for the sets OQ
all the non-empty intersections of a set from the first cover with a set from the
second. In describing the local product structure of the Whitney sum we may
therefore assume the existence of a covering of M which locally trivialises the two
bundles simultaneously. This technical point dealt with, we can proceed with the
construction.

The bundle space £ of the Whitney sum is the set of all pairs (v1,v2), where
v, E £i, i = 1, 2, and 7r, (v,) = 7r2(v2). Thus v1 and v2 lie in the fibres of their
respective bundles over the same point of M. We define a map 7r: £ -+ M by
7r(v1 i V2) = 7r, (v1) = 7r2(v2). An atlas for £ is provided by the charts (OQ,& )
where OQ = 7r-1(OQ), {OQ} is a covering of M, by coordinate patches, of the kind
described above, and 5.: 6a -+ Rm+ki+k. is given by

lQ(Vl,V2) =

where x = 7r(v,, V2), OQ is the coordinate map on 0,,,, and 1Ji x is the isomor-
phism of 7r,-'(x) with Rk-. Note that 7r 1(x) is the set of pairs (v, , v2) with
v; E 7r, ' (x) and so, with the usual rules of addition and multiplication by scalars, is
just 7r-'(x) (D 7r2 ' (x). The map (lp 1 r,40 2Ct =) is a linear isomorphism of 7r-1(x) with
Rk, +k,, and the map (V1, V2) ,--+ (x, 4' =(V,), 41 =(V2)), where it = 7r(vl,v2) E 0Q,
is a trivialisation of 7r-'(OQ). Thus 7r: £ -' M is a vector bundle with the required
properties.

We describe next the construction of the dual to a given vector bundle: the dual
bundle stands in the same relationship to the original bundle as the cotangent bundle
does to the tangent bundle. Let 7r: £ -* M be a vector bundle of fibre dimension k.
The bundle space £' of the dual bundle is the set of all the elements of the dual
spaces of the fibres 7r-'(x) of £, as it ranges over M. Thus any A E £' is a linear
functional on the vector space 7r-'(x) for some it E M, and £' = U=EM 7r-1(x)',
where 7r -'(x) ' is the vector space dual to 7r-1(x). The projection r: £' -+ M is
the map which takes the dual space 7r -'(x)' to x; the fibres of the dual bundle are
just the dual spaces of the fibres of the original bundle. Let {0Q} be a covering of
M such that 7r-1(O(,,) is trivial, and let 1YQ,Z be the corresponding isomorphism of
the fibre 7r-' (x) with R. Then the adjoint map is an isomorphism of Rk+
with 7r-1(x)' (recall that adjoints map contragrediently), and therefore ')-'
is an isomorphism of 7r-'(x)' with Rk', which may be identified with Rk (by
identifying each row vector with the column vector having the same entries). This
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gives an isomorphism of each fibre of t' with Rk, which extends to a local product
decomposition of E' based on the same covering {OQ} of M.

Exercise 9. Complete the description of the dual bundle by defining a manifold structure
on E', and by giving the local product decomposition explicitly. O

Exercise 10. Show that if $$op:0. n Op -. GL(k,R) are the transition functions for
r: E M based on the covering (0, 1, then the transition functions for r: E' -' M based
on the same covering are W ,where, for each x E Oa n Op, 9 0(x) is the inverse of the
transpose of the matrix %I+ap(x). O

Exercise 11. Show that the pairing of the spaces of cross-sections E(r) and E(r) to 7(M)
defined by (a,v)(x) = (a(x),v(x)) for a E E(r), L, E E(r), satisfies the rules

(flat + /202, V) = /I(al,V)+/2(02,1/)
(a,/lV1 +/21/2) = /1(a,V1)+/2(a,V2) /I,/2 E T(M).

Show that if (al, o2i ... , ak } is a local basis of sections of r: E M then there is a local
basis of sections {v' , v2, .. , vk) of r: E' --. M such that (a., v°) = 6.6, a, b = 1, 2,... , k;
and that if or = S°a. and v = N.v° for local functions S° and N. (with the summation
convention back in force) then (0,v) = S°N.. O

Exercise 12. Show how to construct, for a given vector bundle r: E - M, a new vector
bundle whose fibres are the vector spaces of symmetric bilinear maps r-1(x) x r'1(x)
R. Show that if g is a section of this bundle then for sections al, 02 of the original
vector bundle, x - g(x)(a1(z),o2(x)) defines a smooth function on M; if this smooth
function be denoted g(o1,a2) then 9(02,01) = 9(01,02); and g therefore defines a map
E(r) x E(r) 7(M) which is symmetric and bilinear over T(M). 0

3. Tensor Bundles

The dual of a vector bundle, and the bundle of symmetric bilinear forms which
was the subject of the last exercise, both have for their sections quantities which
behave in a way analogous to tensor fields on a manifold (cross-sections of the dual
behave like 1-forms, or type (0,I) tensor fields, and cross-sections of the bundle of
symmetric bilinear forms like symmetric type (0,2) tensor fields). We shall now
develop the construction, from a given vector bundle, of a family of new vector
bundles whose cross-sections will generalise tensor fields. The construction is based
on the same principles as those of the previous subsection. But before tackling this
task we have to make some observations about tensor algebra in general.

We begin with linear maps of vector spaces. Let V and IV be vector spaces;
recall (Chapter 1, Note 2) that the set of linear maps from V to lU may be made
into a vector space in its own right. By choice of bases this space may be made
isomorphic to the space M,,,,,, (R) of m x n matrices; since the dimension of M,,,,,, (R)
is mn, so is the dimension of the space of linear maps V -. V. It is easy to spot a
basis for M,,,,,, (R): the so-called elementary matrices with just one non-zero entry,
a 1 in some position. It is not quite so obvious how one describes a basis for linear
maps. Observe, however, that it is possible to fashion a linear map V -+ 1V out
of a fixed element w of lU and a fixed element 0 of V', namely the linear map
v " (v,B)w. We shall denote this map w ® 6 and call it the tensor product of w
and 0.
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Exercise 13. Show that if { ja} is a basis for 1V and (w') a basis for V' then (Ia ®w')
is a basis for the space of linear maps V -a V. Show that the matrices of these basis maps
with respect to (e. ), the basis of V dual to {w'}, and (/a), are the elementary matrices;
that the components of a linear map with respect to this basis are just its matrix elements
with respect to {ea} and (fe); and that in particular, if to = w°ja and 6 = Baw5 then
(w®6)o = w'6a. O

Thus every linear map V - 1U is a linear combination of tensor products of elements
of IV and V': we therefore call the space of all such linear combinations the tensor
product of 1U and V', written 1U 0 V'.

Exercise 14. Show that the tensor product is bilinear:
(a,w1+a2w2)®6=a,w1®6+a2w2®6
w®(aiOi +a202) - aiw®6, +a2w®62. D

Exercise 16. Let fa = A;eb be elements of a new basis for V, with corresponding dual
basis {t'} of V'; let Ia = BQJB be elements or a new basis for V. Show that if A E 1V®V'
with A=A,,fa®w'-Anja ®w' then i.-= (B ')pAsA'. Cl

Another interpretation of the tensor product is possible. Beginning again with
an element of 1U 0 V' of the special form w ®B, we define a bilinear form on 1V' x V
by

(0, v) '-' (w, 0) (v, 0)

This construction, extended by linearity to the whole of lU ® V', may be used to
associate a bilinear form on 1U' x V with any element of 1U ® V'. If A = AV,, Ow'
is a general element of V ® V', and 4°X° E IU' (where {X°} is the basis of
IV* dual to {f0}) and v = vae0 E V, then the bilinear form defined by .1 is given
by

(.O,v)'-' 0°Aava
a

Therefore, shifting our viewpoint a little so as to separate the starred vector spaces
from the unstarred ones, we redefine the tensor product V ®1U of two vector spaces
V and 1U as the space of bilinear forms on V' x 1U'. This is a vector space whose
dimension is the product of the dimensions of V and V.

Tensor product bundles. Suppose now that ri: £i - M and r2: £y -. M are
two vector bundles over the same base. We may define, in a manner similar to that
used for the Whitney sum construction, their tensor product. It is a vector bundle
with the same base whose fibres are the tensor products of the fibres of r, and rZ
over the same point of M. The bundle space of the tensor product bundle is the
union of the tensor products of the fibres U.EM rl i(x) 0 r,-'(x).
Exercise 16. Complete the construction, by defining the projection, and giving an atlas
and a local trivialisation. o

Let {aQ} and {aa} be local bases of sections of 7r, and r2. Then there is a
corresponding local basis of sections of the tensor product bundle which we write
(Cal 0 a2}; any local section p of the tensor product bundle with the same domain
may be written -a,

P P
an

as
i ® or
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where the coefficients p" are smooth local functions on M.
This construction may be carried out repeatedly, with a single vector bundle

and its dual as the initial component bundles. In this way we construct the ten-
sor bundles corresponding to the original vector bundle. A particular case of the
construction, starting from the tangent bundle, leads to the tensor bundles whose
sections are the tensor fields described in Section 5 of Chapter 10.

4. The Frame Bundle

We return to consideration of bundles naturally associated with a manifold in the
sense that the tangent and cotangent bundle are, rather than bundles in general.
The ideas of this section do generalise to arbitrary vector bundles; but for the
moment we concentrate on what is perhaps the most important case.

By a linear frame at a point x of a manifold M we mean a basis for the tangent
space at x. The collection of all linear frames at all points of M is the bundle space
of a fibre bundle whose base is M and whose projection is the map which sends
each frame to the point in whose tangent space it lies. The differentiable structure,
diffeomorphism of fibres, and local triviality all follow from the existence of local
fields of linear frames, such as are provided by the coordinate vector fields in a
coordinate patch. In fact, if {VI, V2, ... , Vm} is a local field of linear frames on a
neighbourhood 0 in M, and {vI ,v2i...,v,n} is a frame at x E 0, then v" = A6Vb
where the numbers At

'

are the entries in a non-singular matrix A. Thus relative
to the local field, each linear frame determines an element of GL(m, R); and each
element of GL(m,R) determines a linear frame. We therefore take GL(m,R) as
standard fibre for this fibre bundle. The bundle is called the bundle of linear frames
or simply the frame bundle of M, a: C -. M.

Exercise 17. Show, in detail, that the frame bundle is indeed a fibre bundle.
Exercise 18. Show that the collection of bases of the fibres of any vector bundle may be
made into a fibre bundle whose standard fibre is GL(k, R), where k is the fibre dimension
of the vector bundle. O

The frame bundle occupies a central position in the parade of tensor bundles
(generated from the tangent and cotangent bundles) over M, and thus in its "first
order" differential geometry. The reason for this is that from a linear frame at x
one may build a basis for T. M (the dual basis to that of T,,M which is the linear
frame), and bases for all the tensor product spaces (by taking tensor products).
The frames are therefore skeletons not just for the tangent spaces to M, but for
the whole structure of tensor spaces; and so the frame bundle is the skeleton of the
whole structure of tensors on M.

The frame bundle will not in general be trivial. The necessary and sufficient
condition for it to be so is the existence of a global field of linear frames on M, that
is, a global section of ir: C M. For the existence of such a section allows one to
fix a point in each fibre to correspond to the identity in GL(m,R), and when this
is done the identification of the whole fibre with GL(m, R) follows. (The situation
here is rather different from that occurring for vector bundles: each vector bundle
has one global section, the zero section, whose value at each point of the base is
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the zero element of the fibre; in fact, in order for a vector bundle to be trivial there
must be a global field of frames.)

The frame bundle is clearly not a vector bundle. Its standard fibre has instead
the structure of a group. This group plays a significant role in the geometry of
the frame bundle. It is therefore worth pausing here to clear up a tricky point
about the way in which GL(m, R.) acts. We are interested mainly in the role played
by GL(rn,R) in fixing the components of the elements of one basis {en} of an
m-dimensional vector space V in terms of those of another {en}:

Ca ' \neb where A - (At) E GL(m,R).

Here (A6) represents a matrix with a labelling the columns and b the rows; matrix
multiplication, in the usual row-into-column manner, is given by

(Aii)
_ Ab

a eµa

and with this definition GL(m, R) acts on R^' to the left. The situation is different,
however, in the case of the action of GL(m,R) which is of most interest in the
present circumstances, namely its action on bases of V. We compute the effect of
first applying A to the basis {ea}, and then applying .t to the result. We obtain the
basis {eQ} where

l' c e 6 b

Thus, in contrast to its action on R', when GL(m,R) acts in the natural way on
the bases of V its action is to the right.

This right action of GL(m, R) on bases of m-dimensional vector spaces gener-
ates a right action of GL(m, R) on the frame bundle of the manifold M. If F E C
we define Fa as follows. Let F be the linear frame {Vt,v2,...,v,,,} at x E M; then
FA is the linear frame (v', t.2..... v,,,) at x, where vQ = \avb.
Exercise 19. Show that this defines a right action of GL(m, R) on C which is free (Chap-
ter 12, Section 4), that the orbits of the action are just the fibres of jr: C -+ M, and that
the action of GL(m, R) on the fibres is simply transitive. 0

The right action R,: F FA of GL(m, R) on C allows one to identify the Lie
algebra of GL(m,R) with certain vector fields on f in the manner of Section 11
of Chapter 12. The Lie algebra of GL(m,R) is just Mm(R), the space of m x m
matrices. If X E Mm(R) the corresponding fundamental vector field k on C is the
generator of the one-parameter group Rexptx It is tangent to the orbits of the
action, that is, to the fibres: vector fields with this property are said to be vertical.
The set of vectors { XF I X E M, (R) } at a point F E C spans the tangent space
to the fibre there, since the action is transitive on the fibre. The map X -+ X
is injective since the action is free, and is a Lie algebra homomorphism since the
action is to the right.

As well as thinking of a linear frame at a point x E M as a basis of T=M, one
may think of it as a way of identifying T=M with R'. Thus each linear frame at
x defines a linear map TM R' in which each element of T=M is mapped to its
coordinates with respect to the given linear frame. If the map associated with the
linear frame F is written OF, then each component of OF (pictured as a column
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vector of functions) is a linear form on T.A. That is, OF is an R'-valued linear
form. Given a local field of linear frames one has a locally defined R'-valued 1-form
on M, in the sense of Chapter 11, Section S.

A local field of frames is merely a local section of 7r: ,C - M. It is commonly
the case that when the construction of some geometric object on M depends on the
choice of a local section of some fibre bundle over M there is a "universal" object
defined on the bundle space from which the geometric object in question may be
derived by means of the section (the canonical 1-form on the cotangent bundle is
an example). The frame bundle space carries a canonical R'"-valued 1-form 0
defined as follows: for F E C and S G TFC, (S, OF) is the vector of coordinates of
r.s E with respect to the linear frame F.

Exercise 20. Show that if a is the local section of r: C -. M determined by a local field
of linear frames then o'9 is the local R'"-valued 1-form on M described above. (It is the
local basis of 1-forms dual to the local basis of vector fields defined by a, but considered
as an R'"-valued 1-form.) D

Exercise 21. Show that 96 = x6,dxc with respect to coordinates on C, where
4(F) are the entries in the matrix which represents F with respect to the coordinate
frame {a.}. a

The form 0 transforms in a straightforward way under the action of GL(m, R).
Notice that if S E TFC and S' E TFAC where r.t' = r.s then (S',6FA)
A-1(S, 9F), since only the frame changes. Thus (S, (Ra'9)F)
A-1(S, 9F) since r o Ra = r. So one may write

RA'9 - A-'9,

where matrix multiplication of a vector is implied on the right hand side.

Exercise 22. Confirm that this result is consistent with the rule for pull-back maps,
(0 o0)' = 0' o
Exercise 23. Show that if X E Mm(R) then CX9 = Xe, where matrix multiplication is
again implied on the right. 0

Reconstructing the tensor bundles. We have derived the frame bundle from
the tangent bundle; if one could set up the frame bundle first, it would be possible to
reconstruct the tangent bundle, and by a similar construction the cotangent bundle
and all the tensor bundles too. We describe how this is done.

We describe first how one might reconstruct a vector space from all its bases.
A basis, or frame, F, = {e1i es, ... , e,,,} for the vector space and an element f =
(1;1, 2, ., '") of R" together determine an element °e, of the vector space.
But many different pairs (E, £) determine the same vector: in fact (EA,A-'e)
determines one and the same element of the vector space whatever the choice of
A E GL(m,R).
Exercise 24. Show that if (E1, `1) and (E_, s) determine the same element of the vector
space then there is some A E GL(m,R) such that EI = E1A and S7 = o

We define a relation on the set of pairs {(E, )} by setting (E1, CI) - (Es, e2)
if Es = E1A and fs = A-% for some A E GL(rn,R). This is an equivalence
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relation, and each equivalence class defines a unique element of the vector space
(and conversely).

One may carry out this somewhat roundabout reconstruction of a vector space
point by point over M to obtain the tangent bundle from the frame bundle. On the
product manifold C x RI one sets (Fl, 6) ^- (F2, e2) if F2 = Fl A and C2 = A-%,
as before. This relation is an equivalence relation, and TM is the set of equivalence
classes.

An alternative way of describing the same construction is to observe that
(E, 1;) (EA,Adefines a right action of GL(m,R) on C x R'"; TM is the
space of orbits.

We mention this construction because it justifies the remark made earlier that
the frame bundle is central to the whole tensor structure on the manifold: by
modifying the construction a little, one may build all the tensor bundles in a similar
way.

In fact let V be any vector space on which GL(m,R) acts to the right: define
a relation on C x V by (Fl,vl) (F2iv2) if F2 = FIA and v2 = pave, where p is
the action; this relation is an equivalence relation, and it may be shown that the
equivalence classes are the points of the bundle space of a vector bundle over M
with standard fibre V and structure group GL(m,R). This bundle is called the
bundle associated to the bundle of frames by the action p. Thus the tangent bundle
is associated to the frame bundle by the action f - A-' C on R'". The action
of GL(m, R) on R' by the transpose (that is, p. %C = AT f) is a right action: the
associated bundle is the cotangent bundle. More generally the action p of GL(m, R)
on a tensor product space Rm ® Rm ®[. . . ®R"' by

Pa(SI ®E2 ®... 0 p 0 Cp+l 0 ... 0 Cp+q)

= A-16 ®A-1 c2 ®...®A-1tt̀P ®ATfp+1 ®...®ATCp+q

is a right action, and the associated bundle is a bundle of tensors of type (p,q).

5. Special Frames

Many special geometric structures define, and may be defined by, special kinds of
linear frame. The most obvious case in point is a metric, where the special frames
are the orthonormal frames. It is useful to look at this phenomenon in terms of the
frame bundle.

First, however, we mention some more examples. A conformal structure defines
a set of frames whose vectors are mutually orthogonal and all of the same length
(with respect to one, and hence every, metric in the conformal class). A volume
form determines the set of frames which bound parallelepipeds of unit volume, and
an orientation determines the set of positively oriented frames. The most extreme
case is that of a complete parallelism, when the manifold admits a global field of
frames: the frame of this field at each point may be taken as the single special
frame defined by this structure. Less obvious, perhaps, is the case of a distribution,
where the special frames are those whose first k vectors belong to the distribution
(k being its dimension).
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Each of these structures defines a collection of special frames, and in turn is
defined by its special frames. Thus if one knows which frames are orthonormal one
may reconstruct the metric. But this raises the question, what conditions must a
set of frames satisfy in order that it may be the set of orthonormal frames of a
metric? The orthonormal frames of a metric of signature (r, m - r) at a point are
related one to another by the right action of O(r, m - r), the appropriate orthogonal
group. Conversely, for it to be possible to reconstruct the metric at a point, the
special frames at that point must include with each frame all those obtained from
it by the right action of O(r, m - r) but no others. For then if v, w E TT M one may
define gz (v, w) by

gz(v, w) = vlwl + vzws + ... + Vrwr - yr+lwr+l vmwm

where (v 1, v2, ... , v`") and (w1, w2, ... , wrn) are the components of v and w with
respect to any one of the special frames; the assumption about the action of
O(r, m - r) ensures that this definition is self-consistent.

In each of the cases described above there is a subgroup of GL(m,R) which
plays the same role as does 0(r, m - r) for a metric. For a conformal structure
the group is CO(r,m - r), the group of matrices which preserves the standard
scalar product of signature (r, m - r) up to a non-zero factor; for a volume form
it is SL(m, R), the group of matrices of determinant 1; for an orientation it is the
group of matrices of positive determinant; for a complete parallelism it is the group
consisting of the identity; for a vector field system it is the group of non-singular
m x m matrices of the form

(A B)
0 CJ

where A is a k x k matrix. The intersections of some of these subgroups will also
yield interesting geometric structures: thus SO(r, m - r) = O(r, m - r) fl SL(m, R)
is the appropriate group for an orientable pseudo- Riemannian structure.

The group by itself is not enough: it is also necessary to ensure that the
structure is smooth. This requires the existence of local fields of special frames.

One may describe the set of special frames of a geometric structure as a subset
of the frame bundle. It should be clear from the discussion that this subset is
required to be a submanifold which is the bundle space, in its own right, of a fibre
bundle which shares its projection with the frame bundle but has for its structure
group and standard fibre the subgroup of GL(m, R) appropriate to the structure.
Such a bundle is said to be a sub-bundle of the frame bundle, and a reduction of the
frame bundle to the appropriate subgroup of GL(m, R). This discussion leads to a
definition which unifies many of the geometrical structures studied by differential
geometric methods. Let C be a Lie subgroup of GL(m,R). Then a G-structure on
a manifold M (of dimension m) is a reduction of the frame bundle over M to the
group G. Many geometric structures, in other words, are G-structures for suitable
groups G.

It is not necessarily the case that for a given group C and given manifold M
there is a G-structure over M (for example, a manifold need not necessarily be
orientable). Nor will it necessarily be the case that the existence of a G-structure
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for some C permits the existence of a further reduction to smaller C (a pseudo-
Riemannian manifold need not necessarily define a complete parallelism). Defining
the structure in this way, however, allows one to see how the problem of the existence
of a G-structure is a matter of the interplay between the topological properties of
the manifold and the characteristics of the particular group G. It also allows a
coherent approach to the study of the different geometric structures.

8. Principal Bundles

The frame bundle of a manifold, and its reductions, are paradigms of an important
type of bundle, namely bundles whose standard fibres coincide with their structure
groups. Such bundles are called principal bundles. We now point out some of the
main properties of principal bundles, and give some further examples.

Let a: P - M be a principal bundle with structure group and standard fibre G;
the action of G as structure group on itself as fibre is taken to be left multiplication.
Then one may define a right action of G on P as follows. Take an open covering {OQ}
of M over which P is locally trivial and let P '- (x, 'Q,=(P)) be the trivialising map,
where P E x-' (0a) and x = a(P). Then the transition function WYQp: 0. n Op - G
is given by

0

This formula may be rewritten

where left multiplication by %P.,9(x) E G is implied on the right hand aide. Now for
anygEGandanyPE7r-'(04nOp)

4'Q,=-1 O4'-.=(P)g) _ *o.=-I (W0, (x)'I'p.=(P)g)
where x = ir(P), as usual. We may therefore, without danger of ambiguity, define
an action of G on P, which is clearly a right action, by

R9P = - I (P)g).

Note that n o R9 = r, so the action preserves the fibres of x: P -+ M. Note also that
if RgP = P then *,,,=(P)g = WQ,=(P) and so g is the identity: the action is free.
Moreover, given any two points P and Q on the same fibre of a there is a unique
g E C such that Q R9P, namely g = yQ =(P) YQ =(Q). Thus G acts simply
transitively on the fibres, which are its orbits. The action of G on P is effectively just
right multiplication of G on itself, transferred to P by the identification of the fibres
with C; this is possible because the transition functions act by left multiplication,
and therefore do not interfere with the right action.

Conversely, if P is a manifold on which a group G acts freely to the right, in
such a way that the orbit space M may be made into a differentiable manifold, with
smooth projection x: P M, and if x admits local sections, then ,r: P -. M is a
principal bundle with group G.

The action of G allows one to define fundamental vector fields X on P corre-
sponding to elements X of JC, the Lie algebra of C, in the usual way: each k is
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vertical, that is, tangent to the fibres, and at each point the vector fields of this form
span the tangent space to the fibre. The map X - X is an injective Lie algebra
homomorphism.

The construction of associated bundles may be generalised to the case of a
principal bundle as follows. If x: P - M is a principal bundle with group G, and 7
a manifold on which G acts to the right via p, then the orbit space of the manifold
P x I under the right action (P, z) +-+ (R5P, pyz) is the bundle space of a fibre
bundle over M with standard fibre I and structure group G. This bundle is said to
be associated to x: P -+ M by the action of G on 3. The case of greatest interest
occurs when 3 is a vector space and the action is a linear one (a representation of
G on the vector space), for then the resulting bundle is a vector bundle.

Examples of principal bundles.
(1) Let H be a Lie group which acts transitively to the left on a manifold M

and let G be the isotropy group of a point x of M. The group G acts on H to the
right by group multiplication: Roh = hg. This action is clearly free. The orbit of
any h E H consists of all those elements of H which map x to the same point as h
does. The map x: H -+ M by x(h) = hx is surjective, because H acts transitively;
x maps each C orbit in H to the same point of M, and indeed the inverse image
of a point of M is precisely a G orbit. Provided that the action of H on M admits
local cross-sections, which is to say that there is a neighbourhood 0 of x in M and
a smooth map a: 0 -+ H such that o(y)x = y, then x: H - M is locally trivial and
is a principal bundle over M with group C.

(2) Real projective space RP" is the set of lines through the origin in R"+'.
It is a differentiable manifold. The multiplicative group of non-zero real numbers
R' acts to the right (or left, since it is commutative) on R"+' - {0} by Rte = tt.
The action is evidently free, and its orbits are just the lines through the origin in
R"+' (note the necessity of removing the origin, which is a separate orbit under
any linear action on a vector space). Local sections of the resulting projection
x: R"+' - {0} --+ RP' may be constructed as follows. Consider the subset 0a of
RP" consisting of equivalence classes of points of R"+' - (0) whose ath coordinates
are non-zero. Then the map

is a local section of x over 0a. The 0a evidently cover RP". Thus R"+' - (0) is
the bundle space of a principal bundle over RP" with group R'.

The interest of this example lies in the base rather than the bundle space: RP"
is constructed as the orbit space of an action on the familiar space R"+' - (0).

Note that lines through the origin in R"+' should be carefully distinguished
from rays or half-lines. The multiplicative group of positive reals R+ also acts
freely on R"+' - {0} to the right. The orbits of this action are rays, and the orbit
space may be taken to be S", the unit n-sphere. Thus R"+' - (0) is a principal
bundle over S" with group R+, and is actually trivial. This leads however to an
alternative construction of RP": it is the orbit space of S" under the right action of
the two-element group (+1,-1), where -1 acts by interchanging antipodal points.
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For RP' one has the familiar prescription: identify the antipodal points on S2, or
in other words take a hemisphere and identify diametrically opposite points on its
boundary, to give a model of the projective plane as the "cross cap", a one-sided
non-orientable surface with self-intersection.

(3) The n-dimensional torus T" is the orbit space of the action of Z", the n-
fold product of the group of integers Z, on R", by (f', ...... ") +--+ (l;' + m1,e2 +
m2i ... , e;" + m"). Thus R" is the bundle space of a principal bundle over T" with
group Z. This is a simple case of the covering space construction described in
Chapter 12, Section 10. Other examples are furnished by the coverings SU(2)
SO(3) and SL(2,C) 4 L+.

Summary of Chapter 14
A fibration consists of a differentiable manifold B (the bundle space), a differentiable
manifold M (the base), a surjective smooth map r: B --+ M (the projection) and a
differentiable manifold T (the standard fibre) such that, for each z E M, ir'r(z),
the fibre over x, is diffeomorphic to 1; and B has a local product structure in the
sense that for each point of z C M there is a neighbourhood 0 and diffeomorphism
+G: r -' (0) - 0 x I such that III o == r where Iii is projection onto the first
factor. If {0(,) is a covering of M by open sets over each of which r--'(O0) is
diffeomorphic to OR x 7 then there are diffeomorphisms $,,,=: r (x) -+ Jr, and the
transition functions 4' are defined by 'YQp(x) = Wo = o Pp = for x E 0Q n 0,6.
The transition functions, which take their values in the group of diffeomorphisms of
3, record the changes in the way fibres are identified with 3 when the local product
structure is changed. The transition functions satisfy *#.(x) = and
*ap(x) o'p,y(x) = 1P,.,(x) on appropriate domains. In cases of interest Jr usually
has some additional structure: it may be a vector space, a Euclidean space or a
Lie group, for example, and the diffeomorphisms of I which preserve this structure
form a Lie group G. A fibration whose local product decompositions may be chosen
so that the transition functions belong to a Lie group G is a fibre bundle with group
G.

A fibre bundle is trivial if it is diffeomorphic to the product of base and standard
fibre, with r corresponding to projection onto the first factor. Every fibre bundle is
locally trivial, but not necessarily globally trivial: a tangent bundle TM is trivial if
and only if there is a global basis of vector fields on M, for example.

A smooth map a: M -+ B such that r o o is the identity on M is called a cross-
section of the bundle r: B --+ M. A cross-section defines a field of quantities on M:
for example, in the case of the tangent bundle, a vector field.

A bundle whose standard fibre is Rk and whose group is GL(k,R) is called
a vector bundle of fibre dimension k. Cross-sections of a vector bundle may be
linearly combined, with coefficients in 3(M), by using the linear structure of the
fibres pointwise. Moreover, the usual algebraic constructions involving vector spaces
extend to vector bundles by applying them pointwise. Thus one may define the
Whitney sum of two vector bundles, whose fibres are the direct sums of the fibres
of the constituent bundles; the dual of a vector bundle, whose fibres are the vector
spaces dual to the fibres of the original bundle; and the tensor product of two
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vector bundles, whose fibres are the tensor products of the fibres of the constituent
bundles, or in other words the spaces of bilinear forms on their duals.

A principal bundle is a bundle whose group and standard fibre coincide. The
group acts freely to the right on the bundle space in a natural way, and its orbits
are just the fibres. The base space may therefore be regarded as the space of orbits
under this action. A particular and important example is the frame bundle of a
manifold, whose points consist of all bases for all the tangent spaces of the manifold.
From a principal bundle and an action of its group G on a manifold 3 one may
construct an associated bundle whose standard fibre is T and whose group is G.
The tensor bundles over a diffentiable manifold may be constructed in this way from
its frame bundle.

Many geometrical structures may be interpreted as reductions of the frame
bundle to some Lie subgroup of GL(m,R): for example, a pseudo- Riemannian
structure corresponds to a reduction to some orthogonal group; a volume form to
a reduction to SL(m,R). This interpretation brings to the study of geometric
structure a single coherent point of view.



15. CONNECTIONS REVISITED

In Chapter 11 we described how the notion of parallelism in an affine space or on a
surface may he extended to apply to any differentiable manifold to give a theory of
parallel translation of vectors, which in general is path-dependent. An associated
idea is that of covariant differentiation, which generalises the directional derivative
operator in an affine space, considered as an operator on vector fields. We used the
word "connection" to stand for this collection of ideas.

In Chapter 13 we showed that a connection on a manifold has an alternative
description in terms of a structure on its tangent bundle, namely, a distribution of
horizontal subspaces, a curve in the tangent bundle having everywhere horizontal
tangent vector if it represents a curve in the base with a parallel vector field along
it.

In Chapter 14 we defined vector bundles. These spaces share some important
properties with tangent bundles (which are themselves examples of vector bundles),
namely linearity of the fibre, and the existence of local bases of sections. It is
natural to ask whether the idea of a connection may be extended to vector bundles
in general, so as to define notions of parallelism and of directional differentiation
of (local) sections of a vector bundle. We shall show in this chapter how this may
be done, first by adapting the rules of covariant differentiation on a manifold, and
then, at a deeper level, by defining a structure not on the vector bundle itself but
rather on a principal bundle with which it is associated.

1. Connections in Vector Bundles
It is in fact a very straightforward matter to define a connection in a vector bundle
in terms of a covariant differentiation operator if one takes for guidance the rules of
covariant differentiation of vector fields on a manifold given in Chapter 11, Section 2,
namely

(1) Vtr+vZ = V ,Z + VvZ
(2) V1t,Z = fVuZ
(3) Vu(Y + Z) = Vt,Y + Vt,Z
(4) Vu(fZ) = fVt,Z + (Uf)Z.

The vector fields here play two different roles: a vector field may be regarded either
as an object to be differentiated (Y and Z) or as defining the direction in which
differentiation takes place (U and V). In generalising covariant differentiation to
an arbitrary vector bundle we replace the vector field as object to be differentiated
by a section of the vector bundle, but retain the vector field defining the direction
of differentiation. The reader is already familiar with this distinction: it arises in
the definition of covariant differentiation of 1-forms and of tensor fields in general.

A connection in a vector bundle ir: e - M is a rule which assigns to each vector
field V on M and each section a of it a new section Vver, which satisfies, for any
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vector fields U, V, any sections p, a, and any function f on M, the rules
(1) VU+vo = WO + Vvo
(2) V ft,o = fVUa
(3) VU(o + p) = Vue + Vc,p
(4) Vu(fa) = fVua + (Uf )a.

The operator Vi, is called covariant differentiation along U.
Many of the properties of a connection in the earlier sense-which it will be

natural to describe in the present context as a connection in the tangent bundle-are
reproduced, mutatis mutandis, for a connection in a vector bundle, remembering
always that one is dealing with sections of the vector bundle. In particular, the
operation of covariant differentiation, though stated in terms of global vector fields
and sections, is actually local. It follows from condition (4), taking f to be a suitable
bump function, that if a is zero on some open set in M then so is Vuo on the same
open set, for any U. In general, then, the value of Vua in a neighbourhood depends
only on the value of or in that neighbourhood; and so it makes sense to discuss
the covariant derivative of a local section of a. Suppose that (o°) is a local basis
of sections of a (where a = 1,2,... , k, the fibre dimension). Then VUO° may be
expressed as a linear combination of the a° with coefficients which are functions on
the domain of the a° and which depend on U:

VU0° = wa(U)ap

It follows from conditions (1) and (2) that the wQ are actually local 1-forms: we
call them the connection 1-forms with respect to the local basis. Thus

VUO° = (U,wo)ad

The covariant derivative of any local section a (whose domain contains that of the
a°) may be expressed in terms of the a: if a = S°o° then

VUa = S°(U,wo)ap + (US°)o°

_ (U,dS° +w*S1O)o°.

The component expressions dS° + w$ SP, which may be called the components of
the covariant differential of a with respect to {o°), are local 1-forms. It follows
that the value of VUu at a point depends on U only through its value at that point.
It therefore makes sense to talk of the covariant derivative of a local section with
respect to a tangent vector v at a point x in the domain of the section: is an
element of the fibre a'' (x).

Exercise 1. Let y be a curve in M and a a field of vectors of the type defined by a: f -e M
along -y, that is, a section of * over y. Define parallelism of o along y; and show that given
any element of sr-'(y(0)) there is a unique parallel field along -y having that element as
its value at y(0). 0
Exercise 2. Show that the necessary and sufficient condition for the local basis of sections
(a.) to be completely parallel (parallel along any curve) is that w; = 0; under these
circumstances parallel translation is path-independent. a
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Exercise 3. Show that if 6a = Aoop defines another local basis of sections of r, where
the Ao are functions on the intersection of the domains of {u,} and (be) and are the
elements of a non-singular matrix-valued function, then

Rewrite this expression in terms of matrix-valued functions and 1-forms. o
Exercise 4. Show that if there is a local basis for which the matrix-valued 1-form w
satisfies w = 0 then for any other local basis with the same domain w = A-rdA. Show
that, conversely, if the (matrix-valued) connection 1-form for some basis is given by A-1dA
then there is a basis for which it is zero. Show that any two bases with the same domain
for both of which the connection 1-form is zero are related by a constant matrix. ci

Thus the connection 1-forms for a vector bundle transform in the manner typ-
ical of connection 1-forms.

Given a covering of M by open sets, over each of which the vector bundle
is locally trivial, and for each open set a local basis of sections, any collection of
matrix-valued I-forms, one for each open set, satisfying the transformation rule of
Exercise 3, defines a connection in the vector bundle.

If the vector bundle in question has some additional structure one is usually
interested in a connection which respects it. The most obvious example of such
additional structure is a fibre metric, that is, a section of the bundle of symmetric
twice covariant tensors formed from the original vector bundle (Chapter 14, Exer-
cise 12) which is non-singular in the usual sense. If 0 is a fibre metric then for any
two sections a, p, O(o, p) is a smooth function on M. The differential version of
the condition that parallel translation preserve inner products, and therefore the
additional condition to be satisfied by the connection, is that

V (m(a,p)) - c(Vva,p) +- 4S(o,Vvp)

for any vector field V. A connection satisfying this condition is said to be a metric
connection.

Exercise 5. Show that if a: £ -+ M has a fibre metric then from any local basis of sections
one may construct one which is orthonormal with respect to the fibre metric. Show that
the matrix of connection 1-forms with respect to an orthonormal local basis of sections is
skew-symmetric (due regard being paid to the signature of the metric). o

There is no analogue of the uniqueness of the Levi-Civita connection for a
general vector bundle with fibre metric, because the concept of symmetry of a
connection depends on the double role played by the vector fields in the tangent
bundle case.

Curvature. There is no reason to suppose that covariant differentiation operators
on a vector bundle satisfy IV(,, VvI = Vllr,vl, any more than that it should be true
on the tangent bundle. The curvature of the connection, R, is defined by

R(U,V)a == VrrVva - VV Vita - VIU.Vla

Exercise 6. Show that R(U,V)a is a section of the vector bundle; that it is linear in all
its arguments, skew-symmetric in its vector field arguments, and satisfies R(JU,V)a =
JR(U,V)o and R(U,V)Jc = JR(U,V)o for any function f on M. Deduce, by the usual
methods, that for any z E M, (R(U,V)a)(z) depends on its arguments only through their
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values at x, and therefore defines a map R.: TTM x T:M x r-'(x) -. a-'(x) which is linear
in all its arguments and skew-symmetric in the first two. In other words, R is a section of
the tensor product of the bundle of 2-forms over M with the bundle of type (1,1) tensors
constructed out of the vector bundle.

Given a basis of local sections {a,,,} one may write

R(U,V)aQ = f1Q(U,V)ce

where the 110 are 2-forms, the curvature 2-forms of the connection with respect
to the given basis. Taken together, the curvature 2-forms may be regarded as
the entries in a matrix-valued 2-form. The definition of curvature may be used
to obtain a formula for the curvature 2-forms in terms of the connection 1-forms,
which generalises Cartan's second structure equation (Chapter 11, Section 4).

Exercise 7. Show that 11 = dw + s (w n w(. (The bracket of matrix-valued 1-forms is
defined in Chapter 11, Exercise 36.)

Exercise 8. Show that if {6Q} is another basis such that 6Q = coop then it = A '11A.
Show that if w = A- 1 dA then fI = 0.

When the vector bundle has a fibre metric and an orthonormal basis is chosen,
the curvature 2-form matrix, like the connection 1-form matrix, is skew-symmetric
(as a matrix; the fact that it is skew-symmetric as a 2-form requires no comment).
Orthonormal bases are related by orthogonal matrices, and skew-symmetry is the
hallmark of the Lie algebra of the orthogonal group. More generally, when there is
some additional geometric structure on the vector bundle which may be defined in
terms of the reduction of the bundle of its frames from CL(k, R) to a Lie subgroup
G, in the sense of Chapter 14, Section 5, then the connection 1-form and curvature
2-form matrices with respect to a special frame field take their values in g, the Lie
algebra of G. This condition on the connection 1-form is necessary and sufficient for
parallel translation to map special frames to special frames. Note that the results
obtained so far here, and in Chapter 11, have a new aspect when considered in
terms of Lie group theory: thus, for example, the transformation property of the
curvature 2-form corresponds to the adjoint action of the Lie group on its algebra.
This applies equally well when there is no special structure, the group G then being
GL(k, R) itself; however, in that case the Lie group aspect does not present itself
so forcibly.

One interesting observation is that if w = . `dA (which is formally the same
as the formula for a left invariant 1-form on a matrix Lie group given in Chapter 12,
Exercise 32) then $1 = 0 and so dw = - 2Iw n w) (which is formally the same as the
Maurer-Cartan equation for the group, Chapter 12, Exercise 31).
Exercise 9. Let {X, } be a basis for the Lie algebra 9, so that the X, are constant matrices
and (X,, X, (= C,1 Xk where the C,11: are the structure constants. Let w - w'X,, where
the w' are ordinary 1-forms. Show that the condition dw = - s (w Awl is equivalent to the
condition dw* = --'C,k w' Awl. 0

Since w is defined on the base manifold of the vector bundle, not on the group, these
observations are at best merely suggestive. However, they do suggest a further
elaboration of the significance of the vanishing of the curvature of a connection,
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which generalises the argument of Chapter 11, Section 6 so that it applies to special
frames and G-structures as well as to vector bundles (see Section 5 of Chapter 14).

It is clear from Exercises 3, 4, 8 and 9 that if there is a completely parallel field
of special frames then the curvature vanishes and the connection 1-form for any field
of special frames takes the form A-1dA where the matrix-valued function A takes
its values in G; moreover if w = A-1dA for some special frame field and A takes
its values in C then there is a special frame field for which w = 0. The question
of the converse arises. The argument of Chapter 11, Section 6 generalises easily to
show that if 11 = 0 then there is a completely parallel frame field. The additional
ingredient is that this may be taken to be a special frame field. We consider the
manifold 0 x G, where 0 is an open subset of M on which is defined a local field of
special frames. Let w be the corresponding connection 1-form, regarded as taking
its values in g; we assume that fl = 0 or equivalently dw = - 2 1w A wl. Let X be
the matrix-valued function on G such that X(g) is g itself, considered as a matrix;
thus the entries in X are the coordinate functions on CL(k,R) restricted to G.
Then B = X -I dX is a 9-valued left invariant 1-form on C, and it satisfies the
Maurer-Cartan equation dO = 210 A 61. Consider now the C-valued 1-form

0-0-w
on 0 x C (strictly speaking one should distinguish between 0, w and their pull-backs
to 0 x G). Then

dO = dB-dw = --!JOAO] + 2iwnw)

2((O+w)A61+2(wAwl
110A0I 11wA(0--w)l
z[OA01- 21wA01

1O n (B +w)J.

Thus O satisfies the conditions of Frobenius's theorem. An integral submanifold of
0 passing through (x, e) in 0 x G is the graph of a function A: 0 G: on this
submanifold, O vanishes, and so w = A'rdA. Applying A to the special frame field
with which we started we obtain another special frame field, for which w = 0. This
special frame field is parallel, as required.

2. Connections in Principal Bundles

So far, we have described a connection in a vector bundle a: £ M entirely in terms
of local structures on the base manifold M, by expressing any section of it in terms
of a basis of local sections. Now the collection of bases of fibres of £, or frames,
is a principal fibre bundle with group GL(k,R) (where k is the fibre dimension
of £), and a basis of local sections of it is just a local section of this principal
bundle. Moreover, if one has additional geometric structure of the kind discussed
in Section 1 and in Chapter 14, Section 5 then the special frames constitute the
bundle space of a reduction of the bundle of frames of £ to the group G associated
with the structure, and this reduced frame bundle is again a principal bundle, this
time with group G.
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A connection on the vector bundle may be described in terms of a structure
on its frame bundle or, if the connection preserves extra structure, on the reduced
frame bundle. In fact the definitions make sense for any principal fibre bundle, and
serve to define a connection on any vector bundle associated with it. The advantage
of this approach is that the connection is given by a global structure on the principal
bundle; its representations in terms of local sections of the vector bundle are partial
and local glimpses of this global structure. Moreover, all vector bundles associated
with a given principal bundle are dealt with in one fell swoop: if the principal
bundle is the bundle of frames of a manifold, so that it consists of all the bases of
all its tangent spaces, then a connection in the principal bundle defines at once the
connections (and covariant derivative operators) in all the tensor bundles.

The best place to start the description of this construction is with the notion
of parallelism of frames. We shall use this to motivate the definition of a connection
in a principal bundle.

Suppose that ,r: £ -, M is a vector bundle with connection, defined as in
Section 1. Let 7 be a curve in M. A frame field along -y is parallel if the covariant
derivatives of its component fields (which are sections of Ir over ry) are zero. Let
{eo,} be a basis for 7r-1 (7(0)). Then there is a unique parallel frame field along -y,
consisting of component fields ea say, such that ea(0) = e0. If ea = AQep specifies
another basis for a-'(7(0)), where A E GL(k,R), then {A ep} is the parallel
frame field determined by {e0}. If there is a G-structure under consideration, and
the connection is compatible with it, then the same comments apply to the special
frame fields, which are preserved (as a set) by parallel translation; the matrix A
corresponding to a change of frame must now belong to G.

In order to express these facts about a connection on r: £ --+ M in terms of its
frame bundle r: C(£) -+ M we point out first of all that a curve in M with a frame
field defined along it may be thought of as a curve in C(£); and conversely, any
curve in C(£) which is nowhere tangent to the fibres defines a curve in M, namely
its projection, and a frame field along it. A curve in C(£) corresponds therefore
to what is sometimes called a "moving frame" on M. The curves in C(£) which
correspond to curves in M and parallel frame fields along them are evidently of
a special type: they are called, as in the case of the tangent bundle discussed in
Chapter 13, Section 3, horizontal curves. Thus the observations of the previous
paragraph may be restated as follows: given a curve -y in M and a point F in the
fibre of C(£) over -y(0) (that is, a frame at -y(0)) there is a unique horizontal curve 7
in C(£) which projects onto y and passes through F (so that 7(0) = F). Moreover,
for A E GL(k,R) the horizontal curve over ry through RAF (where RA represents
the right action of A on the frame bundle) is just R.

At each point F E C(£) there is determined a subset of the tangent space
TFC(£) consisting of the vectors tangent to horizontal curves through F. It is a
consequence of the axioms for a connection that this subset, together with the zero
vector, is a subspace of T),C(£). This subspace is complementary to the subspace
consisting of the vectors tangent to the fibre. The latter subspace is usually called
the vertical subspace of TFC(£) and so the former is naturally called the horizontal
subspace.
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Exercise 10. Let (a ) he a basis of local sections of x and suppose that the common
domain 0 of the a is also a coordinate neighbourhood on M. Define local coordinates
on r '(0) in C(£) so that the coordinates of a point F are (z°,zo) where (x°) are the

'aP(z)) is the frame at x determined by F. Let (ry°) be thecoordinates of r(F) and (zo
coordinate presentation of the curve - and let {p, } be a frame along -1 with po(t) _
po(t)an(-(t)). Then the corresponding curve in f(C) has the coordinate presentation
(-y", pa). Finally, let w* - wf dz° he the connection !-forms corresponding to (ao).
Show that the curve (7°, po) is horizontal i f and only if p0 4 w opa ' - 0. Deduce that
a tangent vector °a/az" 4 Y&/azo at F is horizontal if and only if n! +w azaE° = 0.
Confirm that the horizontal subset is a subspace, of dimension dim M, complementary to
the vertical, and that r.:Tp1(C) T,(p)M is an isomorphism when restricted to the
horizontal subspace at F. O

Exercise 11. Show that the fact that horizontal curves remain horizontal when acted on
by R implies that the horizontal subspace at FA is the image of the horizontal subspace
at F under the action of RA.. O

Exercise 12. Make what modifications are necessary to the above description so that it
will apply to a C:-structure. a

Thus a connection on a vector bundle defines a collection of horizontal sub-
spaces on its frame bundle, each one complementary to the vertical subspace at the
same point, and mapping one to another under the right action of GL(k,R). These
subspaces form a smooth distribution on C(£).

Exercise 13. Show that if 11° is the horizontal vector field which projects onto 8/8x°
then [fl°,1161 _ a/azO where 11 is the curvature 2-form (a matrix-valued form).
Deduce that the distribution is integrable if and only if the curvature vanishes. O

Conversely, such a distribution of horizontal subspaces on C(£) determines a
connection: for given a curve -y in M and a frame {e0} at "y(0) there will be a unique
curve j, projecting onto 'y and passing through the point corresponding to {ea} in
r-'(ry(0)), which is horizontal in the sense that its tangent vector at each point
lies in the horizontal subspace at that point; this curve determines a field of frames
along -y, and the connection is that for which such a field of frames is parallel.

The definition of a connection in a principal bundle is just an adaptation of
these ideas. A connection in the principal bundle x: P I M with group G is an
assignment, to each point P of the bundle space P, of a subspace )lp of TpP which
is complementary to the vertical subspace Vp of vectors tangent to the fibre, which
defines a smooth distribution on P, and which is invariant under the right action
of C on P in the sense that )lpy = R9. )!p for all g E C. The subspace R p is called
the horizontal subspace of the connection at P.

Let a connection be given on x:P M: then to each tangent vector v E
T*(p)M there corresponds a unique horizontal vector at P which projects onto v;
this vector is denoted vP and called the horizontal lift of v to P. Similarly, to each
vector field V on M there corresponds a unique horizontal vector field on P which
projects onto V, which is denoted V' and called the horizontal lift of V to P; and to
each curve -y in M there is a unique horizontal curve passing through a preassigned
point P in xT' (-y(0)) (say) which projects onto y, which is denoted rya and called
the horizontal lift of -y through P. The horizontal lifts of curves define what passes
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for parallel translation in this context. Let 7 be a curve in M joining points x and y.
A map T,: x -' (x) --. a -' (y) is defined as follows: if P E x `(x) then T,(P) is the
point where the horizontal lift of -1 through P meets ir-`(y). The map T, is called
the parallel translation map from x to y along 7 determined by the connection.
Exercise 14. Show that, for g E G, T, o R, - R, o T, o

Holonomy. When -y is a closed curve, beginning and ending at x, parallel trans-
lation along 'y maps x -' (x) to itself. This map need not, and in general will not,
be the identity. In fact it will be the identity for every closed curve -y if and only
if the principal bundle is trivial and there is a global section which is parallel along
every curve. For if parallel translation around closed curves always reduces to the
identity then from a fixed point P P one may generate a global parallel section
p of a by setting p(y) = T,(P) for any curve -y joining rr(P) to y; the choice of
a different curve will merely give the same result. (This assumes, of course, that
every point of M may be reached from ir(P) by a smooth curve.)

In general, however, parallel translation around a closed curve beginning and
ending at x will define a non-trivial bijective map of 7r-'(x). If we fix a point
P E 7r-'(x) then we may write T,(P) = Ph for some suitable element h E G.

Exercise 15. Show that if Q = Pg then T, (Q) = Qg''hg. o

Thus the action T., on the whole of a -' (x) is determined from its action on P
simply by conjugation. If now 6 is another closed curve beginning and ending at
x then so is the composite curve 6 0 -y obtained by joining 6 and -y end to end:
if -y and 6 are both defined on 10, 11, with -y(0) _ 'y(1) = 6(0) = 6(1) = x, then
6 0 -y:10,11 -p M is defined by

(6v7) (t) _ {y(2t)6(2t- 1) for! <t < 1.

Exercise 16. Show that parallel transport is unaffected by a proper reparametrisation,
and deduce that TF = T, o T,. D

Thus composition of curves gives rise to composition of parallel translation oper-
ations. Moreover, traversing a curve in the reverse direction replaces a pa. illel
translation operator by its inverse. Thus the collection of maps of it-'(x) gener-
ated by parallel translation around closed curves beginning and ending at x has a
group structure; it is called the holonomy group of the connection at x. By fixing
a point P Err -' (x) one may consider the holonomy group as a subgroup of C. To
be precise, we define the holonomy group at P to be the subgroup of G consisting
of those elements h E C such that Ph = T,(P) for some closed curve y. That this
is a subgroup follows from the fact that if Ty(P) = Pk then

T60,(P) = TF(Ph) = TF(P)h = Pkh.

Exercise 17. Show that if Q = Pg then the holonomy group at Q is the conjugate by g
of the holonomy group at P. D

Exercise 18. Show that if P and Q are points of P which may be joined by a horizontal
curve then the holonomy groups at P and Q are the same. 0
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3. Connection and Curvature Forms

The horizontal subspaces of a connection on a principal bundle may be defined (as
may any distribution) in terms of 1-forms. One has merely to find dime linearly
independent 1-forms whose zero set at each point is the horizontal subspace at that
point. In order to do this one might choose a basis for the vertical vector fields, say
V1,V2i...,1'k, and define I-forms w1,wz,...,wk as follows: for S E TpP, is

the ith coefficient of the vertical component of S with respect to the basis of the
vertical subspace of TpP provided by the V,. This is well-defined since the direct
sum decomposition of TpP into a horizontal and a vertical subspace picks out the
vertical component uniquely. Moreover, S is horizontal if and only if (c,wp) = 0,
i = 1, 2,... , k, as required.

One question is begged by this construction, however: how should one choose
the vertical basis (V,); and indeed can one find a global basis or only local ones?
Here the action of G on P provides the answer. As we have already pointed out,
each element X of the Lie algebra C defines a vertical vector field X on P, whose
integral curves are the orbits of the right action of the one-parameter group exp tX;
since G acts simply transitively on the fibres of P the vector fields f(,, for any basis
{X,} of G, form a global basis of vertical vector fields on P. Thus the 1-forms
{w'} determined in this manner by the basis {X,} of g are such that for S E TpP
the vertical component of ( is the vertical vector at P determined by the element
(S,w'p)X, of C. It is therefore convenient to regard the 1-forms w' as the elements
of a C-valued 1-form w, defined in terms of the basis {X,} of 9 by w = w'X,. But
now there is no longer any necessity to choose a basis for C. We may define w as
follows: (S,wp) is that element Z of g such that 7,p is the vertical component of
S. It is clear that w is well-defined, C-valued, linear, and smooth; and that (t,wp)
vanishes if and only if S is horizontal. Evidently, for X E 5, (X,w) = X. We call w
the connection 1-form determined by the connection.

How does w transform under the right action of G on P? To derive the trans-
formation rule we apply the formula R,. ,k = ad;"" X which we obtained in Chap-
ter 12, Section 11. For any X E 9 we have

(X,R9.w) = (R9..X,w) - (adg-'X,w) = adg X = adg w);

while for any horizontal vector field H we have

(H, Rg'w) = (Rg. H, w) = 0

since horizontal vector fields remain horizontal under the action of G. We may
summarise these results in the equation

Rg'w = adg -'w,

where it must be remembered, when reading the right hand side, that w takes its
values in C.

Exercise 19. Show that a g9-valued 1-form w on P which satisfies (X,w) = X for X E 9
and R,'w = adg - 'w for g E G defines a connection on P. 0
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Exercise 20. Suppose that r: P M is a GJ,(k, R) bundle; choose a local section or
of P over a coordinate patch 0 in .M, and take coordinates in r-'(0) as follows: the
coordinates of P are (x°, ro) where (z°) are the coordinates of r(P) and (xa) the elements
of the matrix g E GL(k,R) such that P = a(r(P))g. Suppose given a connection on P,
whose connection 1-form is w. Show (by using the properties of w given above) that the
coordinate representation of w may be written

w = x-'dx -} x-'wox = (tAdxa 4- towyxa)Ep,

where x = (xp), r. = (t'), {En } is the standard (matrix) basis of 9 = MR(R) and
wo = w;EA is a matrix-valued 1-form on 0 (pulled back to r-'(0)) which depends on the
choice of local section defining the coordinate system. Show that the horizontal subspaces
are spanned by the vectors a/ax° - wi x;a/axa (where wo = w ;dx°). Show that if a
new local section 6 = oA is chosen, where A is a GL(k, R)-valued function on 0, then the
expression for w in terms of the new coordinates determines a matrix-valued 1-form Z,o
related too by ,o = A-'dA + A - 'woA. O

In this way we reproduce the results of Exercise 3 in the new framework. Thus
the connection 1-form on a frame bundle is a global object from which the various
connection 1-forms on the base are obtained by taking local sections.

The bracket of two arbitrary horizontal vector fields will not in general be
horizontal: it will be so only in the special case in which the connection is integrable,
so that its holonomy group reduces to the identity and there is a global parallel
section which trivialises the bundle. If V, W are vector fields on M with horizontal
lifts V", W h then in general (V h,W hJ / IV,W Jh: but (V,W Jh - (V h, WhJ is vertical,
since both of its terms project onto the same vector field on M, namely (V,WJ.
Exercise 13 suggests that this vertical vector field should be the basis of a definition
of the curvature of the connection. In fact, as we shall now show, this observation
leads to a generalisation of Cartan's second structure equation.

We shall define a curvature 2-form fl on the principal bundle P which, like the
connection 1-form, is 5-valued, and which generalises the concept of a curvature
2-form on the base manifold in much the same way that the connection 1-form on
P generalises the concept of a connection 1-form on the base. The starting point
of the definition is the fact that the vertical component of (Vh,W"J is given by
((V h,Wh),w); but since w vanishes on horizontal vector fields

(JVh,Wht,w) = -dw(Vh,Wh).

This is an expression between horizontal vector fields only; to define a curvature
2-form we must give its value also when one (or both) of its arguments is vertical.
In fact, we define fl by the requirements that

fl(Vh,Wh) = dw(Vh,Wh) V,W E X(M)

fl(X,U)=0 XE9,UEX(P)
that is, that fl agrees with dw on horizontal vector fields but vanishes when one of
its arguments is vertical.

Exercise 21. Show that f1 may be equivalently defined by
f2(U,V) = dw(h(U),h(V))

where h(U) is the horizontal component of U. O
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We may express 0 more explicitly in terms of w and dw as follows. We have
already observed that dw(Vh,Wh) = f1(Vh,Wh). We evaluate dw(X,Wh) and
dw(X,Y), the other possibilities which have to be considered. For the first, note
that (X,Wh(= CkW"; since the one-parameter group generated by X is the right
action of a one-parameter subgroup of G and therefore maps horizontal vectors
to horizontal vectors, it follows that (X,Wh( is horizontal. Thus dw(X,Wh) =
-_Wh(X,w) since the other terms involve the pairing of w with horizontal vector
fields. But (X,w) is constant, and so

dw(X,Wh) =0.

On the other hand
dw(X,Y) _ -(X,Y(

since the other terms vanish because they again involve differentiating constants.
Guided by the Cartan structure equations derived in Chapter 11, and by Exercise 7
of this chapter, we check that these results may be combined into the one formula

dw+ 1(wAw(=f1.

When both arguments are horizontal this amounts to the definition of n. When
one is vertical and one horizontal each term gives zero. When both are vertical the
right hand side vanishes, and so does the left hand side, by virtue of the fact that
dw(X,Y) _ (X, Y(. This establishes Cartan's structure equation in its general
form.

Exercise 22. Show that for the frame bundle w: C(£) -. M with connection w and cur-
vature 11, if a is a local section then a'w and a'f1 are the connection and curvature forms
on M associated with the local frame field defined by or, and o' (dw + 11W n wj) = o'f1 is
the Cartan structure equation for a'w and a'11. O

Exercise 23. Prove the Bianchi identities: df1(U4,V",W') = 0 for any U,V,W E
X(M). 0

Finally, we establish the transformation properties of n under the right action
of G. Note that R9'dw = adg-'dw: this follows directly from the corresponding
rule for w. But R.. preserves the decomposition of tangent spaces to P into vertical
and horizontal subspaces. It follows that n satisfies the same rule, that is

R9' f1 = adg - fz :

this is a direct consequence of the definition of 11 and the corresponding result for
dw when both arguments are horizontal; and both sides vanish when one argument
is vertical.

Summary of Chapter 15
A connection in a vector bundle ri: £ M is a rule which assigns to each vector
field U on M and each section a of a a new section Vua, such that

Vtr+va = Vila + Vva V jva = JVtra
VU(a + p) = Vila + V(lP VU(Jc) = JVUa + (UJ)a.
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If {aQ) is a local basis of sections of r, the 1-forms w19 defined by VVOQ = (V,wa)ap
are the connection forms with respect to the local basis and the covariant derivative
Vv(S°aa) may be written (V,dS° + wOSO)aQ. Change of local basis to 6Q gives
a new set of connection 1-forms w; = (A-')pdaa + (A-')ftw"A6. The connection
1-forms may be regarded as the entries in a matrix-valued 1-form, in which case
this relation becomes w = A-'dA + A-'wA. The curvature R of the connection
is defined by R(U, V) = (Vu, VvJ - Vlu,yl, and defines a matrix-valued 2-form 11
by R(U, V )ac, = 00 (U, V )ap. The connection and curvature forms are related by
fl = dw + 1(w n w), a generalisation of Cartan's second structure equation. If Il
vanishes then there is a matrix-valued function A defined locally on M such that
w = A-'dA, and therefore a field of completely parallel frames. Similar results
follow if the vector bundle has structure (for example, a metric); w and fl then take
their values in the Lie algebra of the appropriate group.

A connection in a principal bundle r: P -+ M with group G is an assignment to
each point P E P of a subspace A'r of TpP which is complementary to the vertical
subspace, which defines a smooth distribution on P, and which is invariant under
the right action of G on P. The subspace Xr is said to be horizontal. Given any
curve 7 in M, and any two points z, y on it, a map Try: r - ' (x) -+ r - ' (y) is defined
as follows: T.(P) is the point where the unique horizontal curve through P above
ry meets r-'(y). This is a general form of parallel translation. In particular when
-y is a closed curve beginning and ending at x, T. maps r-'(x) to itself. For any
P E r -' (x) we may write Try (P) = Ph for some h E G. The set of elements of G
defined in this way by all closed curves at x is a subgroup of G called the holonomy
group of P. By the right invariance of the horizontal distribution Try o R. = R9 o Try;
it follows that points on the same fibre of r have conjugate holonomy groups. If
the holonomy group is the identity everywhere then the principal bundle is trivial
and there is a global section which is parallel along every curve.

The connection form w is defined as follows: w vanishes on horizontal vectors;
(X,w) = X for X E 9. It is a C-valued 1-form, and satisfies Rg'w = adg-'w. In
the case of the bundle of frames of a vector bundle, the pull-back of w by a local
section gives the connection 1-forms of the connection with respect to the local
field of frames corresponding to the cross-section. The curvature 2-form f1 is also
a C-valued form, and is defined by fl(U,V) = dw((h(U),h(V)), where h(U) is the
horizontal component of U. It also satisfies Rg'11 = adg -'ft. Moreover, it satisfies
the equation

ft -= dw+ I(wnw(,

which could be described as the apotheosis of Cartan's second structure equation.
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codimension L3
codomain 24
coefficients of linear connection 212
cogredience of maps 23
commutator of vector fields as differential

operators 3 73
complementary subspaces, affine 16

vector L5
complete atlas 291)
complete lift 3311
complete parallelism 46, 282
complete solution 162
complex vector space 25
components of a bilinear form 185

of a form 118
of a multilincar map 103
of a multivector 95
of a tensor field 231 254
of a vector field 55
of a volume function 91
of the covariant derivative of a tensor

field 225
cone, as level surface 38

coordinates for 216
conformal change 269

Killing field 195
map 269
resealing 264

structure 285
transformation 95 264

conformally equivalent metrics 265
invariant property 265

congruence of curves 54, 62, 252
congruent set of curves 34, 62
conjugate subgroup 22
conjugate points on a geodesic 341
conjugation in a group 27, 305
connection 224, 268, 271, 333, 371, 3.75

coefficient 47, 79 272
form 133 223. 319
in a vector bundle 311

conserved quantities 1,57, 321
constants of the motion 157, 322, 398
constraint form 1.3
continuous map 51
contraction of indices 6
contragredience of maps 23
contravariant tensor field 257
convective transport, alternative name for

Lie transport 64
convex normal neighbourhood 281
coordinate axes 12

chart 40. 233, 238
covectors 76, 248
curve 41
differentials 37, 41, 219, 249
functions 30. 41. 241)
functions of a curve 32
patch 40, 233, 238
presentation of a curve 32, 244

of a function 30 245
of a map 43, 241

systems, democracy of 4
special 1.52

tangent vectors 36 42 219, 242
transformation 40 41, 22 240

affine 12
coordinates adapted to a smooth map 154,

243
to a submanifold 244
to a vector field 1.52
to an integrable distribution 1.53

cotangent bundle 329
space 37.2 242
vector 37, 24;1

covariant tensor field 194 251
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covariant derivative, differentiation 4, 48,
49, 77, 226, 271, 372

covariant vector 27
covector 27, 37, 249

field 48, 76
covariant derivative of 49, 78, 27.2
Lie derivative of 70, 253

covering, covering space 317
cross-section 341, 351
curl 2, 122, 184, 186
curvature 221, 229, 273, 313

form 278, 374
Gaussian 222
mean 222
scalar 292
significance of vanishing of 281, 374
tensor 232, 273

curve 29, 244

Darboux's theorem 158
decomposable, conditions for form to be

110
decomposable form 97

multivector 95
degree of a form 97
derivation of a Lie algebra 315
derivation, vector field as 73
determinant 115

volume and 90
diagonal map 15
diffeomorphism 242
differentiable manifold 240
differential of a function 37, 76, 249
differential geometry and tensor calculus,

contrast between 4
differential identities in vector calculus 186
dilation 57

field 332
Lie derivative along, and integration

136

dimension of affine space 9
of fibre of a vector bundle 35H
of manifold 238
of vector space 26

direct sum of vector spaces 14, 15
summands 15

directional derivative 2, 34, 72
Lie derivative of vector field as 70

discrete subgroup of a Lie group 317
discrete topology 51
disjoint sets 24
distribution 141

constraint 1-forms for 141
vector fields belonging to, spanning

151

divergence 2, 122, 130, 183, 186
domain 24
dual 26

basis 27
characterising form 98
vector bundle 359

edge of a parallelepiped 86
effective action 304
Einstein tensor 293
Einsteinian space-time 18
elements of a set 24
empty set 24
energy 347
equations of parallel transport 47, 48
equivalence classes 25
Euclidean metric and scalar product 7, 166,

175, 263
apace 166, 176
structure 263

Euler angles 202
Euler-Lagrange equations, Lagrange's equa-

tions 346
as quick method of calculating Christof-

fel symbols 292
field 346

symmetry of 349
even permutation 115
evenly covered neighbourhood 317

exact form 134, 259
exact Cartan symmetry 349

symplectic action 321
symplectic manifold 321

exponential map in a manifold with con-
nection 285

in a Lie group 311
exterior algebra 108, 258

derivative 120, 259
and covariant derivative 132
and smooth maps 125
as anti-derivation 123
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coordinate independent expression

for 124
operator 121
properties of 123

form 90, 97, 117, 220, 258
product 91, 95, 97, 99, 104, 258

properties of 104

face of a parallelepiped 86
fibration 16, 353
fibre 328

bundle 355
dimension 358
metric 373
over a point 353

field of displacement vectors along a curve
64

field of forms 117
first Bianchi identity 276
first order commutation relation 78
first structure equations 133, 223, 278
flat connection 283
flow 61, 252
fluid flow, as model for one-parameter group

53
form 90, 97, 117, 220, 258

Lie derivative of 126, 259
exterior derivative of 121, 259

forms, basis for space of 106
fractional linear transformation 204
frame bundle 362
free action 304
Frobenius integrability condition, form ver-

sion 146
vector field version 151

Frobenius's theorem 140, 146, 260
in matrix form 279

function 24, 29, 245
notation for 30

fundamental vector field 319

G-structure 366

gauge transformation 138
Gauss's equation 224
Gaussian curvature 222
general linear group 26

Lie algebra of 307
generating function 162
generator of flow or one-parameter group

54, 62, 252
geodesic 228, 283

completeness 284
field as cross-section 342
on the sphere 228
spray 336

symmetry of 342
GL(V), general linear group of V 21, 26
G L(n, R) and GL(n, C), general linear groups

299
gradient 2, 37, 182, 263
group 27

differentiable 298
Lie 300
multiplication 27
of a bundle 355
of symmetries 321

Hamilton's equations 160
Hamilton-Jacobi equation 160
Hamiltonian mechanics 161, 350
holonomy group 378
homeomorphism 51
homogeneous space 303
homomorphism 27

of Lie groups and algebras 313
homothety 196, 264
horizontal curve 376

lift 333, 334, 377
subspace 334, 376, 377

hyperbolic normal metric 168, 263
hyperplane 13

Lie transport of 66

ideal 142
generated by a set of forms 142

identity element of a group 27
imbedded submanifold 244
imbedding 243
immersed submanifold 244
immersion 243
inclusion 24
induced orientation 101
induced map of forms 110
induced maps of affine map 39

of smooth map of affine spaces 45
of smooth map of manifolds 250, 251

induced topology 51
infinitesimal affine transformation 288
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conformal transformation 196
generator 54, 252
isometry 191

infinitesimale 39
injection 24
inner automorphism 27, 305
instantaneous angular velocity 200
integrable distribution 144, 261

with dense leaves, example of 282
integral curve of vector field 52

of distribution 261
integral submanifold 144 261
interior product 100, 108,128
intersection of affine subspaces 22

of sets 24
of subspaces of a vector space 16

intrinsic quantity on a surface 232
invariant subgroup 27
inverse of a group element 27
inverse function theorem 52
inverse image 24
isomer 255
isometry 188, 264
isomorphism of Lie algebras 214, 318

of Lie groups 300
of groups 21
of vector spaces 26

isotropic distribution, for a form L42
isotropy group 304

Jacobi field 340
Jacobi's equation 340

identity 74
Jacobian matrix 40

kernel of a linear map 26
of a homomorphism of groups 21

Killing field 193, 264
in £ 1.3 210

inE3199
Killing's equation 193, 264
Kronecker delta 27

Lagrangian dynamics 349
function 346

leaf of an integrable distirbution 261

left action 303
coset 304

G-space 303

translation 30
left-handed set of vectors fly
left-invariant form 309

vector field 306
Legendre map 360
Leibniz's rule 3 35, 38, 74, 123, 219, 241
length of a curve 177
level surface 36, 242
Levi-Civita alternating symbol 20

connection 226, 291
Lie algebra 195, 306

homomorphism 31.3
isomorphism 214, 318
of conformal Killing fields 197
of infinitesimal ieometries 289
of Killing fields 195, 199, 210, 264
of matrix group 306
of O(n), SO(n), U(n), SL(n, R) 307
of SU(2) and SL(2, C) 213

Lie derivative 68 76, 126, 194, 220, 253,
257, 258

and bracket of vector fields 73
and exterior derivative, formula re-

lating 132, 259
compared with covariant derivative

77
computation of 69

Lie difference 67
Lie group 300

coordinate computations for 301
examples of 298, 300

Lie subgroup 301
Lie transport 68 67, 253

of a displacement vector 84
lift construction, in proof of Frobenius's

theorem 14.8
lift of geometric object to tangent or cotan-

gent bundle 322
lightlike vector (null vector) 168
line, in affine space 12
linear connection 271

form 26
frame 362
map 26

of forms, construction of 112
part (of affine map) 19
dependence, independence 25

local coordinate chart, system 411
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form LL@
function 41
one-parameter group of local transfor-

mations (flow) 61, 252
parametrisation 211
product structure 328, 353

trivialisation 356
Lorentz group 248

and S L(2, C 212
structure 263
transformation 201

Lorentzian metric 179, 263
scalar product 168
space (affine space with Lorentzian met-

ric) 179
lowering an index 169

magnetic connection on the sphere 268,

216

manifold 236, 2A _O_

examples of 236 244
map 24
matrices, sets of, as manifolds 240
matrix 26

exponential 58
Lie group 299, 340

Lie algebra of 306
matrix-valued form 280
Maurer-Cartan equations 349
maximal integral curve 6:1
mean curvature 222
membership of a set 24
metric 176, 262

connection 290,E

differential geometric meaning differ-
ent from topological meaning 164

Minkowskian space-time 18, 161
module 72
momentum map 321
monkey saddle 222
multilinear map 89, 254
multivector 95

correspondence with forms 91

natural isomorphism 26
natural lift 32,2
negative orientation 86, 92
Newtonian space-time 18
non-degenerate bilinear form 166

non-degenerate Lagrangian 346
non-singular linear map 6
normal coordinates 286
normal subgroup 21
normal vector to a surface 220
null cone 179

rotation 210

subspace 168

vector 168, 119

O(n) and O(p, n - p), orthogonal groups
194

odd permutation 115
one-parameter group 53

as homomorphism 51
of affine transformations 56
of diffeomorphisme 251
of isometrics 264
of Lorentz transformations 210
of rotations 158
of transformations 53, 61

one-parameter subgroup 305
onto map 24
open set 50
orbit 54, 61, 251, 303
orientation 92

of a curve 32
origin of affine coordinates LO
orthochronous Lorentz group, transforma-

tion 208
orthogonality 161
orthogonal basis 167

complement 167
coordinates 111

expressions for grad, div and curl in
165

group 150
set of vectors 167
subspace 168

orthonormal basis, set of vectors L61

pairing 26
parabolic umbilic 222
paraboloids, elliptic and hyperbolic 222
parallel covectors in affine space 48

subspaces of an affine space 12
tangent vectors in affine space 53
translation, transport 47, 48, 228, 269,

31.8
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vector field 47, 181, 228, 259
parallelepiped 86
parallelism 47, 181, 224, 269, 371

thought experiment concerning 22,5
parametrisation 143, 2]7

lines distinguished by 12
of rotations 201

partial differential equations, integrability
conditions for L55

partition of a set 25
path 32
piecewise integral curve 261
piecewise-smooth curve 178
planar point 222
plane, affine 12
pointwise operation 118
polar coordinates 41

for the sphere 211
geodesics on the sphere in 228
gradient in 183
isomebries in L93

positive orientation 86, 92
positive-definite metric, scalar product 166,

262

pre-image 24
principal bundle 361

examples of 368
principal curvature, direction 222
principal vertex of a parallelepiped 86
product topology 51
projectable vector field 331
projection 16, 25, 328, 353
projective transformation 345
projectively related connections 345
proper Lorentz group, transformation 208
proper time 179
pseudo- Euclidean scalar product 151
pseudo- Riemannian manifold, metric, struc-

ture 263
pull-back 119, 194

quadratic form 166
quotient space, affine 16

vector 1.4

raising an index 110
range convention 6
rank of a form 112
rank of a smooth map 243

real number space R", as affine space 11
reduction of the frame bundle 366
reflection in a point 21
relatedness, of vector fields by a smooth

map 75, 254
reparametrisation of a curve 32

of a submanifold 143
restricted Lorentz group 208
restriction of a form LOU

of a map 24
Ricci identity 216

tensor 292
Riemannian manifold, metric, structure 263
right action 303

cosec 304

C-space 303
translation W3

right-handed set of vectors 85
rotation 197

fractional linear form of 205
group 197

and S4{J 2 202
coordinates for 201

one-parameter group of 148
vector form of 197

rule of parallel transport 269

scalar product 1, 166
and dual space 169

Schwartz inequality 155
second Bianchi identity 277
second fundamental form 23.0
second order commutation relation 18
second structure equations 134, 224, 278,

381
second-order differential equation field 3.31
second-order tangent vector 81
section 15, 381
semi-direct product 21
semi-symmetric connection 276
set 24
shear 51

sign of a permutation 115
signature 166
simple connectedness 318
skew-symmetry, of components of a form

91

with respect to a scalar product 192
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SL(2, C), group of unimodular complex
matrices 213

SL(n,R) and SL(V), special or unimod-
ular groups 93

exponentiation in SL(n,R) 312
smooth atlas 240

curve 32, 245
distribution 141
form 117
function 31, 246
manifold 240
map 43, 242
vector field 59, 252

smoothly related charts 233, 239
SO(n) and SO(p, n - p), special orthogo-

nal groups 190
adjoint representation of SO(3) 315

space-time as affine space 16
spacelike subspace 168

vector 168, 179
special frame 365
special linear group 93

orthogonal group 190
sphere 52, 217, 225
spherical polar coordinates 42

Euclidean metric in 177
for Lorentzian space-time 180
generalised 177

subset 24
subspace 25

specification of by multivectors 94
by forms 96

volume in 100
subspaces sums and intersections of 99
summation convention 6
SU(n), special unitary group 206, 300
surface 217
surjection 24
symmetric bilinear form 165
symmetric connection 273
symmetric group 115
symmetric tensor field (with respect to a

metric) 263
symmetry 342, 349
symmetry condition in surface geometry

223
symplectic action 320

manifold 320
systems of ordinary differential equations,

existence and uniqueness of solu-
tions 84

tangent bundle 327

plane 144
space 35, 143, 219, 247, 327
vector 33, 35, 247, 327

tensor 194, 230 360254 255, , ,
spherically symmetric static space-time, Christof- bundle 361

fel symbols for 292
spray 336
standard basis for a quadratic form 166
standard fibre 353
star operator 173

for indefinite signature 175
stereographic projection 203
stereographic coordinates for the sphere

203, 218
metric in terms of 221
volume form in terms of 260

straightening-out lemma 152
structure constants 306
structure equations 133, 134, 223, 224, 278,

381
subgroup 27

of a Lie group 300
submanifold 140, 244
submersion 243

reconstruction from frame bundle 364
calculus, definition of vector in 249

definition of covector in 250
definition of tensor in 255

field 194, 230, 255
covariant derivative of 274
Lie derivative of 194, 257

product 103, 360, 361
time, Newtonian 11
time-preserving Lorentz transformation 208
timelike subspace 168

vector 168, 179
topological manifold

space 51
topology 51

torsion 273

form 278
significance

238

of vanishing of 281
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torus, coordinates for 237
trace 6, 93
transformation group 302
transformation, active, passive 22
transition function 354

reconstructing a bundle from 355
translation 18
traps,, se of a matrix 116
transposition (element of symmetric group)

115

transverse hyperplane (to a distribution)

152

triangle inequality 167
triple scalar product, as volume function

88

trivial bundle 356
trivial topology 51
type of a tensor 230, 254

umbilic point 222
U(n), unitary group 300
unimodular linear transformation 93
union of sets 24
unit vector 167
unitary matrix 206, 300
usual topology on R, R' 51, 52

valence of a tensor 194, 254
vector 25

bound I
bundle 357

algebraic constructions with 3M
calculus 1, 182

identities in 186
differences between usage of in math-

ematics and physics I
field 54, 252

along a curve 46
as cross-section 34!
as differential operator 72
covariant derivative of 48, 226, 271
Lie derivative of 68, 253

fields related by a smooth map 75, 254
free I
space 25

of multilinear maps 102
vector-valued form 280

function 280
vertical endomorphism 332

lift 3.30
subspace 329, 376
vector, vector field 329, 363

vertex of a parallelepiped 86
volume 85

as base area times height, generalised
101, 171

as alternati'ig multilinear form 90
form 129

related to a scalar product 171
function, axioms for 87
transformation of 92

Weingarten map 222
Weyl conformal curvature tensor 294
Whitney sum 359
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